JP2012074279A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2012074279A
JP2012074279A JP2010218628A JP2010218628A JP2012074279A JP 2012074279 A JP2012074279 A JP 2012074279A JP 2010218628 A JP2010218628 A JP 2010218628A JP 2010218628 A JP2010218628 A JP 2010218628A JP 2012074279 A JP2012074279 A JP 2012074279A
Authority
JP
Japan
Prior art keywords
mol
ions
negative electrode
electrode plate
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010218628A
Other languages
Japanese (ja)
Other versions
JP5748091B2 (en
Inventor
Tomoko Matsumura
朋子 松村
Masaru Inagaki
賢 稲垣
Kazuma Saito
和馬 齋藤
Yuichi Tsuboi
裕一 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2010218628A priority Critical patent/JP5748091B2/en
Publication of JP2012074279A publication Critical patent/JP2012074279A/en
Application granted granted Critical
Publication of JP5748091B2 publication Critical patent/JP5748091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lead acid battery having the same number of positive electrode plate as a negative electrode plate and an electrolyte containing an Al ion of 0.02 to 0.2 mol/L and a Li ion of 0.02 to 0.2 mol/L.SOLUTION: The lead acid battery which maintains high rate discharge performance with acceptance of regenerative charging to be improved is provided.

Description

この発明は鉛蓄電池に関し、特に正極板と負極板とが同枚数ずつ配置され、かつPSOC(Partial State of Charge)で使用する、自動車用等の鉛蓄電池に関する。   The present invention relates to a lead storage battery, and more particularly, to a lead storage battery for automobiles or the like in which the same number of positive and negative electrode plates are arranged and used in PSOC (Partial State of Charge).

エネルギー密度を向上させ、あるいは軽量化を目的に、正極板と負極板とを同枚数ずつ配置した鉛蓄電池が知られている。特許文献1は、このような鉛蓄電池では、充電時に負極の分極が著しくなり、回生充電受入性が低下することを指摘している。そして特許文献1(JP2009-104914A)では、負極活物質中のカーボン量と硫酸バリウム量の最適化、及び正極と負極のサイズの最適化により、充電不足による寿命低下を防止することを提案している。   A lead storage battery in which the same number of positive and negative electrode plates are arranged for the purpose of improving energy density or reducing the weight is known. Patent Document 1 points out that in such a lead storage battery, the polarization of the negative electrode becomes significant during charging, and the regenerative charge acceptability decreases. And in patent document 1 (JP2009-104914A), it proposes preventing the life fall by insufficient charge by optimizing the amount of carbon and the amount of barium sulfate in a negative electrode active material, and optimizing the size of a positive electrode and a negative electrode. Yes.

特許文献2(JP3713947B)は、負極板と正極板とを同枚数とすると、電槽の側壁側に正極板を配置するか負極板を配置するかで、特性が変化することを開示している。そして外部温度の影響を受けやすい正極板を、側壁から遠い側に配置することを開示している。   Patent Document 2 (JP3713947B) discloses that the characteristics change depending on whether the positive electrode plate or the negative electrode plate is arranged on the side wall side of the battery case when the number of the negative electrode plate and the positive electrode plate is the same. . And it discloses disposing the positive electrode plate which is easily influenced by the external temperature on the side far from the side wall.

特許文献3(JP2008-243487A)は、負極板を正極板よりも1枚多くした通常の鉛蓄電池において、電解液にLiイオンを0.005〜0.14mol/L添加し、Alイオンを0.01〜0.3mol/L添加することを開示している。特許文献3では、Liイオンにより正極利用率が増し、Alイオンによりサルフェーションを防止できることを開示している。また特許文献4(JPS52-136332A)も、特許文献3と同様に。Alイオンによりサルフェーションを防止できることを開示している。   In Patent Document 3 (JP2008-243487A), in a normal lead-acid battery having one negative electrode plate larger than the positive electrode plate, 0.005 to 0.14 mol / L of Li ion is added to the electrolyte, and 0.01 to 0.3 mol / L of Al ion is added. L is disclosed. Patent Document 3 discloses that the positive electrode utilization rate is increased by Li ions, and sulfation can be prevented by Al ions. Patent Document 4 (JPS52-136332A) is similar to Patent Document 3. It discloses that sulfation can be prevented by Al ions.

発明者は、正極板と負極板とを同枚数とした鉛蓄電池に対し、電解液への添加物により回生充電受入性を向上させることを検討し、この発明に到った。   The inventor studied to improve the regenerative charge acceptability with an additive to the electrolytic solution for lead storage batteries having the same number of positive and negative electrode plates, and reached the present invention.

JP2009-104914AJP2009-104914A JP3713947BJP3713947B JP2008-243487AJP2008-243487A JPS52-136332AJPS52-136332A

この発明の課題は、正極板と負極板とを同枚数とした鉛蓄電池に対し、電解液への添加物により、回生充電受入性を向上させると共に、高率放電性能を維持することにある。   An object of the present invention is to improve regenerative charge acceptance and maintain a high rate discharge performance by using an additive to an electrolytic solution for a lead storage battery having the same number of positive and negative electrode plates.

この発明は、同枚数の正極板と負極板とから構成される極板群を、希硫酸系電解液中に浸した鉛蓄電池において、前記電解液が0.02〜0.2mol/LのAlイオンと、0.02〜0.2mol/LのLiイオンとを含有することを特徴とする。   The present invention relates to a lead storage battery in which an electrode plate group composed of the same number of positive and negative electrode plates is immersed in a dilute sulfuric acid electrolyte solution, wherein the electrolyte solution is 0.02 to 0.2 mol / L Al ions, It contains 0.02 to 0.2 mol / L Li ion.

実施例での、負極板と正極板とが同枚数の際の結果を表1に、負極板が正極板よりも1枚多い際の結果を表2に示す。Alイオンは何れの場合も回生充電性能を向上させ、高率放電性能を低下させるが、負極板が正極板よりも多い場合、Alイオンによる回生充電性能の向上は僅かである。これに対して、負極板と正極板が同枚数の場合、Alイオンにより回生充電性能は著しく向上する。このことは、負極板と正極板とを同枚数にすることにより、負極の分極が進み回生充電受入性が低下している際に、電解液中のAlイオンが極めて有効であることを示している。正極板と負極板とが同枚数でも、負極板が1枚多い場合でも、電解液のAlイオンは高率放電特性を低下させる。これに対して、Alイオンの他にLiイオンを添加すると、高率放電性能を許容値以上に保つことができる。   Table 1 shows the results when the number of the negative plates and the positive plates in the example is the same, and Table 2 shows the results when the number of the negative plates is one more than that of the positive plates. In any case, Al ions improve the regenerative charging performance and reduce the high rate discharge performance, but when the negative electrode plate is more than the positive electrode plate, the improvement of the regenerative charging performance by Al ions is slight. On the other hand, when the number of the negative electrode plates and the positive electrode plates is the same, the regenerative charging performance is significantly improved by Al ions. This shows that Al ions in the electrolyte are extremely effective when the negative electrode plate and the positive electrode plate are made to have the same number and the polarization of the negative electrode advances and the regenerative charge acceptance decreases. Yes. Even when the number of the positive and negative electrode plates is the same or when the number of the negative electrode plates is one, the Al ions in the electrolytic solution deteriorate the high rate discharge characteristics. On the other hand, when Li ions are added in addition to Al ions, the high rate discharge performance can be maintained at or above the allowable value.

表1及び図2に示すように、回生充電受入性へのAlイオンの効果は0.02mol/L以上で顕著となる。この一方で、高率放電性能はAlイオンを0.2mol/L超添加すると、著しく低下する。従ってAlイオン濃度は0.02mol/L以上で0.2mol/L以下とする。また表1及び図3に示すように、高率放電性能へのLiイオンの効果も0.02mol/L以上で顕著となる。一方、回生充電性能はLiイオンを0.2mol/L超添加すると著しく低下する。従ってLiイオン濃度も0.02mol/L以上で0.2mol/L以下とする。以上のようにこの発明では、正極板と負極板とが同枚数の鉛蓄電池において、高い回生充電受入性を達成すると共に、高率放電性能を許容範囲内の値とすることができる。   As shown in Table 1 and FIG. 2, the effect of Al ions on regenerative charge acceptability becomes significant at 0.02 mol / L or more. On the other hand, the high rate discharge performance is significantly reduced when Al ions are added in excess of 0.2 mol / L. Therefore, the Al ion concentration is 0.02 mol / L or more and 0.2 mol / L or less. Further, as shown in Table 1 and FIG. 3, the effect of Li ions on the high rate discharge performance becomes remarkable at 0.02 mol / L or more. On the other hand, regenerative charge performance is significantly reduced when Li ion is added in excess of 0.2 mol / L. Therefore, the Li ion concentration is also 0.02 mol / L or more and 0.2 mol / L or less. As described above, according to the present invention, in a lead storage battery having the same number of positive and negative electrode plates, high regenerative charge acceptance can be achieved, and high rate discharge performance can be set within a permissible range.

この明細書で、Alイオン,Liイオンの濃度は電解液1L当たりのAlイオンとLiイオンの濃度(mol/L)で表す。なおAlイオンの1モルは、硫酸アルミニウム(Al2(SO4)3)の171.05gに相当する。また活物質の組成は水と硫酸、及び不純物を除いて示す。濃度の範囲は原則として上限と下限を含むものとし、例えば0.02〜0.2mol/Lは、0.02mol/L以上で0.2mol/L以下を意味する。
In this specification, the concentration of Al ions and Li ions is expressed as the concentration of Al ions and Li ions per mol of electrolyte (mol / L). One mole of Al ions corresponds to 171.05 g of aluminum sulfate (Al 2 (SO 4 ) 3 ). The composition of the active material is shown excluding water, sulfuric acid, and impurities. In principle, the concentration range includes an upper limit and a lower limit. For example, 0.02 to 0.2 mol / L means 0.02 mol / L or more and 0.2 mol / L or less.

実施例の鉛蓄電池の模式図Schematic diagram of the lead storage battery of the example 電解液中のLiイオン濃度を0.1mol/Lあるいは0.2mol/Lに固定した際の、回生充電受入性と高率放電性能へのAlイオン濃度の影響を示す特性図Characteristic diagram showing the effect of Al ion concentration on regenerative charge acceptance and high rate discharge performance when Li ion concentration in electrolyte is fixed at 0.1 mol / L or 0.2 mol / L 電解液中のAlイオン濃度を0.1mol/Lあるいは0.2mol/Lに固定した際の、回生充電受入性と高率放電性能へのLiイオン濃度の影響を示す特性図Characteristic diagram showing the effect of Li ion concentration on regenerative charge acceptance and high rate discharge performance when Al ion concentration in electrolyte is fixed at 0.1 mol / L or 0.2 mol / L

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

最適実施例Best practice

鉛蓄電池の製造
JIS D5301に準拠した、55B24形で正極板と負極板とが同枚数の鉛蓄電池を製造した。公称電圧12V、5時間率定格容量は36Ahである。正極格子は0.07mass%のCaと1.5mass%のSnと不可避不純物とを含み、残余がPbである。また負極格子は0.05mass%のCaと0.5mass%のSnと不可避不純物とを含み、残余がPbである。各格子は高さが115mm、幅が100mm、厚さが1mmで、エキスパンド格子でも鋳造格子でも良い。
Manufacture of lead-acid batteries
A lead-acid battery of 55B24 type with the same number of positive and negative plates was manufactured in accordance with JIS D5301. The nominal voltage is 12V, and the 5 hour rate rated capacity is 36Ah. The positive electrode lattice contains 0.07 mass% Ca, 1.5 mass% Sn and unavoidable impurities, and the balance is Pb. The negative electrode lattice contains 0.05 mass% Ca, 0.5 mass% Sn, and inevitable impurities, and the remainder is Pb. Each grid has a height of 115 mm, a width of 100 mm, and a thickness of 1 mm, and may be an expanded grid or a cast grid.

ボールミル法で作製した鉛粉に、補強剤のアクリル繊維を0.1mass%加えた(鉛粉との合計が100mass%)。この混合物100mass%に、水13mass%と20℃で比重1.40の希硫酸10mass%とを混合し、正極活物質ペーストとした。補強剤はアクリル繊維に限らず任意で、補強剤を添加しなくても良い。ボールミル法で作製した鉛粉に、リグニン0.15mass%、カーボンブラック0.2mass%、硫酸バリウム0.5mass%、及び0.1mass%のアクリル繊維を加え、鉛粉との合計を100mass%とした。この混合物100mass%に、水11mass%と20℃で比重1.40の希硫酸7mass%とを混合し、負極活物質ペーストとした。鉛粉はボールミル法に限らず、バートン法等によって作製したものでも良く、正極活物質ペースト及び負極活物質ペーストの組成自体は任意である。   0.1 mass% of acrylic fiber as a reinforcing agent was added to the lead powder produced by the ball mill method (total of 100 mass% with the lead powder). 100 mass% of this mixture was mixed with 13 mass% of water and 10 mass% of dilute sulfuric acid having a specific gravity of 1.40 at 20 ° C. to obtain a positive electrode active material paste. The reinforcing agent is not limited to acrylic fiber, and any reinforcing agent may not be added. Acrylic fibers of lignin 0.15 mass%, carbon black 0.2 mass%, barium sulfate 0.5 mass%, and 0.1 mass% were added to the lead powder produced by the ball mill method, and the total with the lead powder was 100 mass%. 11 mass% of water and 7 mass% of dilute sulfuric acid having a specific gravity of 1.40 at 20 ° C. were mixed with 100 mass% of this mixture to obtain a negative electrode active material paste. The lead powder is not limited to the ball mill method, but may be produced by a Burton method or the like, and the composition of the positive electrode active material paste and the negative electrode active material paste is arbitrary.

正極板と負極板とに1枚当たり各50gの活物質ペーストを充填し、各々50℃相対湿度50%で48時間熟成し、次いで50℃の乾燥雰囲気で24時間乾燥した。袋状のポリエチレンセパレータ内に負極板を収納し、正極板と負極板を交互に配置し、同極性の極板の耳を互いに溶接して極板群とした。得られた極板群6個をポリプロピレン製の電槽内に収納して、ストラップの部分で直列に接続するように溶接し、20℃で比重1.23の希硫酸に所定量の硫酸Alと硫酸Liとを添加した電解液を注入し、25℃の水槽内で電槽化成を行って、55B24形の鉛蓄電池とした。Alイオン源とLiイオン源は任意で、例えばAlイオン源は、金属Alや水酸化アルミニウム、硫酸アルミニウム等、Liイオン源は、水酸化リチウム、硫酸リチウム、炭酸リチウム等、任意の形態で添加できる。   Each of the positive electrode plate and the negative electrode plate was filled with 50 g of each active material paste, aged at 50 ° C. and 50% relative humidity for 48 hours, and then dried in a dry atmosphere at 50 ° C. for 24 hours. The negative electrode plate was accommodated in a bag-like polyethylene separator, the positive electrode plate and the negative electrode plate were alternately arranged, and the ears of the same polarity electrode plate were welded together to form an electrode plate group. Six obtained electrode plate groups are housed in a polypropylene battery case, welded so as to be connected in series at the strap portion, and a predetermined amount of Al sulfate and Li sulfate are added to dilute sulfuric acid with a specific gravity of 1.23 at 20 ° C. Was added, and a battery case was formed in a water bath at 25 ° C. to obtain a 55B24 type lead acid battery. Al ion source and Li ion source are optional, for example, Al ion source can be added in any form such as metal Al, aluminum hydroxide, aluminum sulfate, etc., Li ion source can be added in any form such as lithium hydroxide, lithium sulfate, lithium carbonate, etc. .

鉛蓄電池を図1に模式的に示し、2は極板群で、正極板4と負極板6とを同枚数ずつ備え、8はセパレータで負極板6を包み込むが、正極板4を包み込んでも良い。例えば7枚の正極板4はストラップ10で互いに電気的に接続され、同様に7枚の負極板6もストラップ12で互いに電気的に接続されている。また端部の正極板4aと電槽の側壁等を隔離するセパレータを設けても良い。極板群2は電槽内で希硫酸系の電解液に浸され、複数の極板群が直列に接続されて、鉛蓄電池を構成する。ここで「希硫酸系」は、希硫酸にAlイオン、Liイオン等が溶解していることを意味する。   A lead storage battery is schematically shown in FIG. 1, wherein 2 is an electrode plate group and includes the same number of positive electrode plates 4 and negative electrode plates 6, and 8 encloses the negative electrode plate 6 with a separator, but the positive electrode plate 4 may be encapsulated. . For example, the seven positive plates 4 are electrically connected to each other by the strap 10, and similarly, the seven negative plates 6 are also electrically connected to each other by the strap 12. Further, a separator that separates the positive electrode plate 4a at the end from the side wall of the battery case may be provided. The electrode plate group 2 is immersed in a dilute sulfuric acid electrolyte solution in a battery case, and a plurality of electrode plate groups are connected in series to constitute a lead storage battery. Here, “dilute sulfuric acid type” means that Al ions, Li ions, etc. are dissolved in dilute sulfuric acid.

Alイオン濃度とLiイオン濃度を変え、他は同様にして、実施例1-16の鉛蓄電池を作成した。またAlイオン濃度もしくはLiイオン濃度を実施例の範囲から外し、他は実施例と同様にして、比較例1-9の鉛蓄電池を作成した。さらに正極板を7枚、負極板を8枚とし、Alイオン濃度とLiイオン濃度を変え、他は実施例と同様にして、比較例10-17の鉛蓄電池を作成した。   A lead storage battery of Example 1-16 was produced in the same manner except that the Al ion concentration and the Li ion concentration were changed. Further, the lead ion battery of Comparative Example 1-9 was prepared in the same manner as in the example except that the Al ion concentration or the Li ion concentration was excluded from the range of the example. Further, a lead storage battery of Comparative Example 10-17 was prepared in the same manner as in the Example except that the number of the positive electrode plates was 7 and the number of the negative electrode plates was 8, and the Al ion concentration and the Li ion concentration were changed.

性能試験と結果
各鉛蓄電池に対し、回生充電試験と高率放電性能試験(JIS D5301:2006の9.5.3b))とを行った。回生充電試験では、25℃気槽で満充電状態から5時間率電流により30分放電し、充電状態(SOC)を90%とし、12時間放置した。次いで25℃気槽で14.4V(最大電流100A)で10秒間定電圧充電し、10秒間の充電電気量を測定した。また高率放電性能を評価するため、JIS D5301の高率放電特性試験を行い、端子電圧が6Vに低下するまでの放電持続時間を求めた。正極板と負極板とを共に7枚とした際の結果を表1に示し、Liイオン濃度を0.1mol/Lあるいは0.2mol/Lに固定し、Alイオン濃度を変化させた際の結果を図2に示す。またAlイオン濃度を0.1mol/Lあるいは0.2mol/Lに固定し、Liイオン濃度を変化させた際の結果を図3に示す。
Performance test and results A regenerative charge test and a high rate discharge performance test (JIS D5301: 2006, 9.5.3b)) were conducted for each lead-acid battery. In the regenerative charge test, the battery was discharged from a fully charged state in a 25 ° C. tank for 30 minutes with a 5-hour rate current, and the state of charge (SOC) was 90%, and left for 12 hours. Next, constant voltage charging was performed for 10 seconds at 14.4 V (maximum current 100 A) in a 25 ° C. air tank, and the amount of electricity charged for 10 seconds was measured. In addition, in order to evaluate the high rate discharge performance, a high rate discharge characteristic test of JIS D5301 was conducted, and the discharge duration until the terminal voltage decreased to 6V was obtained. Table 1 shows the results when both the positive and negative electrode plates were used. Table 1 shows the results when the Li ion concentration was fixed at 0.1 mol / L or 0.2 mol / L and the Al ion concentration was changed. It is shown in 2. Fig. 3 shows the results when the Li ion concentration was changed with the Al ion concentration fixed at 0.1 mol / L or 0.2 mol / L.

表1等では、AlイオンもLiイオンも無添加の比較例1を100とする相対値で結果を示し、回生充電性能の目標値は115以上、高率放電性能の許容値は95以上とし、試料数は各3で、結果は平均値で示す。更に負極板を8枚、正極板を7枚とした際の結果を表2に示す。同様に試料数は各3で、結果は平均値で示す。   In Table 1 and the like, the results are shown as relative values with Comparative Example 1 in which neither Al ions nor Li ions are added as 100, the target value of regenerative charging performance is 115 or more, and the allowable value of high rate discharge performance is 95 or more. The number of samples is 3, and the results are shown as average values. Table 2 shows the results when 8 negative plates and 7 positive plates were used. Similarly, the number of samples is 3, and the results are shown as average values.

表1及び図2から明らかなように、電解液へのAlイオンの添加は回生充電性能を著しく向上させ、添加量0と添加量0.02mol/Lでは大差がある。回生充電性能はAlイオン濃度と共になおも増加するが、0.2mol/L超では高率放電性能が許容下限未満に低下する。またLiイオンはAlイオンの添加で低下した高率放電性能を回復させ、0.02mol/Lの添加で既に顕著な効果があり、0.2mol/L超では回生充電性能が急激に低下する。回生充電性能と高率放電性能の双方で良好な結果が得られる範囲は、Alイオンが0.02〜0.2mol/L、Liイオンも0.02〜0.2mol/Lである。   As is apparent from Table 1 and FIG. 2, the addition of Al ions to the electrolyte significantly improves the regenerative charging performance, and there is a large difference between the addition amount 0 and the addition amount 0.02 mol / L. The regenerative charging performance still increases with the Al ion concentration, but if it exceeds 0.2 mol / L, the high rate discharge performance falls below the allowable lower limit. Moreover, Li ion recovers the high rate discharge performance that was lowered by the addition of Al ion, and already has a remarkable effect when 0.02 mol / L is added, and if it exceeds 0.2 mol / L, the regenerative charging performance decreases rapidly. The range in which good results are obtained in both regenerative charge performance and high rate discharge performance is 0.02 to 0.2 mol / L for Al ions and 0.02 to 0.2 mol / L for Li ions.

Alイオンは、充電時の負極の分極を抑制することにより、回生充電受入性を向上させるものと考えられる。Alイオンは負極のサルフェーションを抑制することが知られており(特許文献3,4)、充電時に負極での硫酸鉛の分解を容易にし、負極の分極を抑制するものと考えられる。しかしながら正極板と負極板とが同枚数の場合、Alイオンの添加は、負極板が正極板よりも1枚多い場合に比べ、特に著しい効果を有する。一方、Alイオンのみを希硫酸に添加すると、高率放電により硫酸イオンとプロトンが活物質付近で消費された際に、電解液/活物質の界面付近で導電性が不足するものと考えられる。これに対してLiイオンはイオン半径が小さくかつ導電率が高いイオンで、活物質内を移動できるため、高率放電時の電解液の導電性の低下を抑制し、高率放電性能を維持しているものと考えられる。   Al ions are considered to improve regenerative charge acceptance by suppressing the polarization of the negative electrode during charging. Al ions are known to suppress sulfation of the negative electrode (Patent Documents 3 and 4), and are considered to facilitate the decomposition of lead sulfate at the negative electrode during charging and suppress the polarization of the negative electrode. However, when the number of positive plates and the number of negative plates is the same, the addition of Al ions has a particularly remarkable effect as compared with the case where the number of negative plates is one more than that of the positive plates. On the other hand, when only Al ions are added to dilute sulfuric acid, when sulfate ions and protons are consumed in the vicinity of the active material by high rate discharge, it is considered that the conductivity is insufficient in the vicinity of the electrolyte / active material interface. On the other hand, Li ions are ions with a small ionic radius and high electrical conductivity, and can move through the active material, thus suppressing a decrease in the conductivity of the electrolyte during high rate discharge and maintaining high rate discharge performance. It is thought that.

電解液は負極のリグニンに由来するNaイオン、Kイオン等を含んでいても良く、許容範囲はNaイオンが0.015mol/L以下、Kイオンが0.01mol/L以下である。更に電解液は、正極板、負極板に由来するSnイオン、Sbイオン等、あるいはリン酸イオン、シリカ等を含んでいても良い。   The electrolytic solution may contain Na ions, K ions, and the like derived from the lignin of the negative electrode. The allowable ranges are 0.015 mol / L or less for Na ions and 0.01 mol / L or less for K ions. Furthermore, the electrolytic solution may contain Sn ions, Sb ions, etc. derived from the positive electrode plate and the negative electrode plate, phosphate ions, silica, and the like.

実施例には以下の特徴がある。
1) 0.02〜0.2mol/LのAlイオンを含有させることにより、正極板と負極板とが同枚数の鉛蓄電池での、回生充電受入性を著しく向上させることができる(表1)。これによってPSOC状態での鉛蓄電池の性能が向上し、特にアイドリングストップ車に適した鉛蓄電池が得られる。
2) これに対して、負極板が正極板よりも1枚多い場合(表2)、Alイオンによる回生充電受入性の向上は僅かであり、正極板と負極板とが同枚数の場合とは異なっている。
3) Alイオンを添加すると高率放電性能が低下するが、0.02〜0.2mol/LのLiイオンを含有させることにより、高率放電性能を許容範囲内に保つことができる。
4) 正極板と負極板とを同枚数にすることにより、エネルギー密度の向上、あるいは蓄電池の軽量化を達成できる。
The embodiment has the following characteristics.
1) By containing 0.02 to 0.2 mol / L of Al ions, the regenerative charge acceptability in the lead storage battery having the same number of positive and negative electrode plates can be remarkably improved (Table 1). As a result, the performance of the lead storage battery in the PSOC state is improved, and a lead storage battery particularly suitable for an idling stop vehicle can be obtained.
2) On the other hand, when the number of negative electrode plates is one more than that of the positive electrode plates (Table 2), the improvement in regenerative charge acceptance by Al ions is slight. Is different.
3) When Al ions are added, the high rate discharge performance is lowered, but by containing 0.02 to 0.2 mol / L Li ions, the high rate discharge performance can be maintained within an allowable range.
4) By using the same number of positive and negative electrode plates, it is possible to improve energy density or reduce the weight of the storage battery.

2 極板群
4 正極板
6 負極板
8 セパレータ
10 正極ストラップ
12 負極ストラップ
2 Electrode plate group 4 Positive electrode plate 6 Negative electrode plate 8 Separator 10 Positive electrode strap 12 Negative electrode strap

Claims (1)

同枚数の正極板と負極板とから構成される極板群を、希硫酸系電解液中に浸した鉛蓄電池において、
前記電解液が0.02〜0.2mol/LのAlイオンと、0.02〜0.2mol/LのLiイオンとを含有することを特徴とする鉛蓄電池。
In a lead storage battery in which an electrode plate group composed of the same number of positive and negative electrode plates is immersed in a dilute sulfuric acid electrolyte,
The lead acid battery characterized by the said electrolyte solution containing 0.02-0.2 mol / L Al ion and 0.02-0.2 mol / L Li ion.
JP2010218628A 2010-09-29 2010-09-29 Lead acid battery Active JP5748091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218628A JP5748091B2 (en) 2010-09-29 2010-09-29 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218628A JP5748091B2 (en) 2010-09-29 2010-09-29 Lead acid battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015097079A Division JP6164502B2 (en) 2015-05-12 2015-05-12 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2012074279A true JP2012074279A (en) 2012-04-12
JP5748091B2 JP5748091B2 (en) 2015-07-15

Family

ID=46170239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218628A Active JP5748091B2 (en) 2010-09-29 2010-09-29 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5748091B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150673A1 (en) * 2011-05-02 2012-11-08 株式会社Gsユアサ Valve regulated lead-acid battery
JP2013073716A (en) * 2011-09-27 2013-04-22 Gs Yuasa Corp Lead acid battery
JP2015008151A (en) * 2014-09-08 2015-01-15 株式会社Gsユアサ Lead-acid battery
JP2015144144A (en) * 2015-05-12 2015-08-06 株式会社Gsユアサ Lead acid battery
JP2016152131A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Lead acid storage battery
JP2017045539A (en) * 2015-08-24 2017-03-02 日立化成株式会社 Lead acid storage battery
JP2018198151A (en) * 2017-05-24 2018-12-13 古河電池株式会社 Lead storage battery
JP2019204703A (en) * 2018-05-24 2019-11-28 日立化成株式会社 Lead acid battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192751A (en) * 1993-12-28 1995-07-28 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2003346790A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2004087248A (en) * 2002-08-26 2004-03-18 Japan Storage Battery Co Ltd Lead acid battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2008243493A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
JP2009104914A (en) * 2007-10-24 2009-05-14 Panasonic Corp Lead-acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192751A (en) * 1993-12-28 1995-07-28 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2003346790A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2004087248A (en) * 2002-08-26 2004-03-18 Japan Storage Battery Co Ltd Lead acid battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2008243493A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
JP2009104914A (en) * 2007-10-24 2009-05-14 Panasonic Corp Lead-acid battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150673A1 (en) * 2011-05-02 2012-11-08 株式会社Gsユアサ Valve regulated lead-acid battery
JP6032498B2 (en) * 2011-05-02 2016-11-30 株式会社Gsユアサ Control valve type lead acid battery
US9548485B2 (en) 2011-05-02 2017-01-17 Gs Yuasa International Ltd. Valve regulated lead-acid battery
JP2013073716A (en) * 2011-09-27 2013-04-22 Gs Yuasa Corp Lead acid battery
JP2015008151A (en) * 2014-09-08 2015-01-15 株式会社Gsユアサ Lead-acid battery
JP2016152131A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Lead acid storage battery
JP2015144144A (en) * 2015-05-12 2015-08-06 株式会社Gsユアサ Lead acid battery
JP2017045539A (en) * 2015-08-24 2017-03-02 日立化成株式会社 Lead acid storage battery
JP2018198151A (en) * 2017-05-24 2018-12-13 古河電池株式会社 Lead storage battery
JP2019204703A (en) * 2018-05-24 2019-11-28 日立化成株式会社 Lead acid battery
JP7185977B2 (en) 2018-05-24 2022-12-08 昭和電工マテリアルズ株式会社 lead acid battery

Also Published As

Publication number Publication date
JP5748091B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5748091B2 (en) Lead acid battery
JP5618253B2 (en) Lead acid battery
JP5618254B2 (en) Lead acid battery
JP5769096B2 (en) Lead acid battery
JP6331161B2 (en) Control valve type lead acid battery
JP2013218894A (en) Lead acid battery
JP2017063001A (en) Lead storage battery
JP2016115396A (en) Lead power storage battery
JP2008130516A (en) Liquid lead-acid storage battery
JP2013084362A (en) Lead battery
JP5656068B2 (en) Liquid lead-acid battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP6164502B2 (en) Lead acid battery
JP5729579B2 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP5637503B2 (en) Lead acid battery
JP2016119294A (en) Lead-acid battery
JP5879888B2 (en) Control valve type lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP5909974B2 (en) Lead acid battery
JP6071116B2 (en) Lead acid battery
JP6203472B2 (en) Lead acid battery
JP5708959B2 (en) Lead acid battery
JP2017004974A (en) Lead-acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150429

R150 Certificate of patent or registration of utility model

Ref document number: 5748091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150