JP6071116B2 - Lead acid battery - Google Patents
Lead acid battery Download PDFInfo
- Publication number
- JP6071116B2 JP6071116B2 JP2015068892A JP2015068892A JP6071116B2 JP 6071116 B2 JP6071116 B2 JP 6071116B2 JP 2015068892 A JP2015068892 A JP 2015068892A JP 2015068892 A JP2015068892 A JP 2015068892A JP 6071116 B2 JP6071116 B2 JP 6071116B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- lead
- ions
- negative electrode
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002253 acid Substances 0.000 title claims description 10
- 229910001416 lithium ion Inorganic materials 0.000 claims description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 16
- 239000011149 active material Substances 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 13
- 238000003860 storage Methods 0.000 claims description 7
- 229910000978 Pb alloy Inorganic materials 0.000 claims description 5
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 description 28
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 4
- 229920002972 Acrylic fiber Polymers 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 238000000498 ball milling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000019635 sulfation Effects 0.000 description 2
- 238000005670 sulfation reaction Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
この発明は鉛蓄電池に関し、特に正極板と負極板間の間隔を小さくし、放電容量を増加させることに関する。 The present invention relates to a lead-acid battery, and more particularly to reducing the interval between a positive electrode plate and a negative electrode plate and increasing the discharge capacity.
鉛蓄電池では、正極板と負極板とを交互に積層して極板群とし、正極板と負極板の間にセパレータを配置する。そして極板群を電槽に収納し、希硫酸系の電解液に浸す。正極板と負極板は鉛合金から成る格子に活物質を充填したもので、鉛蓄電池の容量を増すには、正負の極板間の間隔を縮め、活物質の充填量を増す、あるいは極板の枚数を増すことが考えられる。しかしながら極板の間隔を小さくすると、重負荷放電時の正極活物質の脱落、あるいは過放電放置後の充電、等によって正負極板が短絡するおそれがある。そこで発明者は、極板間の間隔を狭めても短絡が生じない条件を探索して、この発明に到った。 In a lead storage battery, positive electrode plates and negative electrode plates are alternately stacked to form an electrode plate group, and a separator is disposed between the positive electrode plate and the negative electrode plate. Then, the electrode plate group is housed in a battery case and immersed in a dilute sulfuric acid electrolyte. The positive electrode plate and the negative electrode plate are made of a lead alloy grid filled with an active material. To increase the capacity of the lead-acid battery, the interval between the positive and negative electrode plates is shortened, and the active material filling amount is increased. It is possible to increase the number of sheets. However, if the distance between the electrode plates is reduced, the positive and negative electrode plates may be short-circuited due to dropping of the positive electrode active material during heavy load discharge or charging after leaving the overdischarge. Therefore, the inventor searched for a condition that does not cause a short circuit even if the interval between the electrode plates is narrowed, and arrived at the present invention.
以下に関連する先行技術を示す。特許文献1(JPS52-136332A)は鉛蓄電池の電解液にAlイオンを添加すると、負極の活物質に硫酸鉛の緻密な結晶が成長すること(サルフェーション)を抑制できることを開示している。特許文献2(JPS62-131480A)は、ガラス繊維のマットに電解液を保持させるリテーナ式鉛蓄電池において、アルミナあるいはアルミン酸ナトリウムの添加が、過放電放置後の充電時の短絡の防止に有効であることを開示している。特許文献3(JP2008-243487A)は、鉛蓄電池の電解液にAlイオンとLiイオンとを添加することを開示している。 The related art is shown below. Patent Document 1 (JPS52-136332A) discloses that the addition of Al ions to the electrolyte of a lead storage battery can suppress the growth (sulfation) of a dense lead sulfate crystal on the negative electrode active material. In Patent Document 2 (JPS62-131480A), the addition of alumina or sodium aluminate is effective in preventing short circuit during charging after being left overdischarged in a retainer type lead-acid battery in which an electrolytic solution is held on a glass fiber mat. It is disclosed. Patent Document 3 (JP2008-243487A) discloses that Al ions and Li ions are added to the electrolyte of a lead storage battery.
この発明の基本的課題は、極板間の間隔を縮めても短絡が生じず、かつ低温HR放電性能(低温高率放電性能)に優れた鉛蓄電池を提供することにある。 A basic object of the present invention is to provide a lead-acid battery that does not cause a short circuit even when the interval between electrode plates is reduced, and that is excellent in low-temperature HR discharge performance (low-temperature high-rate discharge performance).
この発明は、鉛合金から成る格子に二酸化鉛を含む活物質を備えた正極板と、鉛合金から成る格子に金属鉛を含む活物質を備えた負極板とを、セパレータを介して複数枚交互に積層した極板群を電槽内に収納し、希硫酸系の電解液に浸した鉛蓄電池において、前記セパレータは袋状で負極板を収納し、前記電解液はLiイオンを0.02mol/L以上0.2mol/L以下含有し、前記極板群での、正極板と負極板との平均間隔が0.5mm以上0.8mm以下であることを特徴とする。なお本出願の原出願である特願2014-185165に係わる発明、及びさらにその原出願に対する特許5618253の発明は、共に、Alイオン濃度を0.02mol/L以上としている。 According to the present invention, a plurality of positive electrode plates provided with an active material containing lead dioxide in a lattice made of a lead alloy and negative electrode plates provided with an active material containing metal lead in a lattice made of a lead alloy are alternately arranged. In a lead storage battery in which a group of electrode plates laminated in a battery case is immersed in a dilute sulfuric acid electrolyte, the separator is a bag and the negative electrode is stored, and the electrolyte contains 0.02 mol / L of Li ions. The content is 0.2 mol / L or less, and the average distance between the positive electrode plate and the negative electrode plate in the electrode plate group is 0.5 mm or more and 0.8 mm or less. Note that the invention relating to Japanese Patent Application No. 2014-185165, which is the original application of the present application, and the invention of Patent 5618253 corresponding to the original application both have an Al ion concentration of 0.02 mol / L or more .
この発明に関して発明者が得た主な知見は以下の通りである。
1) 重負荷放電による短絡は、セパレータに正極板ではなく負極板を収納することにより解消できる(表1,表2)。
2) 過放電放置後の充電に伴う短絡は、セパレータに負極板を収納しても解消できないが、電解液に0.02〜0.2mol/LのAlイオンまたはLiイオンを添加すると解消できる。またAlイオンの添加はサルフェーションの抑制にも有効である。
3) Alイオンの添加に伴い低温HR性能が低下する。Liイオンの添加により低温HR性能の低下を防止できる。
4) Alイオン,Liイオンの効果は各々0.02mol/Lで充分に大きく、0.2mol/Lを越えて添加しても、効果は増さない。従ってLiイオンは、0.02mol/L以上0.2mol/L以下の添加とする。
5) 極板間隔を狭めることを加えると、Alイオン、Liイオンの効果がより顕著に表れる領域がある。極板間隔が0.5〜0.8mmで、AlイオンとLiイオンを0.02〜0.2mol/L含有する領域がこの領域で、極板間隔が1mmのような広い場合よりも低温HR性能が向上する。
The main findings obtained by the inventor regarding this invention are as follows.
1) Short circuit due to heavy load discharge can be eliminated by storing the negative electrode plate instead of the positive electrode plate in the separator (Tables 1 and 2).
2) The short circuit caused by charging after being left overdischarged cannot be resolved even if the negative electrode plate is housed in the separator, but can be resolved by adding 0.02 to 0.2 mol / L Al ion or Li ion to the electrolyte. The addition of Al ions is also effective in suppressing sulfation.
3) Low temperature HR performance decreases with Al ion addition. The addition of Li ions can prevent the low-temperature HR performance from being degraded.
4) The effect of Al ion and Li ion is 0.02mol / L, which is sufficiently large. Even if added over 0.2mol / L, the effect is not increased. Therefore, Li ions are added in an amount of 0.02 mol / L to 0.2 mol / L.
5) There is a region where the effect of Al ions and Li ions appears more remarkably when the electrode plate interval is narrowed. The region where the electrode plate interval is 0.5 to 0.8 mm and the Al ion and Li ion content is 0.02 to 0.2 mol / L is this region, and the low temperature HR performance is improved as compared with the case where the electrode plate interval is as wide as 1 mm.
この明細書で、Alイオン,Liイオンの濃度は電解液1L当たりのAlイオンとLiイオンの濃度(mol/L)で表す。なおAlイオンの1モルは、硫酸アルミニウム(Al2(SO4)3)の171.05gに相当する。0.02〜0.2mol/Lの表示は、0.02mol/L以上0.2mol/L以下を意味し、A〜BはA以上B以下を意味するものとする。極板間の間隔は一定にすることが好ましく、間隔に分布がある場合、平均値を用いる。 In this specification, the concentration of Al ions and Li ions is expressed as the concentration of Al ions and Li ions per mol of electrolyte (mol / L). One mole of Al ions corresponds to 171.05 g of aluminum sulfate (Al 2 (SO 4 ) 3 ). The indication of 0.02 to 0.2 mol / L means 0.02 mol / L or more and 0.2 mol / L or less, and A to B means A or more and B or less. The interval between the electrode plates is preferably constant, and when there is a distribution in the interval, an average value is used.
以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。 Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.
鉛蓄電池の製造
JIS D 5301に準拠した55B24形の鉛蓄電池(公称電圧12V、5時間率定格容量は36Ah)を製造した。正極格子は0.07mass%のCaと1.5mass%のSnと不可避不純物とを含み残余がPbの合金で、負極格子は0.09mass%のCaと0.35mass%のSnと不可避不純物とを含み残余がPbの合金である。各格子はエキスパンド格子であるが、鋳造格子でも良く、サイズは共に高さが115mm、幅が100mm、厚さは正極格子が1.3mm、負極格子が1mmである。
Manufacture of lead-acid batteries
A 55B24 type lead acid battery (nominal voltage 12V, 5 hour rate rated capacity 36Ah) compliant with JIS D 5301 was manufactured. The positive electrode lattice is an alloy containing 0.07 mass% Ca, 1.5 mass% Sn and inevitable impurities, and the balance is Pb, and the negative electrode lattice is 0.09 mass% Ca, 0.35 mass% Sn and inevitable impurities, and the remainder is Pb. Alloy. Each grid is an expanded grid, but may be a cast grid, and the size is 115 mm in height, 100 mm in width, 1.3 mm in thickness for the positive grid, and 1 mm in thickness for the negative grid.
正極活物質ペーストは、ボールミル法で作製した鉛粉を100mass%として0.1mass%のアクリル繊維を加え、水13mass%と比重1.40(20℃)の希硫酸6mass%とを混合して得た。負極活物質ペーストは、ボールミル法で作製した鉛粉100mass%に対して、リグニン0.2mass%、カーボンブラック0.3mass%、硫酸バリウム0.6mass%、アクリル繊維0.1mass%を加え、水11mass%と比重1.40(20℃)の希硫酸7mass%とを混合して得た。なお鉛粉はボールミル法に限らず、バートン法等によるものでも良い。バインダはアクリル繊維に限らず任意であり、またバインダを添加しなくても良い。正極及び負極の活物質ペーストの組成は任意である。 The positive electrode active material paste was obtained by adding 0.1 mass% acrylic fiber with 100 mass% of the lead powder produced by the ball mill method, and mixing 13 mass% water and 6 mass% dilute sulfuric acid with a specific gravity of 1.40 (20 ° C.). Negative electrode active material paste is 100 mass% lead powder produced by the ball mill method, 0.2 mass% lignin, 0.3 mass% carbon black, 0.6 mass% barium sulfate, 0.1 mass% acrylic fiber, 11 mass% water and 1.40 specific gravity It was obtained by mixing 7 mass% dilute sulfuric acid (20 ° C.). The lead powder is not limited to the ball mill method, but may be a Barton method. The binder is not limited to acrylic fiber and is optional, and the binder may not be added. The composition of the active material paste for the positive electrode and the negative electrode is arbitrary.
正極格子1枚当たり55g、負極格子1枚当たり52gの活物質ペーストを充填し、各々50℃相対湿度50%で48時間熟成し、次いで50℃の乾燥雰囲気で24時間乾燥させ、未化成の正負極板を得た。セパレータとして、微孔性のポリエチレンシートを2つ折りにして両側端をメカニカルシールして袋状にしたものを作製した。シートのベース厚さは0.20mmで、セパレータは実施例ではポリエチレンのシートを用いたがこれに限定されない。負極板を包装できれば材質は特に限定しない。 Filled with 55 g of active material paste per positive grid and 52 g per negative grid and aged for 48 hours at 50 ° C. and 50% relative humidity respectively, then dried in a dry atmosphere at 50 ° C. for 24 hours. A negative electrode plate was obtained. As a separator, a microporous polyethylene sheet was folded in half, and both ends were mechanically sealed to form a bag. The base thickness of the sheet is 0.20 mm, and the separator is a polyethylene sheet in the examples, but is not limited thereto. The material is not particularly limited as long as the negative electrode plate can be packaged.
実施例として未化成負極板をセパレータに収納したものを作製し、比較例として未化成正極板をセパレータに収納したものを作製した。例えばセパレータに収納した未化成負極板8枚と未化成正極板7枚とを交互に積層し、同極性の極板の耳を互いに溶接して極板群とした。ここでセパレータリブ高さを変化させることによって正極板と負極板の間隔(平均値)を、1mm,0.8mm,0.65mm,0.5mm,0.4mm等に変化させた。実施例では、極板群当たり、負極板が8枚、正極板が7枚であるが、極板間隔を縮めると、負極板を9枚、正極板を8枚、あるいは負極板、正極板共に8枚などにでき、また極板の枚数を例えば負極板が8枚、正極板が7枚にし、極板1枚当たりの活物質の量を増すなどのことができる。 As an example, an unformed negative electrode plate accommodated in a separator was prepared, and as an comparative example, an unformed positive electrode plate accommodated in a separator was prepared. For example, eight unformed negative electrode plates and seven unformed positive electrode plates housed in a separator were alternately laminated, and the electrodes of the same polarity electrode plates were welded together to form an electrode plate group. Here, the distance (average value) between the positive electrode plate and the negative electrode plate was changed to 1 mm, 0.8 mm, 0.65 mm, 0.5 mm, 0.4 mm, etc. by changing the height of the separator rib. In the embodiment, there are 8 negative plates and 7 positive plates per electrode plate group. However, when the interval between the electrode plates is reduced, 9 negative plates and 8 positive plates, or both negative and positive plates are used. For example, the number of electrode plates can be increased to 8 for the negative electrode plate and 7 for the positive electrode plate to increase the amount of active material per electrode plate.
得られた極板群6個をポリプロピレン製の電槽に収納して直列に接続し、比重が20℃で1.230の希硫酸に所定量の硫酸Alと硫酸Liとを添加した電解液を注入し、25℃の水槽内で電槽化成を行って、55B24形の鉛蓄電池とした。Alイオン源とLiイオン源は任意で、例えば硫酸アルミニウム、硫酸リチウム、炭酸リチウム、アルミン酸リチウムAlLiO2、水酸化アルミニウムと水酸化リチウム、などの形態で添加しても良い。極板間隔を縮め、活物質の量を増すと、活物質の量当たりの電解液の量が減少するので、電解液の製造に用いる希硫酸の濃度を増し、活物質の重量と硫酸イオンの量との比をほぼ一定に保つことが好ましい。さらにAlイオンの濃度とLiイオンの濃度の好適範囲は、電解液中の硫酸濃度には依存しない。 Six obtained electrode plate groups are housed in a battery case made of polypropylene and connected in series, and an electrolyte prepared by adding a predetermined amount of Al sulfate and Li sulfate to dilute sulfuric acid with a specific gravity of 20 ° C and 1.230 is injected. Then, a battery case was formed in a 25 ° C. water tank to obtain a 55B24 type lead acid battery. The Al ion source and the Li ion source are optional, and may be added in the form of, for example, aluminum sulfate, lithium sulfate, lithium carbonate, lithium aluminate AlLiO 2 , aluminum hydroxide and lithium hydroxide. When the electrode spacing is reduced and the amount of active material is increased, the amount of electrolyte per active material decreases, so the concentration of dilute sulfuric acid used in the production of the electrolyte is increased, and the weight of active material and sulfate ions are increased. It is preferable to keep the ratio to the amount substantially constant. Furthermore, the preferred range of the Al ion concentration and the Li ion concentration does not depend on the sulfuric acid concentration in the electrolyte.
図1に、実施例の鉛蓄電池での極板群2を示し、4は正極板、6は負極板でセパレータ8の袋内に収容され、10は正極格子、12は負極格子で、格子10,12の孔に正極活物質14と負極活物質16とが充填されている。極板間隔g、極板の厚さTを図1のように定め、極板間隔gはセパレータ8の厚さを含み、活物質が格子の表面から外側へはみ出している場合には、はみ出した活物質の厚さを極板の厚さTに含めるものとする。
FIG. 1 shows an
試験法と結果
各鉛蓄電池(試料数各3ヶ)に対し、
1) 重負荷寿命試験後(JIS D 5301:2006の9.5.5b))の短絡の有無;
2) 過放電放置後に充電した際の短絡の有無;
3) 低温HR放電性能(JIS D 5301:2006の9.5.3b));
4) SBA-IS試験(電池工業会規格SBA S 0101:2006の9.4.5)18,000サイクル後の負極活物質への硫酸鉛の蓄積量;を調べた。
重負荷寿命試験の規格では、所定のパターンで充放電を繰り返し、容量が5時間率容量の50%まで低下するまでのサイクル数を求める。実施例では、サイクル数ではなく、試験後(寿命が到来)に短絡が生じた電池の数を評価した。短絡した電池の個数を調べたのは、極板間隔を縮めることによって短絡が生じ易くなり、寿命が短縮されるかどうかを評価するためである。なお、AlイオンとLiイオンとを共に0.02〜0.2mol/L含有する場合、極板間隔を縮めても、短絡は生じやすくならなかったので、寿命が短縮されることはなかった。
Test method and results For each lead-acid battery (3 samples each)
1) Presence or absence of short circuit after heavy load life test (JIS D 5301: 2006 9.5.5b);
2) Presence or absence of short circuit when charging after leaving overdischarge;
3) Low temperature HR discharge performance (JIS D 5301: 2006 9.5.3b));
4) SBA-IS test (Battery Industry Association Standard SBA S 0101: 2006 9.4.5) The amount of lead sulfate accumulated in the negative electrode active material after 18,000 cycles was examined.
In the heavy load life test standard, charge / discharge is repeated in a predetermined pattern, and the number of cycles until the capacity drops to 50% of the 5-hour rate capacity is obtained. In the examples, not the number of cycles but the number of batteries in which a short circuit occurred after the test (life reached) was evaluated. The reason for examining the number of short-circuited batteries is to evaluate whether the short-circuiting easily occurs and the life is shortened by reducing the distance between the electrode plates. Note that when both Al ions and Li ions were contained in an amount of 0.02 to 0.2 mol / L, short-circuiting did not easily occur even when the electrode plate interval was shortened, and thus the lifetime was not shortened.
過放電放置試験では、満充電状態から5時間率電流で2.5時間放電し、SOC(充電状態)を50%にする。40℃で12V-10Wのランプを負荷として接続し、30日間放置する。次いで25℃で10時間率電流により20時間充電した後、電池を解体し、短絡の有無等を検査する。
低温HR放電試験では、-15℃で所定の電流値で放電し、端子電圧が6Vまで低下するまでの時間を測定する。
SBA-IS試験では、
・ 45Aで59秒の放電と,300Aで1秒の放電と、14Vで60秒の充電とから成るサイクルを繰り返し、
・ 途中3600サイクル毎に48時間放置し、
・ 放電終了時の電圧が7.2V未満に低下するまでのサイクル数を測定する。実施例では、18,000サイクル時に電池を解体し、負極活物質への硫酸鉛の蓄積量を測定した。なお一般に硫酸鉛の蓄積量が少ない程、SBA-IS試験で寿命に至るまでのサイクル数が多くなる。
In the overdischarge standing test, the battery is discharged for 2.5 hours at a 5-hour rate current from the fully charged state, and the SOC (charged state) is 50%. Connect a 12V-10W lamp at 40 ℃ as a load and leave it for 30 days. Next, after charging for 20 hours at 25 ° C. with a 10 hour rate current, the battery is disassembled and inspected for the presence or absence of a short circuit.
In the low-temperature HR discharge test, discharge at a predetermined current value at -15 ° C and measure the time until the terminal voltage drops to 6V.
In the SBA-IS study,
・ Repeat a cycle consisting of 59 seconds of discharge at 45A, 1 second of discharge at 300A, and 60 seconds of charge at 14V.
・ Leave for 48 hours every 3600 cycles
• Measure the number of cycles until the voltage at the end of discharge drops below 7.2V. In the example, the battery was disassembled at 18,000 cycles, and the amount of lead sulfate accumulated in the negative electrode active material was measured. In general, the smaller the amount of lead sulfate accumulated, the greater the number of cycles until the end of life in the SBA-IS test.
セパレータ内に正極板を収納した際の結果を表1に示す。Alイオン濃度及びLiイオン濃度によらず、セパレータに正極板を収納すると、重負荷寿命試験での短絡を防止できなかった。しかしAlイオンを添加すると、過放電放置後の充電に伴う短絡は防止できた。セパレータ内に負極板を収納した際の結果を表2及び図2に示す。表1,2において、低温HR性能は、比較例A1(表1の場合),A7(表2の場合)との相対値で示す。また実用的見地からは、低温HR性能は100以上が好ましく、SBA-IS試験での硫酸鉛の蓄積量は80以下が好ましい。 Table 1 shows the results when the positive electrode plate was accommodated in the separator. Regardless of the Al ion concentration or Li ion concentration, when the positive electrode plate was housed in the separator, a short circuit in the heavy load life test could not be prevented. However, when Al ions were added, a short circuit due to charging after being left overdischarged could be prevented. Table 2 and FIG. 2 show the results when the negative electrode plate was accommodated in the separator. In Tables 1 and 2, the low temperature HR performance is shown as a relative value with Comparative Examples A1 (in the case of Table 1) and A7 (in the case of Table 2). From a practical standpoint, the low temperature HR performance is preferably 100 or more, and the amount of lead sulfate accumulated in the SBA-IS test is preferably 80 or less.
負極板をセパレータ内に収納すると、重負荷寿命試験での短絡は発生しなかった。これは、重負荷寿命試験で正極板から脱落した活物質が電槽の底に溜まり、短絡の原因とならなかったためと考えられる。過放電放置後の充電に伴う短絡は、0.02mol/L以上の濃度のAlイオンが存在すると発生せず、SBA-IS試験での硫酸鉛の蓄積は、Alイオンの添加によって抑制できた。Alイオンを添加すると低温HR性能が低下するが、Liイオンと併用すると、低温HR性能がALイオンもLiイオンも無添加の場合より向上する領域が有る。Alイオンが0.02〜0.2mol/L、Liイオンも0.02〜0.2mol/Lがこの領域である。またAlイオン濃度を0.3mol/L(試料A16)、あるいはLiイオン濃度を0.3mol/L(試料A15)としても、それ以上の性能向上が得られなかったので、濃度の上限を共に0.2mol/Lとした。 When the negative electrode plate was stored in the separator, no short circuit occurred in the heavy load life test. This is presumably because the active material dropped from the positive electrode plate in the heavy load life test was collected at the bottom of the battery case and did not cause a short circuit. Short-circuiting due to charging after being left overdischarged did not occur in the presence of Al ions at a concentration of 0.02 mol / L or more, and lead sulfate accumulation in the SBA-IS test could be suppressed by addition of Al ions. When Al ions are added, the low-temperature HR performance decreases, but when used together with Li ions, there is a region where the low-temperature HR performance improves compared to the case where neither AL ions nor Li ions are added. In this region, Al ions are 0.02 to 0.2 mol / L and Li ions are 0.02 to 0.2 mol / L. Even if the Al ion concentration was 0.3 mol / L (sample A16) or the Li ion concentration was 0.3 mol / L (sample A15), no further improvement in performance was obtained, so the upper limit of the concentration was 0.2 mol / L. L.
図2は、AlイオンとLiイオンの濃度を共に0.02mol/L、0.1mol/L、0.2mol/Lに変化させた際の低温HR性能を示す。低温HR性能は極板間隔を1mmから0.8〜0.5mmへ縮めるだけで増加するが、AlイオンとLiイオンの濃度が共に0.02〜0.2mol/Lの範囲で、さらに低温HR性能が向上する。加えて、極板間隔が1mmよりも0.8〜0.5mmの場合はその効果が顕著である。従って、極板間隔を減らして活物質量を増す以外の、予想外の効果が得られる。なお発明者は極板間隔を0.4mmとした電池を作製したが、Alイオンを0.2mol/Lとしても、過放電放置後の充電に伴う短絡が高い頻度で生じた。 FIG. 2 shows the low temperature HR performance when the concentrations of Al ions and Li ions are changed to 0.02 mol / L, 0.1 mol / L, and 0.2 mol / L. The low-temperature HR performance increases only by reducing the electrode plate interval from 1 mm to 0.8 to 0.5 mm, but the low-temperature HR performance is further improved when both the Al ion and Li ion concentrations are in the range of 0.02 to 0.2 mol / L. In addition, the effect is remarkable when the distance between the electrode plates is 0.8 to 0.5 mm rather than 1 mm. Therefore, unexpected effects other than reducing the electrode plate interval and increasing the amount of active material can be obtained. The inventor made a battery with the electrode plate interval of 0.4 mm, but even when Al ions were 0.2 mol / L, short-circuiting due to charging after being left overdischarged occurred frequently.
またAlイオンの有無は任意である。
The presence or absence of Al ions is optional.
2 極板群
4 正極板
6 負極板
8 セパレータ
10 正極格子
12 負極格子
14 正極活物質
16 負極活物質
g 極板間隔
d 格子厚さ
T 極板の厚さ
2
g Electrode spacing d Grid thickness T Electrode thickness
Claims (1)
前記セパレータは袋状で負極板を収納し、
前記電解液はLiイオンを0.02mol/L以上0.2mol/L以下含有し、
前記極板群での、正極板と負極板との平均間隔が0.5mm以上0.8mm以下であることを特徴とする、鉛蓄電池。 An electrode in which a positive electrode plate having an active material containing lead dioxide on a grid made of a lead alloy and a negative electrode plate having an active material containing lead metal on a grid made of a lead alloy are alternately stacked via a separator. In a lead storage battery in which a group of plates is stored in a battery case and immersed in a dilute sulfuric acid electrolyte,
The separator has a bag shape and stores a negative electrode plate,
The electrolyte contains 0.02 mol / L to 0.2 mol / L of Li ions,
The lead acid battery, wherein an average distance between the positive electrode plate and the negative electrode plate in the electrode plate group is 0.5 mm or more and 0.8 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015068892A JP6071116B2 (en) | 2015-03-30 | 2015-03-30 | Lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015068892A JP6071116B2 (en) | 2015-03-30 | 2015-03-30 | Lead acid battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014185165A Division JP5729579B2 (en) | 2014-09-11 | 2014-09-11 | Lead acid battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016175138A Division JP2017004974A (en) | 2016-09-08 | 2016-09-08 | Lead-acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015144134A JP2015144134A (en) | 2015-08-06 |
JP6071116B2 true JP6071116B2 (en) | 2017-02-01 |
Family
ID=53889046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015068892A Active JP6071116B2 (en) | 2015-03-30 | 2015-03-30 | Lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6071116B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017004974A (en) * | 2016-09-08 | 2017-01-05 | 株式会社Gsユアサ | Lead-acid battery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338310A (en) * | 2002-05-20 | 2003-11-28 | Matsushita Electric Ind Co Ltd | Lead storage battery |
JP4771678B2 (en) * | 2004-09-29 | 2011-09-14 | 古河電池株式会社 | Open-type lead-acid battery for automobiles |
AU2005336806B2 (en) * | 2005-09-27 | 2010-09-09 | The Furukawa Battery Co., Ltd. | Lead storage battery and process for producing the same |
JP2008243487A (en) * | 2007-03-26 | 2008-10-09 | Furukawa Battery Co Ltd:The | Lead acid battery |
JP2010080142A (en) * | 2008-09-25 | 2010-04-08 | Shin Kobe Electric Mach Co Ltd | Sealed lead acid storage battery |
JP5618253B2 (en) * | 2010-09-30 | 2014-11-05 | 株式会社Gsユアサ | Lead acid battery |
JP5729579B2 (en) * | 2014-09-11 | 2015-06-03 | 株式会社Gsユアサ | Lead acid battery |
-
2015
- 2015-03-30 JP JP2015068892A patent/JP6071116B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015144134A (en) | 2015-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5618253B2 (en) | Lead acid battery | |
JP6331161B2 (en) | Control valve type lead acid battery | |
JP5618254B2 (en) | Lead acid battery | |
JP5769096B2 (en) | Lead acid battery | |
JP5748091B2 (en) | Lead acid battery | |
CN103109412B (en) | Lead battery and be equipped with the idling stop vehicle of this lead battery | |
JP5532245B2 (en) | Lead-acid battery and method for manufacturing the same | |
JP5729579B2 (en) | Lead acid battery | |
JP2012142185A (en) | Lead acid battery and idling stop vehicle | |
JP2013084362A (en) | Lead battery | |
JP5656068B2 (en) | Liquid lead-acid battery | |
JP6071116B2 (en) | Lead acid battery | |
JP2017004974A (en) | Lead-acid battery | |
JP5637503B2 (en) | Lead acid battery | |
JP2012138331A (en) | Lead storage battery and idling stop vehicle | |
US20200266495A1 (en) | Lead storage battery | |
JP6164502B2 (en) | Lead acid battery | |
JP6232365B2 (en) | Lead acid battery | |
JP2013191351A (en) | Lead acid battery | |
JP5708959B2 (en) | Lead acid battery | |
JP5630716B2 (en) | Lead acid battery | |
JP2014078325A (en) | Lead storage battery | |
JP7198890B1 (en) | lead acid battery | |
JP2007213896A (en) | Lead-acid storage battery | |
JPH0541060U (en) | Anode plate for lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6071116 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161225 |