JP2008243493A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2008243493A
JP2008243493A JP2007080349A JP2007080349A JP2008243493A JP 2008243493 A JP2008243493 A JP 2008243493A JP 2007080349 A JP2007080349 A JP 2007080349A JP 2007080349 A JP2007080349 A JP 2007080349A JP 2008243493 A JP2008243493 A JP 2008243493A
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
ions
storage battery
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007080349A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Toshimichi Takada
利通 高田
Daisuke Monma
大輔 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2007080349A priority Critical patent/JP2008243493A/en
Publication of JP2008243493A publication Critical patent/JP2008243493A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead acid storage battery ensuring a long service life for the lead acid storage battery by suppressing sulfation in a negative electrode and improving charging efficiency. <P>SOLUTION: The negative electrode in the lead acid storage battery consists of a mixture of active substance and carbon. Since the carbon exists in the negative electrode in a state of a comparatively large grain, the carbon exists in an uneven distribution. At the same time, by having at least one kind of Al ion, Se ion and Ti ion contained in the electrolyte, the charging efficiency in a regeneration charging can be improved by synergistic effect. The unevenly distributed carbon contains at least one type of carbon black or active carbon. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、寿命性能が改善された鉛蓄電池に関するものである。 The present invention relates to a lead storage battery with improved life performance.

従来、自動車用鉛蓄電池はLSIバッテリーと呼ばれるように、始動時のスタータ起動、照明、イグニッションをはじめ、高級車では100個以上搭載されていると言うモーターの電源として使用されて来たが、始動時のスタータ起動以外はエンジンが発電機を駆動して電力を供給するため、鉛蓄電池はさほど深い放電が行われることはなかった。また、発電機からの充電により、多くの場合は満充電状態に置かれるため、過充電に強いことが求められていた。 Conventionally, lead-acid batteries for automobiles have been used as power sources for motors that are equipped with 100 or more high-end cars, including starter start-up, lighting, and ignition, which are called LSI batteries. Since the engine drives the generator to supply electric power except for starting the starter at that time, the lead-acid battery was not discharged so deeply. Moreover, since charging from a generator often places the battery in a fully charged state, it has been required to be resistant to overcharging.

しかし近年、自動車は燃費改善や排出ガスの削減が強く求められるようになり、鉛蓄電池の使用条件は大きく変わってきた。それは、ブレーキによる制動エネルギーを電気に変えて電池に充電する回生充電である。回生充電は鉛蓄電池を用いた電気自動車で以前から試みられてきた技術である。しかし、鉛蓄電池は充電時の内部抵抗が放電時のそれよりも高く、回生充電受入れ性が低い問題があった。また、回生充電では充電効率を良くするため電池は常に充電不足のいわゆるPSOC状態(部分充電状態)で使用されることになる。その結果、従来の鉛蓄電池は慢性的な充電不足状態で使用されることとなり、従来使用条件では見られなかった負極劣化を引き起こした。即ち、負極表面及び内部に放電物質の硫酸鉛が蓄積するサルフェーションである。その結果、負極は更に充電効率が低下するという悪循環に陥った。 However, in recent years, automobiles are strongly required to improve fuel consumption and reduce exhaust gas, and the usage conditions of lead-acid batteries have changed greatly. It is a regenerative charge that changes the braking energy by the brake to electricity and charges the battery. Regenerative charging is a technique that has been tried for some time in electric vehicles using lead-acid batteries. However, the lead-acid battery has a problem that internal resistance during charging is higher than that during discharging, and regenerative charge acceptance is low. In regenerative charging, the battery is always used in a so-called PSOC state (partially charged state) in which charging is insufficient to improve charging efficiency. As a result, the conventional lead-acid battery was used in a chronic undercharged state, causing negative electrode deterioration that was not seen under conventional use conditions. That is, sulfation in which lead sulfate as a discharge substance accumulates on and inside the negative electrode. As a result, the negative electrode fell into a vicious circle in which the charging efficiency further decreased.

この問題の改善手段として負極にカーボンを通常よりも多く添加すること(非特許文献1)が提案されている。また、負極上部よりも下部にカーボンブラックを多く添加したペーストを充填し、カーボンブラックを偏在させる方法(特許文献1)や負極下部の表面にカーボンブラックを付着、ロールプレスなどで圧着し、カーボンブラックを偏在させる方法(特許文献2)などが提案されている。 As a means for solving this problem, it has been proposed to add more carbon than usual to the negative electrode (Non-patent Document 1). Also, carbon black is added to the lower part of the negative electrode and filled with a paste containing carbon black (Patent Document 1), carbon black is attached to the surface of the lower part of the negative electrode, and pressed with a roll press or the like. There has been proposed a method for uneven distribution of the above (Patent Document 2) and the like.

J. Power Source vol.59(1996)153−157J. et al. Power Source vol. 59 (1996) 153-157 特開昭63−187559号公報JP-A 63-187559 特開昭63−187560号公報JP-A 63-187560

しかしながら、非特許文献1に記載の方法は、カーボンの添加量は開示されていないが、硫酸鉛の間隙に入り、導電パスを作るとされている。しかし、発明者等はカーボン量を広範囲に取って各種試験した結果、寿命延長効果は限定的であり、カーボンの添加量が多すぎても逆効果であることが確認された。 However, in the method described in Non-Patent Document 1, although the amount of carbon added is not disclosed, it is said that the conductive path is formed by entering the lead sulfate gap. However, as a result of various tests conducted by the inventors taking a wide range of carbon amounts, the life extension effect was limited, and it was confirmed that even if the amount of carbon added was too large, it was counterproductive.

また、特許文献1、特許文献2に記載の方法は、共にカーボンブラックを偏在させるものであり、負極格子の電気抵抗により、冬場の比較的長い時間の使用でサルフェーションが負極下部に起こるとしてカーボンブラックを負極下部に偏在させた。一方、PSOC条件の回生による充電ピークは小型又は普通車で150A、1秒間程度と見られ、それ以降は電流が低下して従来電極でも充電を受け入れることができる。つまり、負極にカーボンを偏在させて、充電され易い領域を形成してこの電気量を充電できるようにすれば良いわけである。従って、カーボンを偏在させる領域は負極下部に限定されるものではなく、即ち、夫々の方法ではPSOC条件での寿命延長効果は限定的であると考えられる。 In addition, the methods described in Patent Document 1 and Patent Document 2 both distribute carbon black, and carbon black indicates that sulfation occurs in the lower part of the negative electrode due to the electric resistance of the negative electrode lattice during a relatively long time in winter. Was unevenly distributed in the lower part of the negative electrode. On the other hand, the charging peak due to regeneration under the PSOC condition is about 150 A for about 1 second in a small or ordinary vehicle, and thereafter, the current decreases and charging can be accepted even with the conventional electrode. That is, carbon may be unevenly distributed in the negative electrode to form a region that is easily charged so that the amount of electricity can be charged. Therefore, the region in which the carbon is unevenly distributed is not limited to the lower part of the negative electrode, that is, it is considered that the life extension effect under PSOC conditions is limited in each method.

本発明は、上記課題に鑑みなされたものであり、サルフェーションを抑制することで鉛蓄電池の長寿命化を図った鉛蓄電池を提供することが望まれる。 The present invention has been made in view of the above problems, and it is desirable to provide a lead storage battery in which the life of the lead storage battery is extended by suppressing sulfation.

上記した課題を解決するため、負極は活物質とカーボンの混合物であって、該負極にカーボンが偏在しており、かつ電解液にAlイオン、Seイオン、Tiイオンの少なくとも一種を含むことを特徴とするものである。
また、前記カーボンは、カーボンブラック、活性炭の少なくとも一種を含むことを特徴とするものである。
In order to solve the above problems, the negative electrode is a mixture of an active material and carbon, the carbon is unevenly distributed in the negative electrode, and the electrolytic solution contains at least one of Al ions, Se ions, and Ti ions. It is what.
In addition, the carbon includes at least one of carbon black and activated carbon.

なお、本発明において、「偏在」とは比較的大きな粒が点在することを意味し、「偏在」にはこの大きな粒が比較的均等に点在していることも含み、粒が上部或いは下部などに偏って存在することを含まない。 In the present invention, “unevenly distributed” means that relatively large grains are scattered, and “unevenly distributed” includes that these large grains are scattered relatively evenly, and the grains are at the top or Does not include being biased to the bottom.

本発明は、特開昭63−187559号公報や特開昭63−187560号公報の改良に関するものである。本発明の鉛蓄電池の構成は、負極が活物質とカーボンの混合物であって、しかもカーボンが偏在することを特徴とし、かつ電解液にAlイオン、Seイオン、Tiイオンの少なくとも一種を含むことを特徴とする。また、カーボンとしてカーボンブラック、活性炭の少なくとも一種を含むものである。
特開昭63−187559号公報や特開昭63−187560号公報は負極格子の電気抵抗により、冬場の比較的長い時間の使用でサルフェーションが負極下部に起こるとしてカーボンブラックを負極下部に偏在させた。一方、PSOC条件の回生による充電ピークは小型又は普通車で150A、1秒間程度と見られ、それ以降は電流が低下して従来電極でも充電を受け入れることができる。つまり、負極にカーボンを偏在させて、充電され易い領域を形成してこの電気量を充電できるようにすれば良いわけである。従って、カーボンを偏在させる領域は負極下部に限定されるものではない。
The present invention relates to improvements in JP-A-63-187559 and JP-A-63-187560. The configuration of the lead storage battery of the present invention is characterized in that the negative electrode is a mixture of an active material and carbon, and carbon is unevenly distributed, and that the electrolytic solution contains at least one of Al ions, Se ions, and Ti ions. Features. The carbon contains at least one of carbon black and activated carbon.
In Japanese Patent Laid-Open Nos. 63-187559 and 63-187560, carbon black is unevenly distributed in the lower part of the negative electrode because sulfation occurs in the lower part of the negative electrode due to the electrical resistance of the negative electrode grid. . On the other hand, the charging peak due to regeneration under the PSOC condition is about 150 A for about 1 second in a small or ordinary vehicle, and thereafter, the current decreases and charging can be accepted even with the conventional electrode. That is, carbon may be unevenly distributed in the negative electrode to form a region that is easily charged so that the amount of electricity can be charged. Therefore, the region where carbon is unevenly distributed is not limited to the lower portion of the negative electrode.

次に、先に述べた通りカーボン添加量の増加によるPSOC条件のサルフェーションの抑制効果は限定的である。そこで鋭意研究を行ない、電解液にAlイオン、Seイオン、Tiイオンの少なくとも1種を添加することにより、充電不足状態の使用で問題となる負極サルフェーションも改善できることを見出した。これらの効果をもたらす理由は明らかではないが以下のように考える。電解液にAlイオン、Seイオン、Tiイオンを添加することで、これらの原子が硫酸鉛の結晶格子内に侵入して結晶格子をゆがませたり、結晶成長面に吸着して結晶成長を阻害したりして硫酸鉛結晶の粗大化を抑制し、硫酸鉛から鉛への可逆性を高め、サルフェーションを抑制すると考えられる。 Next, as described above, the effect of suppressing sulfation under PSOC conditions due to an increase in the amount of carbon added is limited. Therefore, intensive research was conducted, and it was found that by adding at least one of Al ion, Se ion, and Ti ion to the electrolytic solution, the negative electrode sulfation, which is a problem in using undercharged state, can be improved. The reason for these effects is not clear, but is considered as follows. By adding Al ions, Se ions, or Ti ions to the electrolyte, these atoms penetrate into the lead sulfate crystal lattice and distort the crystal lattice, or adsorb on the crystal growth surface to inhibit crystal growth. Thus, it is thought that the coarsening of the lead sulfate crystal is suppressed, the reversibility from lead sulfate to lead is increased, and sulfation is suppressed.

夫々の添加量の範囲をAlイオンの場合は0.01mol/l以上0.30mol/l以下、Seイオンの場合は0.0002mol/l以上0.0012mol/l以下、Tiイオンの場合は0.001mol/l以上0.10以下とすることにより、より高い効果が得られることを経験した。
Alイオンの添加量は0.01mol/l以上0.30mol/l以下であることが好ましく、0.01mol/l未満では効果が不十分であり0.30mol/lを越えると電解液の導電率が低下して低温放電性能を損なう。
Seイオンの添加量は0.0002mol/l以上0.0012mol/l以下が好ましく、0.0002mol/l未満では効果が不十分であり0.0012mol/lを越えると電解液中に金属Seが析出し易くなりそれ以上の効果が期待できないほか、析出したSeが短絡を引き起こすなどの悪影響を与える。
Tiイオンの添加量は0.001mol/l以上0.10以下とすることが好ましく、0.001mol/l未満では効果が不十分であり0.10mol/lを越えると電解液の導電率が低下して低温放電性能を損なう。
The range of each added amount is 0.01 mol / l or more and 0.30 mol / l or less in the case of Al ions, 0.0002 mol / l or more and 0.0012 mol / l or less in the case of Se ions, and 0.02 in the case of Ti ions. It has been experienced that a higher effect can be obtained by setting it to 001 mol / l or more and 0.10 or less.
The amount of Al ions added is preferably 0.01 mol / l or more and 0.30 mol / l or less. If the amount is less than 0.01 mol / l, the effect is insufficient. Decreases and the low-temperature discharge performance is impaired.
The addition amount of Se ions is preferably 0.0002 mol / l or more and 0.0012 mol / l or less, and if it is less than 0.0002 mol / l, the effect is insufficient, and if it exceeds 0.0012 mol / l, metal Se is deposited in the electrolyte. In addition to being able to expect further effects, the segregated Se has an adverse effect such as causing a short circuit.
The amount of Ti ions added is preferably 0.001 mol / l or more and 0.10 or less. If the amount is less than 0.001 mol / l, the effect is insufficient, and if it exceeds 0.10 mol / l, the conductivity of the electrolyte decreases. As a result, the low temperature discharge performance is impaired.

これらの相乗効果により従来負極では困難であった回生充電における充電効率を高めることが可能となる。なお、本発明は液式、シール式の何れの鉛蓄電池に対しても適用することができる。 Due to these synergistic effects, it is possible to increase the charging efficiency in regenerative charging, which was difficult with the conventional negative electrode. The present invention can be applied to both liquid type and sealed type lead storage batteries.

本発明は、21世紀において益々重要となる地球環境問題から不可避的に要求される省エネルギー、自然エネルギーなどの新エネ利用、特に化石燃料消費の多くを占める自動車等の輸送機器の燃費改善に応える、経済的で長期間安定的に作動する鉛蓄電池の改善を提供するものであり、その工業的価値は大きい。 The present invention responds to the improvement of fuel consumption of transportation equipment such as automobiles, which occupy a large amount of fossil fuel consumption, especially for energy saving and natural energy, which are inevitably required due to global environmental problems that are becoming increasingly important in the 21st century. The present invention provides an improvement in a lead-acid battery that is economical and operates stably over a long period of time, and its industrial value is great.

本発明は、常法により正極板を作製し、負極にカーボンを偏在させた負極板を作製し、正極板と負極板とをポリエチレンセパレータを介して交互に積層して極板群を構成し、これを電槽内に極板群収納し該電槽へ蓋を施し所定量の電解液を注液して電槽化成を行い、所望の鉛蓄電池を作製した。
なお、電解液は希硫酸水溶液にAlイオンやSeイオン等を所定量添加し混合して作製した。
The present invention produces a positive electrode plate by a conventional method, produces a negative electrode plate in which carbon is unevenly distributed in the negative electrode, and constitutes an electrode plate group by alternately laminating positive electrode plates and negative electrode plates via a polyethylene separator, The electrode plate group was housed in the battery case, a lid was applied to the battery case, and a predetermined amount of electrolyte was injected to form a battery case, thereby producing a desired lead storage battery.
The electrolyte was prepared by adding a predetermined amount of Al ions, Se ions, etc. to a dilute sulfuric acid aqueous solution and mixing them.

(未化成の負極板の製造)
負極ペーストとして、ボールミル法で製造した酸化鉛に、カーボン粉末として比表面積70m2/gのカーボンブラックと硫酸バリウム粉末を添加して乾式混合した。カーボン粉末の添加量は酸化鉛100重量部に対して0.2重量部とした。これにリグニンを水溶液として加え、続いてイオン交換水を加えながら混練して水ペーストを調製し、更に希硫酸を加えながら混練して負極活物質ペーストとした。
次に負極にカーボンが偏在した状態を形成するために、ペーストAとして、比表面積が1500m/gの活性炭を50重量部と比表面積が70m/gのカーボンブラックを50重量部に、CMC水溶液とSBR(スチレンブタジエンゴム)分散液を加えて混練しワイヤー状にして固化し、これを適当な大きさ(1mmΦ×1mm)に裁断して、これを負極活物質100重量部に対して5重量部添加混練し負極ペーストとした。
この様に製造したペーストを鉛−カルシウム合金からなる鋳造基板に充填した後、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成板とした。
(Manufacture of unformed negative electrode plate)
As a negative electrode paste, carbon black having a specific surface area of 70 m 2 / g and barium sulfate powder were added as dry powder to lead oxide produced by a ball mill method. The amount of carbon powder added was 0.2 parts by weight with respect to 100 parts by weight of lead oxide. Lignin was added thereto as an aqueous solution, followed by kneading while adding ion exchange water to prepare a water paste, and further kneading while adding dilute sulfuric acid to obtain a negative electrode active material paste.
Next, in order to form a state in which carbon is unevenly distributed in the negative electrode, as paste A, 50 parts by weight of activated carbon having a specific surface area of 1500 m 2 / g and 50 parts by weight of carbon black having a specific surface area of 70 m 2 / g, An aqueous solution and an SBR (styrene butadiene rubber) dispersion are added and kneaded to form a wire, which is solidified, cut into an appropriate size (1 mmΦ × 1 mm), and 5 parts per 100 parts by weight of the negative electrode active material. Part by weight was added and kneaded to obtain a negative electrode paste.
After the paste thus produced was filled into a cast substrate made of a lead-calcium alloy, it was aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to obtain an unformed sheet.

(未化成の正極板の製造)
酸化鉛100重量部にイオン交換水10重量部、続いて比重1.27の希硫酸10重量部を加えながら混練して正極用ペーストを製造した。このペーストのカップ密度は約130g/2inであった。このペーストを鉛−カルシウム合金からなる鋳造基板に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成板とした。
(Manufacture of unformed positive electrode plate)
A positive electrode paste was manufactured by adding 10 parts by weight of ion-exchanged water to 100 parts by weight of lead oxide and subsequently adding 10 parts by weight of dilute sulfuric acid having a specific gravity of 1.27. Cup density of the paste is about 130 g / 2in 3. The paste was filled in a cast substrate made of a lead-calcium alloy, aged in an atmosphere of 40 ° C. and 95% humidity for 24 hours, and then dried to obtain an unformed sheet.

(電池組立、電解液の調製と化成)
そして、これらの正極未化成板と負極未化成板Aに微細ガラスマットセパレータとを交互に積層し組み合わせ、COS方式(キャストオンストラップ方式)で極板同士を溶接して極板群とした。これをPP製(ポリプロピレン製)の電槽に入れ、ヒートシールによって蓋をした。そして、電解液に注入するAlイオンを硫酸塩で0.1mol/l添加した電解液を添加し、電槽化成を行い5時間率容量が40AhのD23サイズの12V鉛蓄電池を試作した(本発明1)。
なお、電槽化成後の電解液比重は1.280(20℃)であった。
(Battery assembly, electrolyte preparation and formation)
Then, these positive electrode unformed plate and negative electrode unformed plate A were laminated by laminating fine glass mat separators alternately, and the electrode plates were welded together by the COS method (cast on strap method) to form an electrode plate group. This was put into a battery case made of PP (made of polypropylene) and covered by heat sealing. Then, an electrolytic solution in which 0.1 mol / l of Al ions to be injected into the electrolytic solution was added with sulfate was added, and the battery was formed, and a D23 size 12V lead storage battery with a 5-hour rate capacity of 40 Ah was prototyped (the present invention). 1).
In addition, the electrolyte solution specific gravity after battery case formation was 1.280 (20 degreeC).

実施例1で作製したカーボンを負極活物質100重量部に対し10重量部添加した以外は、実施例1と同様に5時間率容量が40AhのD23サイズの12V鉛蓄電池を試作した(本発明2)。   A D23 size 12V lead-acid battery having a 5-hour rate capacity of 40 Ah was prototyped in the same manner as in Example 1 except that 10 parts by weight of the carbon prepared in Example 1 was added to 100 parts by weight of the negative electrode active material (Invention 2). ).

(比較例1)
負極板にカーボンを添加せず、電解液にAlイオンを添加しなかった以外は実施例1と同様に5時間率容量が40AhのD23サイズの12V鉛蓄電池を試作した(比較例1)。
(Comparative Example 1)
A D23 size 12V lead storage battery having a 5-hour rate capacity of 40 Ah was prototyped (Comparative Example 1) in the same manner as in Example 1 except that no carbon was added to the negative electrode plate and no Al ions were added to the electrolyte.

(比較例2)
負極板にカーボンを添加しなかった以外は実施例1と同様に5時間率容量が40AhのD23サイズの12V鉛蓄電池を試作した(比較例2)。
(Comparative Example 2)
A D23 size 12V lead-acid battery having a 5-hour capacity of 40 Ah was prototyped (Comparative Example 2) in the same manner as in Example 1 except that no carbon was added to the negative electrode plate.

(比較例3)
電解液にAlイオンを添加しなかった以外は実施例1と同様に5時間率容量が40AhのD23サイズの12V鉛蓄電池を試作した(比較例3)。
(Comparative Example 3)
A D23 size 12V lead acid battery having a 5-hour rate capacity of 40 Ah was prototyped (Comparative Example 3) in the same manner as in Example 1 except that Al ions were not added to the electrolytic solution.

(回生充電とPSOC耐久性の評価)
種々作製した鉛蓄電池(本発明1〜2、比較例1〜4)を25℃、5時間率電流で完全充電した後、SOC(充電状態)80%となるように5時間率電流で放電した。次に、周囲温度40℃で30A、60秒間及び100A、0.5秒間の定電流放電と30A、60秒間及び100A、1秒間、上限電圧15Vの定電流・定電圧充電の組合せを1サイクルとする耐久加速試験を行った。そして、放電時の電圧が7.2Vを下回るまで試験を繰り返し、その時点を電池の寿命とした。望ましい寿命は、30000サイクル以上である。また、寿命試験終了後に回復充電(深い放電後100%充電すること)を行った後に5時間率容量を測定し、容量回復性を評価した。望ましい回復性は70%以上である。なお、容量回復性は初期容量に対する比率で現したものである。
(Evaluation of regenerative charging and PSOC durability)
Various lead acid batteries (Inventions 1 and 2 and Comparative Examples 1 to 4) were fully charged at 25 ° C. and 5 hours rate current, and then discharged at 5 hours rate current so as to be 80% SOC (charged state). . Next, a combination of constant current discharge of 30 A, 60 seconds and 100 A, 0.5 seconds at an ambient temperature of 40 ° C. and constant current / constant voltage charge of 30 A, 60 seconds and 100 A, 1 second, upper limit voltage 15 V is one cycle. A durability acceleration test was conducted. And the test was repeated until the voltage at the time of discharge fell below 7.2V, and the time was regarded as the life of the battery. The desired lifetime is 30000 cycles or more. Moreover, after carrying out recovery charge (charging 100% after deep discharge) after the end of the life test, the 5-hour rate capacity was measured to evaluate capacity recovery. Desirable recoverability is 70% or more. The capacity recoverability is expressed as a ratio to the initial capacity.

表1に、カーボン増加ペースト、Al添加量、サイクル寿命数および容量回復性を併記した。 Table 1 also shows the carbon increasing paste, the amount of Al added, the cycle life number, and the capacity recoverability.

Figure 2008243493
Figure 2008243493

表1に示すように、カーボン増加ペーストを用い、電解液にAlイオンを添加した本発明1、2は両者を同時に満足しない比較例1〜3に比し、サイクル寿命および容量回復性に優れていることが分る。また、比較例2、3から分るように、カーボン増加ペーストのみを用いた場合にはサイクル寿命は向上するも容量回復性に乏しく、逆にAlイオンのみを用いた場合にはその逆のことが言える。 As shown in Table 1, the present invention 1 and 2 using a carbon-enhanced paste and adding Al ions to the electrolyte solution are superior in cycle life and capacity recovery compared to Comparative Examples 1 to 3 that do not satisfy both at the same time. You can see that Moreover, as can be seen from Comparative Examples 2 and 3, when only the carbon increasing paste is used, the cycle life is improved, but the capacity recovery is poor, and conversely, when only Al ions are used. I can say.

従来ペーストとカーボン量の比率は要求性能に応じて適宜変更することができる。なお、実施例1の如く、酸化鉛にカーボン粉末を必ずしも添加する必要はないが、添加した方が好ましい。また、偏在するカーボンは、カーボンブラックか活性炭それぞれ単独でも同様な効果はあるが、両方を混合した方が好ましい。 The ratio between the conventional paste and the carbon amount can be appropriately changed according to the required performance. As in Example 1, it is not always necessary to add carbon powder to lead oxide, but it is preferable to add it. In addition, the carbon that is unevenly distributed has the same effect when carbon black or activated carbon is used alone, but it is preferable to mix both.

更に、電解液への添加イオンはAlイオンの例を示したが、Seイオン、Tiイオン、及びこれらの2乃至3種類のイオンの組合せでも同様の効果がある。
また、実施例ではAlイオンの添加に硫酸塩を用いたが、硫酸水溶液や水に可溶性の夫々の化合物であれば良く、その夫々の硫酸塩のほか、炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩、水酸化物、酸化物、夫々の金属酸塩などの化合物で添加することができる。
また、硫酸水溶液と反応して溶解する場合は、夫々の金属で添加しても良い。電池はシール式での例を示したが、多量の遊離する電解液が存する液式でも同様の効果が得られた。
Furthermore, although the example of the ions added to the electrolyte is Al ions, Se ions, Ti ions, and combinations of these two to three types of ions have the same effect.
In addition, although sulfate was used for the addition of Al ions in the examples, each compound may be any compound that is soluble in an aqueous sulfuric acid solution or water, and in addition to each sulfate, carbonate, bicarbonate, phosphate , Borates, hydroxides, oxides, and the respective metal acid salts.
Moreover, when it reacts with sulfuric acid aqueous solution and melt | dissolves, you may add with each metal. The battery was shown as an example of a seal type, but the same effect was obtained with a liquid type in which a large amount of free electrolyte is present.

Claims (2)

負極は活物質とカーボンの混合物であって、該負極にカーボンが偏在しており、かつ電解液にAlイオン、Seイオン、Tiイオンの少なくとも一種を含むことを特徴とした鉛蓄電池。 A lead-acid battery, wherein the negative electrode is a mixture of an active material and carbon, carbon is unevenly distributed in the negative electrode, and the electrolyte contains at least one of Al ions, Se ions, and Ti ions. 前記カーボンは、カーボンブラック、活性炭の少なくとも一種を含むことを特徴とする請求項1記載の鉛蓄電池。 2. The lead acid battery according to claim 1, wherein the carbon includes at least one of carbon black and activated carbon.
JP2007080349A 2007-03-26 2007-03-26 Lead acid storage battery Pending JP2008243493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080349A JP2008243493A (en) 2007-03-26 2007-03-26 Lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080349A JP2008243493A (en) 2007-03-26 2007-03-26 Lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2008243493A true JP2008243493A (en) 2008-10-09

Family

ID=39914591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080349A Pending JP2008243493A (en) 2007-03-26 2007-03-26 Lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2008243493A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074279A (en) * 2010-09-29 2012-04-12 Gs Yuasa Corp Lead acid battery
JP2012089310A (en) * 2010-10-18 2012-05-10 Gs Yuasa Corp Lead storage battery
JP2015005528A (en) * 2014-09-05 2015-01-08 株式会社Gsユアサ Lead storage battery
JP2015144144A (en) * 2015-05-12 2015-08-06 株式会社Gsユアサ Lead acid battery
JP2015187991A (en) * 2015-05-20 2015-10-29 株式会社Gsユアサ Liquid type lead storage battery
CN107086322A (en) * 2017-05-03 2017-08-22 厦门大学 A kind of copper selenium compound can discharge and recharge aluminium ion battery for positive pole
JP2018125294A (en) * 2015-01-28 2018-08-09 日立化成株式会社 Lead storage cell and automobile provided with the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101523A (en) * 1972-04-10 1973-12-20
JPH06349486A (en) * 1993-06-04 1994-12-22 Japan Storage Battery Co Ltd Negative electrode plate for lead-acid battery
JP2003051334A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Sealed lead-acid battery
JP2003051306A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Negative electrode for lead-acid battery
JP2003178754A (en) * 2001-12-07 2003-06-27 Shin Kobe Electric Mach Co Ltd Plate for lead-acid storage battery, and manufacturing method of the same
JP2004031040A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2005268061A (en) * 2004-03-19 2005-09-29 Furukawa Battery Co Ltd:The Lead storage cell
JP2006185678A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101523A (en) * 1972-04-10 1973-12-20
JPH06349486A (en) * 1993-06-04 1994-12-22 Japan Storage Battery Co Ltd Negative electrode plate for lead-acid battery
JP2003051334A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Sealed lead-acid battery
JP2003051306A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Negative electrode for lead-acid battery
JP2003178754A (en) * 2001-12-07 2003-06-27 Shin Kobe Electric Mach Co Ltd Plate for lead-acid storage battery, and manufacturing method of the same
JP2004031040A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2005268061A (en) * 2004-03-19 2005-09-29 Furukawa Battery Co Ltd:The Lead storage cell
JP2006185678A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074279A (en) * 2010-09-29 2012-04-12 Gs Yuasa Corp Lead acid battery
JP2012089310A (en) * 2010-10-18 2012-05-10 Gs Yuasa Corp Lead storage battery
JP2015005528A (en) * 2014-09-05 2015-01-08 株式会社Gsユアサ Lead storage battery
JP2018125294A (en) * 2015-01-28 2018-08-09 日立化成株式会社 Lead storage cell and automobile provided with the same
JP2015144144A (en) * 2015-05-12 2015-08-06 株式会社Gsユアサ Lead acid battery
JP2015187991A (en) * 2015-05-20 2015-10-29 株式会社Gsユアサ Liquid type lead storage battery
CN107086322A (en) * 2017-05-03 2017-08-22 厦门大学 A kind of copper selenium compound can discharge and recharge aluminium ion battery for positive pole

Similar Documents

Publication Publication Date Title
JP6597842B2 (en) Lead acid battery
JP5500315B2 (en) Lead acid battery
JP5598532B2 (en) Lead acid battery
JP4364460B2 (en) Negative electrode for lead acid battery
WO2011108056A1 (en) Lead storage battery
WO2012086008A1 (en) Lead storage battery
JP4953600B2 (en) Lead acid battery
JP2008243487A (en) Lead acid battery
EP3635805B1 (en) Lead-acid battery
JP2008243493A (en) Lead acid storage battery
WO2018229875A1 (en) Liquid-type lead storage battery
JP4053272B2 (en) Negative electrode for lead acid battery
JP2011181436A (en) Lead acid battery
JP2008243489A (en) Lead acid storage battery
JP2004281197A (en) Lead acid storage battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
US11936032B2 (en) Absorbent glass mat battery
JP5531746B2 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP7128482B2 (en) lead acid battery
JP2006210059A (en) Lead acid storage battery
JP6255696B2 (en) Lead acid battery
US20240222600A1 (en) Absorbent glass mat battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113