JP2010165564A - Method of manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Method of manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010165564A
JP2010165564A JP2009007016A JP2009007016A JP2010165564A JP 2010165564 A JP2010165564 A JP 2010165564A JP 2009007016 A JP2009007016 A JP 2009007016A JP 2009007016 A JP2009007016 A JP 2009007016A JP 2010165564 A JP2010165564 A JP 2010165564A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
secondary battery
electrolyte secondary
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009007016A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishioka
努 西岡
Masakazu Yamada
雅一 山田
Takuya Hirobe
卓也 廣部
Motoki Kinugawa
元貴 衣川
Yoshiyuki Muraoka
芳幸 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009007016A priority Critical patent/JP2010165564A/en
Publication of JP2010165564A publication Critical patent/JP2010165564A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery superior in cycle life characteristics by suppressing the occurrence of buckling of an electrode group associated with expansion and shrinkage of a negative electrode active material. <P>SOLUTION: After a positive electrode mixture slurry including a positive electrode active material is coated and dried on a positive electrode current collector 4A and a positive electrode mixture layer 4B is formed on the positive electrode current collector 4A, the positive electrode 4 in which the positive electrode mixture layer 4B is formed is rolled out. Then, the rolled positive electrode 4 is heat treated at a prescribed temperature, and the tensile elongation percentage of the positive electrode 4 after rolling is made 3.0% or more. The heat treatment after rolling is carried out at a temperature higher than a softening temperature of the positive electrode current collector 4A and higher than the softening temperature of a binder contained in the positive electrode mixture layer 4B, and lower than the decomposition temperature of the binder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質二次電池の製造方法に関し、特に、充放電時の負極活物質の膨張・収縮に伴う電極群の座屈等の発生を抑制することが可能な非水電解質二次電池の製造方法に関する。   The present invention relates to a method for producing a non-aqueous electrolyte secondary battery, and in particular, a non-aqueous electrolyte secondary capable of suppressing the occurrence of buckling of an electrode group accompanying expansion / contraction of a negative electrode active material during charge / discharge. The present invention relates to a battery manufacturing method.

現在、非水電解質二次電池の負極活物質として一般に用いられている黒鉛の実用容量は、約350mAh/g程度まで達しており、黒鉛の理論容量(372mAh/g)にかなり接近している。従って、携帯機器等の高機能化に対応可能な高容量の電池を実現するためには、より大きな容量の負極活物質が求められている。   Currently, the practical capacity of graphite generally used as a negative electrode active material for non-aqueous electrolyte secondary batteries has reached about 350 mAh / g, which is quite close to the theoretical capacity of graphite (372 mAh / g). Therefore, in order to realize a high-capacity battery that can cope with high functionality of portable devices and the like, a negative electrode active material having a larger capacity is required.

そこで、高容量材料として、ケイ素(Si)またはスズ(Sn)、またはこれらの化合物が注目されている。これらの元素は、リチウムイオンを電気化学的に吸蔵および放出することができ、黒鉛に比べて非常に大きな容量の充放電が可能である。例えば、ケイ素は、その理論容量は4199mAh/gであり、黒鉛の11倍の高容量を有することが知られている。   Therefore, silicon (Si) or tin (Sn) or a compound thereof has attracted attention as a high capacity material. These elements can occlude and release lithium ions electrochemically, and can charge and discharge with a very large capacity compared to graphite. For example, silicon has a theoretical capacity of 4199 mAh / g and is known to have a capacity 11 times that of graphite.

しかしながら、これらの高容量材料からなる負極活物質は、充放電に伴う膨張収縮が大きいため、負極活物質の脱落や、極板の座屈あるいは破断が起こり、これにより、サイクル寿命特性が劣化するという問題がある。   However, since the negative electrode active material made of these high-capacity materials has a large expansion / contraction due to charging / discharging, the negative electrode active material falls off, and the electrode plate buckles or breaks, thereby deteriorating cycle life characteristics. There is a problem.

この問題を解決するために、特許文献1には、表面を租面化した集電体上に、スパッタリング法でシリコン等の薄膜を形成することによって、柱状に分離した活物質薄膜を形成する技術が記載されている。これにより、活物質薄膜に空隙が形成されるため、活物質薄膜の膨張収縮に伴う応力を吸収することができる。   In order to solve this problem, Patent Document 1 discloses a technique for forming an active material thin film separated into a columnar shape by forming a thin film such as silicon on a current collector whose surface is roughened by sputtering. Is described. Thereby, since a space | gap is formed in an active material thin film, the stress accompanying the expansion and contraction of an active material thin film can be absorbed.

また、特許文献2には、負極集電体として、所定の引っ張り強さや弾性係数を有する材料を用いる技術が記載されている。これにより、活物質の膨張収縮に伴う応力を受けても集電体が変形するのを抑制することができる。
特開2002−313319号公報 特開2003−007305号公報 特開平5−182692号公報 特開平7−105970号公報
Patent Document 2 describes a technique using a material having a predetermined tensile strength and elastic modulus as a negative electrode current collector. Thereby, even if it receives the stress accompanying expansion and contraction of an active material, it can control that a current collector changes.
JP 2002-313319 A JP 2003-007305 A Japanese Patent Laid-Open No. 5-182692 JP-A-7-105970

負極活物質の膨張収縮に伴う電極群の座屈等の発生を抑制する従来の対策は、専ら負極側においてなされていたが、通常、正極の引っ張り伸び率は、負極の引っ張り伸び率よりも小さいため、負極の膨張・収縮が大きい場合、負極の膨張・収縮に正極が追随できず、その結果、電極群の座屈や破断の発生を十分に防止することはできなかった。   Conventional measures to suppress the occurrence of buckling of the electrode group accompanying the expansion and contraction of the negative electrode active material have been made exclusively on the negative electrode side, but the tensile elongation rate of the positive electrode is usually smaller than the tensile elongation rate of the negative electrode Therefore, when the expansion / contraction of the negative electrode is large, the positive electrode cannot follow the expansion / contraction of the negative electrode, and as a result, the occurrence of buckling or breakage of the electrode group could not be sufficiently prevented.

本発明は、かかる点に鑑みなされたもので、負極活物質の膨張収縮に伴う電極群の座屈や破断の発生を抑制し、サイクル寿命特性の優れた非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of the above points, and provides a non-aqueous electrolyte secondary battery having excellent cycle life characteristics by suppressing the occurrence of buckling and breakage of an electrode group accompanying expansion and contraction of a negative electrode active material. With the goal.

本発明に係わる非水電解質二次電池は、正極集電体上に正極合剤層が形成された正極、及び負極集電体上に負極合剤層が形成された負極が、多孔質絶縁層を介して捲回された電極群を備えた非水電解質二次電池の製造方法であって、
上記正極は、正極集電体上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させて、正極集電体上に正極合剤層を形成する工程(a)と、正極合剤層が形成された正極集電体を圧延する工程(b)と、圧延された正極を所定の温度で熱処理する工程(c)とにより形成され、
上記工程(c)は、正極集電体の軟化温度よりも高い温度で、かつ、正極合剤層に含まれる結着剤の軟化温度よりも高く、該結着剤の分解温度よりも低い温度で実行され、工程(c)後の正極の引っ張り伸び率は、3.0%以上であることを特徴とする。
The nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode in which a positive electrode mixture layer is formed on a positive electrode current collector, and a negative electrode in which a negative electrode mixture layer is formed on a negative electrode current collector. A method for producing a non-aqueous electrolyte secondary battery comprising an electrode group wound through
The positive electrode includes a step (a) of forming a positive electrode mixture layer on the positive electrode current collector by applying and drying a positive electrode mixture slurry containing a positive electrode active material on the positive electrode current collector; Formed by the step (b) of rolling the positive electrode current collector formed with the step (c) of heat-treating the rolled positive electrode at a predetermined temperature,
The step (c) is a temperature higher than the softening temperature of the positive electrode current collector, higher than the softening temperature of the binder contained in the positive electrode mixture layer, and lower than the decomposition temperature of the binder. The tensile elongation of the positive electrode after the step (c) is 3.0% or more.

このような方法により、充放電時の負極の膨張・収縮が大きくても、圧延された正極集電体を所定の温度で熱処理することによって、正極の引っ張り伸び率を高めることができるため、負極の膨張・収縮に正極が追随することができ、これにより、負極活物質の膨張収縮に伴う電極群の座屈や破断の発生を防止することができる。加えて、負極の膨張・収縮に追随して正極が伸びても、圧延後の正極の熱処理温度を正極合剤層に含まれる結着剤の軟化温度よりも高く、分解温度よりも低い温度で行うことによって、正極合剤層と正極集電体との結着力を高まることができるため、正極合剤層が正極集電体から剥落するのを防止することができる。   By such a method, even when the expansion / contraction of the negative electrode during charging / discharging is large, the tensile elongation of the positive electrode can be increased by heat-treating the rolled positive electrode current collector at a predetermined temperature. Thus, the positive electrode can follow the expansion and contraction of the electrode, thereby preventing the occurrence of buckling and breakage of the electrode group due to the expansion and contraction of the negative electrode active material. In addition, even if the positive electrode expands following the expansion / contraction of the negative electrode, the heat treatment temperature of the positive electrode after rolling is higher than the softening temperature of the binder contained in the positive electrode mixture layer and lower than the decomposition temperature. By doing so, the binding force between the positive electrode mixture layer and the positive electrode current collector can be increased, so that the positive electrode mixture layer can be prevented from peeling off from the positive electrode current collector.

本発明によれば、充放電時の負極の膨張・収縮に伴う電極群の座屈や破断の発生を防止することができるとともに、正極合剤層の剥落に起因する内部短絡の発生を防止することができる。これにより、サイクル寿命特性に優れ、かつ安全性に優れた非水電解質二次電池を提供することができる。   According to the present invention, it is possible to prevent the occurrence of buckling and breakage of the electrode group due to the expansion / contraction of the negative electrode during charge / discharge, and also prevent the occurrence of an internal short circuit due to the peeling of the positive electrode mixture layer. be able to. Thereby, the nonaqueous electrolyte secondary battery excellent in cycle life characteristics and excellent in safety can be provided.

本願出願人は、非水電解質二次電池が圧壊によって潰されたときに、電池内で内部短絡が起きる要因を検討していたところ、電極群を構成する正極、負極、及びセパレータのうち、引っ張り伸び率の最も小さい正極が優先的に破断した結果、正極の破断部がセパレータを突き破って、正極と負極とが短絡していることが分かった。   The applicant of the present application has been studying factors that cause an internal short circuit in the battery when the nonaqueous electrolyte secondary battery is crushed by crushing. Among the positive electrode, negative electrode, and separator constituting the electrode group, the applicant As a result of preferentially breaking the positive electrode having the smallest elongation rate, it was found that the broken portion of the positive electrode broke through the separator and the positive electrode and the negative electrode were short-circuited.

そこで、正極の引っ張り伸び率を高める方法をさらに検討した結果、正極合剤層を塗布した正極集電体を圧延した後に、所定の温度で熱処理を施すことによって、正極の引っ張り伸び率が大きくなる効果を見出した。なお、通常、正極集電体に正極合剤層を塗布した後、正極合剤層と正極集電体との密着性を向上させる目的で熱処理を行うが(例えば、特許文献3、4等を参照)、この熱処理によって正極の引っ張り伸び率は一時的に大きくなるものの、その後に圧延処理を施すと、引っ張り伸び率は再び低下し、最終的には、正極の引っ張り伸び率を大きくすることはできない。   Therefore, as a result of further examination of a method for increasing the tensile elongation rate of the positive electrode, after the positive electrode current collector coated with the positive electrode mixture layer is rolled, heat treatment is performed at a predetermined temperature to increase the tensile elongation rate of the positive electrode. I found an effect. Normally, after applying the positive electrode mixture layer to the positive electrode current collector, heat treatment is performed for the purpose of improving the adhesion between the positive electrode mixture layer and the positive electrode current collector (see, for example, Patent Documents 3 and 4). The tensile elongation of the positive electrode is temporarily increased by this heat treatment, but if the rolling treatment is performed after that, the tensile elongation decreases again, and eventually the tensile elongation of the positive electrode is increased. Can not.

本願出願人は、この知見に基づき、正極の引っ張り伸び率を所定の値以上にすることによって、圧壊された非水電解質二次電池における内部短絡の発生を抑制する方法を、特願2007−323217号(PCT/JP2008/002114)の出願明細書に開示している。   Based on this finding, the applicant of the present application has proposed a method for suppressing the occurrence of internal short circuit in a collapsed nonaqueous electrolyte secondary battery by setting the tensile elongation of the positive electrode to a predetermined value or more, as disclosed in Japanese Patent Application No. 2007-323217. No. (PCT / JP2008 / 002114).

すなわち、正極集電体上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、正極合剤スラリーが塗布・乾燥された正極を圧延し、然る後、圧延された正極を所定の温度で熱処理することによって、圧延後の正極の引っ張り伸び率を、3.0%以上にすることができる。これにより、圧壊によって非水電解質二次電池が潰されることがあっても、正極が優先的に破断することはないため、電池内の内部短絡の発生を防止することができる。   That is, a positive electrode mixture slurry containing a positive electrode active material is applied and dried on a positive electrode current collector, and then the positive electrode on which the positive electrode mixture slurry is applied and dried is rolled. By performing heat treatment at a predetermined temperature, the tensile elongation of the positive electrode after rolling can be made 3.0% or more. As a result, even if the nonaqueous electrolyte secondary battery is crushed by crushing, the positive electrode is not preferentially broken, so that an internal short circuit in the battery can be prevented.

上記のように、圧延後の熱処理によって正極の引っ張り伸び率を3.0%以上に高めることができるのは、次のようなメカニズムによるものと考えられる。   As described above, it is considered that the tensile elongation of the positive electrode can be increased to 3.0% or more by the heat treatment after rolling due to the following mechanism.

すなわち、正極の引っ張り伸び率は、正極集電体の表面に正極合剤層が形成されているため、正極集電体自身の固有の引っ張り伸び率で規制されるものではい。通常、正極合剤層の方が正極集電体よりも固いので、圧延後の熱処理を行わなかった正極を伸ばしたとき、正極合剤層に大きなクラックが発生すると同時に、正極が破断する。これは、正極の伸びとともに正極合剤層内の引っ張り応力が増し、正極集電体に加わる引っ張り応力が、大きなクラックの発生した箇所に集中することにより、正極集電体が破断したものと考えられる。   That is, the tensile elongation rate of the positive electrode is not limited by the inherent tensile elongation rate of the positive electrode current collector itself because the positive electrode mixture layer is formed on the surface of the positive electrode current collector. Usually, since the positive electrode mixture layer is harder than the positive electrode current collector, when the positive electrode not subjected to the heat treatment after rolling is stretched, a large crack is generated in the positive electrode mixture layer and at the same time, the positive electrode is broken. This is because the tensile stress in the positive electrode mixture layer increases with the elongation of the positive electrode, and the tensile stress applied to the positive electrode current collector is concentrated at the location where the large crack is generated, thereby breaking the positive electrode current collector. It is done.

一方、圧延後に熱処理を行った正極を伸ばしたときは、正極合剤層に多数の微小なクラックを発生ながら伸び続け、やがて正極が破断する。これは、正極集電体に加わる引っ張り応力が微小なクラックの発生により分散されるため、クラックの発生と同時に正極が破断されることなく一定の大きさまで伸び続け、引っ張り応力が一定の大きさに達した時点で正極集電体が破断したものと考えられる。   On the other hand, when the positive electrode subjected to heat treatment after rolling is stretched, the positive electrode mixture layer continues to grow while generating a lot of minute cracks, and eventually the positive electrode breaks. This is because the tensile stress applied to the positive electrode current collector is dispersed by the generation of minute cracks, so that the positive electrode continues to grow to a certain size without breaking at the same time as the occurrence of the crack, and the tensile stress becomes constant. It is considered that the positive electrode current collector was broken when it reached.

圧延後の熱処理によって得られる正極の引っ張り伸び率は、正極集電体や正極活物質の材料によって大きさが異なるが、例えば、アルミニウムからなる正極集電体に、LiCoOを正極活物質とする正極合剤層が形成された正極の場合、200℃以上の温度で、圧延後の熱処理(180秒)を行うことによって、正極の引っ張り伸び率を3%以上に高めることができる。なお、熱処置温度は、正極集電体の軟化温度よりも高く、結着剤の分解温度よりも低いことが好ましい。 Tensile extension percentage of the positive electrode obtained by heat treatment after rolling, the size depending on the material of the positive electrode current collector and a positive electrode active material are different, for example, the positive electrode current collector made of aluminum, the LiCoO 2 as a positive electrode active material In the case of a positive electrode in which a positive electrode mixture layer is formed, the tensile elongation of the positive electrode can be increased to 3% or more by performing a heat treatment (180 seconds) after rolling at a temperature of 200 ° C. or higher. The heat treatment temperature is preferably higher than the softening temperature of the positive electrode current collector and lower than the decomposition temperature of the binder.

表1は、アルミニウムからなる正極集電体に、LiCoOを正極活物質とする正極合剤層を形成した正極を用いて電池を作製したときの圧壊試験の結果を示した表である。ここで、電池1〜4は、正極の圧延後の熱処理条件を、280℃の温度で、熱処理時間を10秒、20秒、120秒、180秒に変えて行ったものである。また、電池5は、圧延後の熱処理を行わなかったものである。 Table 1 is a table showing a result of a crushing test when a battery was manufactured using a positive electrode in which a positive electrode mixture layer containing LiCoO 2 as a positive electrode active material was formed on a positive electrode current collector made of aluminum. Here, the batteries 1 to 4 were obtained by changing the heat treatment conditions after rolling the positive electrode at a temperature of 280 ° C. and changing the heat treatment time to 10 seconds, 20 seconds, 120 seconds, and 180 seconds. The battery 5 was not subjected to heat treatment after rolling.

Figure 2010165564
Figure 2010165564

表1に示すように、圧延後の熱処理を行わなかった電池5の正極の引っ張り伸び率は、1.5%であったのに対し、圧延後の熱処理を行った電池1〜4の正極の引っ張り伸び率は、3〜6.5%にそれぞれ大きくなっているのが分かる。そして、各電池に対して、圧壊試験(6φの丸棒を0.1mm/secの速度で電池を押して、電池内で内部短絡が起きた時点での電池の変形量(短絡深さ)を測定)を行った結果、表1に示すように、圧延後の熱処理を行わなかった電池5の短絡深さは5mmであったのに対し、圧延後の熱処理を行った電池1〜4の短絡深さは、8〜10mmと深くなっているのが分かる。すなわち、圧延後に所定の熱処理を行うことによって、正極の引っ張り伸び率を3%以上にすることができ、これにより、圧壊による内部短絡の発生を防止することができる。   As shown in Table 1, the tensile elongation of the positive electrode of the battery 5 that was not subjected to the heat treatment after rolling was 1.5%, whereas the positive elongation of the batteries 1 to 4 that were subjected to the heat treatment after rolling was as follows. It can be seen that the tensile elongation is increased to 3 to 6.5%. Then, for each battery, a crush test (a 6φ round bar was pushed at a speed of 0.1 mm / sec, and the amount of deformation (short circuit depth) of the battery when an internal short circuit occurred in the battery was measured. ), As shown in Table 1, the short-circuit depth of the battery 5 that was not subjected to the heat treatment after rolling was 5 mm, whereas the short-circuit depth of the batteries 1 to 4 that were subjected to the heat treatment after rolling was as shown in Table 1. It can be seen that the depth is as deep as 8 to 10 mm. That is, by performing a predetermined heat treatment after rolling, the tensile elongation of the positive electrode can be increased to 3% or more, thereby preventing the occurrence of an internal short circuit due to crushing.

なお、圧延後の熱処理温度が高かったり、熱処理時間が長くなると、正極合剤層に含まれる結着剤が溶融し、正極活物質が溶融した結着剤で被覆されると、電池容量が低下するおそれがある。圧延後の熱処理に伴う電池容量の低下を防止するために、上記出願明細書では、正極集電体として、鉄を含有するアルミニウムを用いることが好ましいことを開示している。鉄を含有するアルミニウムからなる正極集電体を用いることによって、所定の正極の引っ張り伸び率を得るのに必要な圧延後の熱処理温度を低く、若しくは、熱処理時間を短くすることができる。これにより、圧延後の熱処理に伴う電池容量の低下を防止することができる。   In addition, when the heat treatment temperature after rolling is high or the heat treatment time is long, the binder contained in the positive electrode mixture layer is melted, and when the positive electrode active material is coated with the molten binder, the battery capacity is reduced. There is a risk. In order to prevent a decrease in battery capacity due to heat treatment after rolling, the above-mentioned application specification discloses that it is preferable to use aluminum containing iron as the positive electrode current collector. By using a positive electrode current collector made of aluminum containing iron, the heat treatment temperature after rolling necessary for obtaining a predetermined tensile elongation of the positive electrode can be lowered or the heat treatment time can be shortened. Thereby, the fall of the battery capacity accompanying the heat processing after rolling can be prevented.

本願発明者等は、負極活物質の膨張収縮に伴う電極群の座屈等の発生を抑制する従来の対策が、専ら負極側においてなされていたのに対して、正極側に着目して、電極群の座屈発生との関係を検討した。その結果、正極の引っ張り伸び率を3%以上にすることによって、負極活物質の膨張収縮に伴う電極群の座屈等の発生を抑制する効果を見出した。   The inventors of the present application focused on the positive electrode side while the conventional measures for suppressing the occurrence of buckling of the electrode group accompanying expansion and contraction of the negative electrode active material were exclusively performed on the negative electrode side. The relationship with the occurrence of group buckling was examined. As a result, the inventors have found an effect of suppressing the occurrence of buckling of the electrode group accompanying expansion and contraction of the negative electrode active material by setting the tensile elongation rate of the positive electrode to 3% or more.

しかしながら、さらに検討を加えると、正極の引っ張り伸び率を3%以上にすることによって、電極群の座屈発生を抑制することができるものの、正極の引っ張り伸び率が大きくなった結果、正極合剤層と正極集電体との結着力が低下することによって、正極合剤層が正極集電体から剥落するという新たな問題が生じることが分かった。   However, when further investigation is made, it is possible to suppress the occurrence of buckling of the electrode group by setting the tensile elongation rate of the positive electrode to 3% or more. However, as a result of increasing the tensile elongation rate of the positive electrode, the positive electrode mixture It has been found that when the binding force between the layer and the positive electrode current collector is reduced, a new problem arises that the positive electrode mixture layer peels off from the positive electrode current collector.

そこで、本願発明者等は、負極の膨張・収縮に伴う電極群の座屈や破断発生を防止するために、圧延後の熱処理によって引っ張り伸び率を3%以上に高めた正極を用いた場合でも、正極の伸びに伴う正極合剤層の剥落を防止することのできる方法を検討した結果、本発明を想到するに至った。   Therefore, the inventors of the present application, even when using a positive electrode whose tensile elongation is increased to 3% or more by heat treatment after rolling in order to prevent the occurrence of buckling or breakage of the electrode group accompanying expansion / contraction of the negative electrode. As a result of studying a method capable of preventing peeling of the positive electrode mixture layer accompanying the elongation of the positive electrode, the present invention has been conceived.

以下に、本発明の一実施形態について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されない。また、本実施形態で説明する非水電解質二次電池の構成については、本願出願人による上記出願明細書に記載された構成を適用することができる。   An embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, the structure described in the said application specification by this-application applicant is applicable to the structure of the nonaqueous electrolyte secondary battery demonstrated by this embodiment.

図1は、本発明の一実施形態にける非水電解質二次電池の構成を模式的に示した断面図である。   FIG. 1 is a cross-sectional view schematically showing the configuration of a nonaqueous electrolyte secondary battery in one embodiment of the present invention.

図1に示すように、正極4及び負極5がセパレータ(多孔質絶縁層)を介して捲回された電極群8が、電解液と共に、電池ケース1内に収容されている。電池ケース1の開口部は、ガスケット3を介して、封口板2によって封口されている。正極4に取り付けられた正極リード4aは、正極端子を兼ねる封口板2に接続され、負極5に取り付けられた負極リード5aは、負極端子を兼ねる電池ケース1に接続されている。   As shown in FIG. 1, an electrode group 8 in which a positive electrode 4 and a negative electrode 5 are wound through a separator (porous insulating layer) is housed in a battery case 1 together with an electrolytic solution. The opening of the battery case 1 is sealed with a sealing plate 2 via a gasket 3. The positive electrode lead 4a attached to the positive electrode 4 is connected to the sealing plate 2 that also serves as the positive electrode terminal, and the negative electrode lead 5a attached to the negative electrode 5 is connected to the battery case 1 that also serves as the negative electrode terminal.

図2は、本実施形態における電極群8の構成を模式的に示した拡大断面図である。   FIG. 2 is an enlarged cross-sectional view schematically showing the configuration of the electrode group 8 in the present embodiment.

図2に示すように、正極集電体4Aの両面に、正極合剤層4Bが形成され、負極集電体5Aの両面に、負極合剤層5Bが形成され、正極4と負極5との間には、セパレータ6が配されている。   As shown in FIG. 2, the positive electrode mixture layer 4B is formed on both surfaces of the positive electrode current collector 4A, and the negative electrode mixture layer 5B is formed on both surfaces of the negative electrode current collector 5A. A separator 6 is disposed between them.

本実施形態における正極4は、以下の方法で製造することができる。   The positive electrode 4 in the present embodiment can be manufactured by the following method.

まず、正極集電体4A上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させて、正極集電体4A上に正極合剤層4Bを形成する。その後、正極合剤層4Bが形成された正極4を圧延した後、圧延された正極4を所定の温度で熱処理する。   First, a positive electrode mixture slurry containing a positive electrode active material is applied and dried on the positive electrode current collector 4A to form a positive electrode mixture layer 4B on the positive electrode current collector 4A. Then, after rolling the positive electrode 4 on which the positive electrode mixture layer 4B is formed, the rolled positive electrode 4 is heat-treated at a predetermined temperature.

かかる熱処置工程は、正極集電体4Aの軟化温度よりも高く、正極合剤層に含まれる結着剤の分解温度よりも低い温度で実行される。これにより、圧延後の正極4の引っ張り伸び率を3%以上に高めることができるため、充放電時の負極5の膨張・収縮に正極4が追随することができ、その結果、負極活物質の膨張収縮に伴う電極群8の座屈発生を防止することができる。   This heat treatment step is performed at a temperature higher than the softening temperature of the positive electrode current collector 4A and lower than the decomposition temperature of the binder contained in the positive electrode mixture layer. Thereby, since the tensile elongation rate of the positive electrode 4 after rolling can be increased to 3% or more, the positive electrode 4 can follow the expansion / contraction of the negative electrode 5 during charge / discharge, and as a result, the negative electrode active material The occurrence of buckling of the electrode group 8 due to expansion and contraction can be prevented.

さらに、上記熱処理工程は、結着剤の軟化温度よりも高い温度で実行される。これにより、軟化した結着剤を正極合剤層4Bと正極集電体4Aとの界面に広げることができるため、正極合剤層4Bと正極集電体4Aとの結着力を高めることができ、その結果、正極の引っ張り伸び率が大きくなったことに伴う正極合剤層4Bの剥落発生を防止することができる。   Further, the heat treatment step is performed at a temperature higher than the softening temperature of the binder. Thereby, since the softened binder can be spread to the interface between the positive electrode mixture layer 4B and the positive electrode current collector 4A, the binding force between the positive electrode mixture layer 4B and the positive electrode current collector 4A can be increased. As a result, it is possible to prevent the positive electrode mixture layer 4B from being peeled off as the tensile elongation of the positive electrode increases.

非水電解質二次電池の電極群8を構成する正極4を上記の方法で作製することによって、サイクル寿命特性に優れ、かつ安全性に優れた非水電解質二次電池を実現することができる。   By producing the positive electrode 4 constituting the electrode group 8 of the non-aqueous electrolyte secondary battery by the above method, a non-aqueous electrolyte secondary battery having excellent cycle life characteristics and excellent safety can be realized.

なお、正極4の引っ張り伸び率が10%を超えると、電極群8を捲回により形成する際、正極4が変形して均一な捲回が困難になるため、正極の引っ張り伸び率は、10%以下であることが好ましい。   If the tensile elongation rate of the positive electrode 4 exceeds 10%, when the electrode group 8 is formed by winding, the positive electrode 4 is deformed and uniform winding becomes difficult, so the tensile elongation rate of the positive electrode is 10 % Or less is preferable.

ここで、本発明における「引っ張り伸び率」は、試験片を引っ張り、試験片が破断した時の試験片の伸びた割合をいい、例えば、幅が15mmで、有効部の長さが20mmの極板を、20mm/minの速度で引っ張り、極板が破断した時点での伸び率から求められる。   Here, “tensile elongation” in the present invention refers to the ratio of elongation of the test piece when the test piece is pulled and the test piece is broken, for example, a pole having a width of 15 mm and an effective portion length of 20 mm. The plate is pulled at a speed of 20 mm / min, and the elongation is obtained when the electrode plate is broken.

表2は、本実施形態における方法を用いて作製した正極の特性を示した表である。表2中の正極Aは、軟化温度が165℃のアルミニウム箔からなる正極集電体に、コバルト酸リチウムからなる正極活物資と、軟化温度が160℃で熱分解温度が375℃のポリフッ化ビニリデンからなる結着剤を含む正極合剤スラリーを塗布・乾燥させた後、圧延処理を施し、然る後、190℃で熱処理して得られた正極の特性を示したものである。このときの正極の引っ張り伸び率は6.4%で、正極合剤層と正極集電体との結着強度は17.6N/mであった。なお、引っ張り伸び率は、上記の方法で測定し、結着強度は、正極合剤層の片面の除去を行い、露出した正極集電体面を保持し、反対面の正極合剤層のみを20mm/minの速度で引っ張り、正極集電体と正極合剤層の剥離を行うことで測定した。この正極をセパレータを介して負極とともに捲回した電極群を用いて非水電解質二次電池を作製したところ、充放電時の電極群の座屈発生はなく、サイクル特性の劣化は見られなかった。また、正極合剤層の剥落を評価した結果、剥落による不良率は0%であった。   Table 2 is a table showing the characteristics of the positive electrode produced using the method in the present embodiment. The positive electrode A in Table 2 has a positive electrode current collector made of aluminum foil with a softening temperature of 165 ° C., a positive electrode active material made of lithium cobaltate, and a polyvinylidene fluoride with a softening temperature of 160 ° C. and a thermal decomposition temperature of 375 ° C. The properties of the positive electrode obtained by applying and drying a positive electrode mixture slurry containing a binder and then subjecting to a rolling treatment and then heat-treating at 190 ° C. are shown. The tensile elongation of the positive electrode at this time was 6.4%, and the binding strength between the positive electrode mixture layer and the positive electrode current collector was 17.6 N / m. The tensile elongation is measured by the above method, and the binding strength is obtained by removing one side of the positive electrode mixture layer, holding the exposed positive electrode current collector surface, and holding only the positive electrode mixture layer on the opposite side by 20 mm. It was measured by pulling at a rate of / min and peeling off the positive electrode current collector and the positive electrode mixture layer. When a non-aqueous electrolyte secondary battery was fabricated using an electrode group in which the positive electrode was wound with a negative electrode through a separator, there was no buckling of the electrode group during charge / discharge, and no deterioration in cycle characteristics was observed. . Moreover, as a result of evaluating the peeling of the positive electrode mixture layer, the defect rate due to the peeling was 0%.

Figure 2010165564
Figure 2010165564

一方、表2中の正極Bは、圧延後の熱処理を行わなかった正極の特性を示したものである。この場合、正極の引っ張り伸び率は1.7%と低く、また、正極合剤層と正極集電体との結着強度も4.7N/mと低かった。正極Aと同様に、この正極をセパレータを介して負極とともに捲回した電極群を用いて非水電解質二次電池を作製したところ、充放電時における電極群の座屈発生に起因するサイクル特性の劣化が見られた。また、正極合剤層の剥落を評価した結果、剥落による不良率は72%であった。   On the other hand, the positive electrode B in Table 2 shows the characteristics of the positive electrode not subjected to the heat treatment after rolling. In this case, the tensile elongation of the positive electrode was as low as 1.7%, and the binding strength between the positive electrode mixture layer and the positive electrode current collector was as low as 4.7 N / m. Similarly to the positive electrode A, a non-aqueous electrolyte secondary battery was produced using an electrode group obtained by winding the positive electrode together with a negative electrode through a separator. As a result, the cycle characteristics caused by the occurrence of buckling of the electrode group during charge / discharge were obtained. Deterioration was seen. Moreover, as a result of evaluating peeling of the positive electrode mixture layer, the defect rate due to peeling was 72%.

本発明において、図2に示した電極群8を構成する正極4及び負極5については、特にその材料及び製法に制限はないが、以下のような材料及び製法を適用し得る。なお、電極群8は、正極4及び負極5をセパレータ6を介して捲回されたものでなく、積層されたものであっても勿論よい。   In the present invention, the positive electrode 4 and the negative electrode 5 constituting the electrode group 8 shown in FIG. 2 are not particularly limited in materials and manufacturing methods, but the following materials and manufacturing methods can be applied. Of course, the electrode group 8 is not formed by winding the positive electrode 4 and the negative electrode 5 with the separator 6 interposed therebetween, but may be formed by stacking them.

正極集電体4Aは、例えば、アルミニウム、ステンレス鋼、チタン等を用いることができる。特に、鉄を含有するアルミニウムを用いると、正極4の圧延後の熱処理温度を低く、若しくは熱処置時間を短くすることができる。なお、正極集電体4A中の鉄の含有量は、1.20〜1.70重量%の範囲することが好ましい。   For example, aluminum, stainless steel, titanium, or the like can be used for the positive electrode current collector 4A. In particular, when aluminum containing iron is used, the heat treatment temperature after rolling of the positive electrode 4 can be lowered or the heat treatment time can be shortened. The iron content in the positive electrode current collector 4A is preferably in the range of 1.20 to 1.70% by weight.

正極合剤層4Bは、正極活物質の他に、結着剤、導電剤などを含むことができる。正極活物質としては、例えば、リチウム複合金属酸化物を用いることができる。代表的な材料としては、LiCoO2、LiNiO2、LiMnO2、LiCoNiO2等が挙げられる。また、結着剤としては、例えば、ポリビニリデンフルオライド(PVDF)、PVDFの誘導体、又はゴム系結着剤(例えばフッ素ゴム及びアクリルゴム等)が好適に用いられる。また、導電剤としては、例えば、黒鉛等のグラファイト類、アセチレンブラック等のカーボンブラック類等の材料を用いることができる。 The positive electrode mixture layer 4B can contain a binder, a conductive agent, and the like in addition to the positive electrode active material. As the positive electrode active material, for example, a lithium composite metal oxide can be used. Typical materials include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCoNiO 2 and the like. As the binder, for example, polyvinylidene fluoride (PVDF), a derivative of PVDF, or a rubber-based binder (for example, fluororubber and acrylic rubber) is preferably used. In addition, as the conductive agent, for example, a material such as graphite such as graphite or carbon black such as acetylene black can be used.

正極4は、正極集電体4A上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、正極合剤スラリーが塗布・乾燥された正極集電体4Aを圧延し、然る後、圧延された正極集電体4Aを所定の温度で熱処理することによって得られる。なお、圧延後の熱処理条件は、正極4の引っ張り伸び率が3%以上になるように制御する。   The positive electrode 4 is formed by applying and drying a positive electrode mixture slurry containing a positive electrode active material on the positive electrode current collector 4A, and rolling the positive electrode current collector 4A coated with the positive electrode mixture slurry and dried. Thereafter, the rolled positive electrode current collector 4A is obtained by heat treatment at a predetermined temperature. The heat treatment conditions after rolling are controlled so that the tensile elongation of the positive electrode 4 is 3% or more.

負極集電体5Aは、例えば、銅、ステンレス鋼、ニッケル等を用いることができる。負極合剤層5Bは、負極活物質の他に、結着剤、導電剤などを含むことができる。負極活物質としては、例えば、黒鉛、炭素繊維等の炭素材料や、SiOx等の珪素化合物等を用いることができる。なお、SiOx等の珪素化合物等は、充放電に伴う膨張収縮が大きいため、本発明においては特に顕著な効果を奏する。 For the negative electrode current collector 5A, for example, copper, stainless steel, nickel, or the like can be used. The negative electrode mixture layer 5B can contain a binder, a conductive agent, and the like in addition to the negative electrode active material. As the negative electrode active material, for example, a carbon material such as graphite or carbon fiber, or a silicon compound such as SiO x can be used. It should be noted that silicon compounds such as SiO x have a particularly remarkable effect in the present invention because they have a large expansion / contraction due to charge / discharge.

負極5は、負極集電体5A上に、負極活物質を含む負極合剤スラリーを塗布・乾燥させた後、負極合剤スラリーが塗布・乾燥された負極体5を圧延して得る。   The negative electrode 5 is obtained by applying and drying a negative electrode mixture slurry containing a negative electrode active material on the negative electrode current collector 5A, and then rolling the negative electrode body 5 on which the negative electrode mixture slurry has been applied and dried.

なお、本発明における効果を奏するためには、負極5及びセパレータ(多孔質絶縁層)6の引っ張り伸び率は、3%以上であることを要する。   In addition, in order to show the effect in this invention, the tensile elongation rate of the negative electrode 5 and the separator (porous insulating layer) 6 needs to be 3% or more.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態においては、非水電解質二次電池としてリチウムイオン二次電池を例に説明したが、本発明の効果を奏する範囲において、ニッケル水素蓄電池等の他の非水電解質二次電池にも適用することができる。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, in the above embodiment, a lithium ion secondary battery has been described as an example of the nonaqueous electrolyte secondary battery. Can also be applied.

本発明は、大電流放電に適した電極群を備えた非水電解質二次電池に有用で、例えば、高出力を必要とする電動工具や電気自動車などの駆動用電池、大容量のバックアップ用電源、蓄電用電源用電池等に適用できる。   INDUSTRIAL APPLICABILITY The present invention is useful for a non-aqueous electrolyte secondary battery having an electrode group suitable for large current discharge, for example, a driving battery for an electric tool or an electric vehicle that requires high output, a large capacity backup power source The present invention can be applied to a power storage battery.

本発明の一実施形態における非水電解質二次電池の構成を示した断面図である。It is sectional drawing which showed the structure of the nonaqueous electrolyte secondary battery in one Embodiment of this invention. 本発明の一実施形態における電極群の構成を示した拡大断面図である。It is the expanded sectional view which showed the structure of the electrode group in one Embodiment of this invention.

1 電池ケース
2 封口板
3 ガスケット
4 正極
4A 正極集電体
4B 正極合剤層
4a 正極リード
5 負極
5A 負極集電体
5B 負極合剤層
5a 負極リード
6 セパレータ(多孔質絶縁層)
8 電極群
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Gasket 4 Positive electrode 4A Positive electrode collector 4B Positive electrode mixture layer 4a Positive electrode lead 5 Negative electrode 5A Negative electrode collector 5B Negative electrode mixture layer 5a Negative electrode lead 6 Separator (porous insulating layer)
8 Electrode group

Claims (4)

正極集電体上に正極合剤層が形成された正極、及び負極集電体上に負極合剤層が形成された負極が、多孔質絶縁層を介して捲回された電極群を備えた非水電解質二次電池の製造方法であって、
前記正極は、
前記正極集電体上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させて、前記正極集電体上に前記正極合剤層を形成する工程(a)と、
前記正極合剤層が形成された正極を圧延する工程(b)と、
前記圧延された正極を所定の温度で熱処理する工程(c)と
により形成され、
前記工程(c)は、
前記正極集電体の軟化温度よりも高い温度で、かつ、前記正極合剤層に含まれる結着剤の軟化温度よりも高く、該結着剤の分解温度よりも低い温度で実行され、
前記工程(c)後の前記正極の引っ張り伸び率は、3.0%以上である、非水電解質二次電池の製造方法。
A positive electrode having a positive electrode mixture layer formed on a positive electrode current collector, and a negative electrode having a negative electrode mixture layer formed on a negative electrode current collector provided with an electrode group wound through a porous insulating layer A method for producing a non-aqueous electrolyte secondary battery, comprising:
The positive electrode is
Applying and drying a positive electrode mixture slurry containing a positive electrode active material on the positive electrode current collector to form the positive electrode mixture layer on the positive electrode current collector;
Rolling the positive electrode on which the positive electrode mixture layer is formed (b);
A step (c) of heat-treating the rolled positive electrode at a predetermined temperature, and
The step (c)
It is performed at a temperature higher than the softening temperature of the positive electrode current collector and higher than the softening temperature of the binder contained in the positive electrode mixture layer and lower than the decomposition temperature of the binder,
The manufacturing method of the nonaqueous electrolyte secondary battery whose tensile elongation of the said positive electrode after the said process (c) is 3.0% or more.
前記負極の引っ張り伸び率は、3.0%以上であり、
前記多孔質絶縁層の引っ張り伸び率は、3.0%以上である、請求項1に記載の非水電解質二次電池の製造方法。
The tensile elongation of the negative electrode is 3.0% or more,
The method for manufacturing a nonaqueous electrolyte secondary battery according to claim 1, wherein the tensile elongation of the porous insulating layer is 3.0% or more.
前記正極集電体は、鉄を含有するアルミニウムからなる、請求項1に記載の非水電解質二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode current collector is made of aluminum containing iron. 請求項1〜3の何れかに記載の製造方法によって製造された非水電解質二次電池であって、
前記非水電解質二次電池の電極群を構成する正極の引っ張り伸び率は、3%以上である、非水電解質二次電池。
A non-aqueous electrolyte secondary battery manufactured by the manufacturing method according to claim 1,
The non-aqueous electrolyte secondary battery, wherein the tensile elongation of the positive electrode constituting the electrode group of the non-aqueous electrolyte secondary battery is 3% or more.
JP2009007016A 2009-01-15 2009-01-15 Method of manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Pending JP2010165564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007016A JP2010165564A (en) 2009-01-15 2009-01-15 Method of manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007016A JP2010165564A (en) 2009-01-15 2009-01-15 Method of manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2010165564A true JP2010165564A (en) 2010-07-29

Family

ID=42581577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007016A Pending JP2010165564A (en) 2009-01-15 2009-01-15 Method of manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010165564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170023596A (en) * 2015-08-24 2017-03-06 주식회사 엘지화학 Electrode and method for manufacturing of the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076752A (en) * 1993-06-15 1995-01-10 Toray Ind Inc Electrode, manufacture thereof, and secondary battery using this electrode
JPH09129241A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH09274901A (en) * 1996-04-05 1997-10-21 Nippon Koudoshi Kogyo Kk Nonaqueous battery
JPH1167220A (en) * 1997-08-18 1999-03-09 Showa Alum Corp Aluminum alloy material for lithium battery and manufacture of electrode material for lithium battery using this aluminum alloy material
JPH11162470A (en) * 1997-11-25 1999-06-18 Toyo Alum Kk Aluminum foil for current collector, its manufacture current collector, secondary battery and electric double layer capacitor
JPH11185760A (en) * 1997-02-18 1999-07-09 Sumitomo Chem Co Ltd Positive electrode for lithium secondary battery and lithium secondary battery
JPH11260323A (en) * 1999-01-22 1999-09-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH11297298A (en) * 1998-04-14 1999-10-29 Nitto Denko Corp Battery separator and battery using it
JP2000021386A (en) * 1998-07-06 2000-01-21 Japan Storage Battery Co Ltd Battery
JP2001283862A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2003051340A (en) * 2001-08-07 2003-02-21 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2006134762A (en) * 2004-11-08 2006-05-25 Sony Corp Secondary battery
JP2006134761A (en) * 2004-11-08 2006-05-25 Sony Corp Secondary battery
JP2007273259A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
JP2008280553A (en) * 2007-05-08 2008-11-20 Mitsubishi Alum Co Ltd Method for manufacturing surface-treated aluminum
JP2009064770A (en) * 2007-08-09 2009-03-26 Panasonic Corp Nonaqueous electrolyte secondary battery and its manufacturing method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076752A (en) * 1993-06-15 1995-01-10 Toray Ind Inc Electrode, manufacture thereof, and secondary battery using this electrode
JPH09129241A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH09274901A (en) * 1996-04-05 1997-10-21 Nippon Koudoshi Kogyo Kk Nonaqueous battery
JPH11185760A (en) * 1997-02-18 1999-07-09 Sumitomo Chem Co Ltd Positive electrode for lithium secondary battery and lithium secondary battery
JPH1167220A (en) * 1997-08-18 1999-03-09 Showa Alum Corp Aluminum alloy material for lithium battery and manufacture of electrode material for lithium battery using this aluminum alloy material
JPH11162470A (en) * 1997-11-25 1999-06-18 Toyo Alum Kk Aluminum foil for current collector, its manufacture current collector, secondary battery and electric double layer capacitor
JPH11297298A (en) * 1998-04-14 1999-10-29 Nitto Denko Corp Battery separator and battery using it
JP2000021386A (en) * 1998-07-06 2000-01-21 Japan Storage Battery Co Ltd Battery
JPH11260323A (en) * 1999-01-22 1999-09-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2001283862A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2003051340A (en) * 2001-08-07 2003-02-21 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2006134762A (en) * 2004-11-08 2006-05-25 Sony Corp Secondary battery
JP2006134761A (en) * 2004-11-08 2006-05-25 Sony Corp Secondary battery
JP2007273259A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
JP2008280553A (en) * 2007-05-08 2008-11-20 Mitsubishi Alum Co Ltd Method for manufacturing surface-treated aluminum
JP2009064770A (en) * 2007-08-09 2009-03-26 Panasonic Corp Nonaqueous electrolyte secondary battery and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170023596A (en) * 2015-08-24 2017-03-06 주식회사 엘지화학 Electrode and method for manufacturing of the same
KR102002404B1 (en) * 2015-08-24 2019-07-23 주식회사 엘지화학 Electrode and method for manufacturing of the same

Similar Documents

Publication Publication Date Title
JP5325283B2 (en) Rectangular non-aqueous electrolyte secondary battery and method for manufacturing the same
WO2010086910A1 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5498386B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
TWI683013B (en) Rolled copper foil for secondary battery negative electrode current collector, secondary battery negative electrode and secondary battery using the copper foil, and method for producing rolled copper foil for secondary battery negative electrode current collector
JP5369120B2 (en) Non-aqueous electrolyte secondary battery positive electrode and method for producing the same, and non-aqueous electrolyte secondary battery including the non-aqueous electrolyte secondary battery positive electrode and method for producing the same
JP2012033381A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2011001636A1 (en) Non-aqueous electrolyte secondary battery and process for production thereof
JP2011023129A (en) Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor
JP2010113968A (en) Method of manufacturing nonaqueous electrolyte battery
WO2020179515A1 (en) Rolled copper foil for secondary battery negative electrode current collectors, secondary battery negative electrode current collector and secondary battery each using same, and method for manufacturing rolled copper foil for secondary battery negative electrode current collectors
JP4357825B2 (en) Positive electrode plate for battery, manufacturing method thereof and secondary battery
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
WO2010082229A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP5097184B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2010165564A (en) Method of manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5232813B2 (en) Charging method of lithium ion secondary battery
KR101154771B1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP2010165565A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2013247017A (en) Rolled copper foil for secondary battery negative electrode collector, negative electrode material for lithium ion secondary battery including the same, and lithium ion secondary battery
JP2010165563A (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
WO2010086911A1 (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
KR101042054B1 (en) Nonaqueous electrolyte secondary battery and method for fabricating the same
JP2014060092A (en) Method for manufacturing negative electrode collector copper foil, negative electrode collector copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015