JP2014078325A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2014078325A
JP2014078325A JP2012223888A JP2012223888A JP2014078325A JP 2014078325 A JP2014078325 A JP 2014078325A JP 2012223888 A JP2012223888 A JP 2012223888A JP 2012223888 A JP2012223888 A JP 2012223888A JP 2014078325 A JP2014078325 A JP 2014078325A
Authority
JP
Japan
Prior art keywords
electrode plate
separator
mat
nonwoven fabric
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012223888A
Other languages
Japanese (ja)
Inventor
Harumi Murochi
晴美 室地
Kiyotaka Abe
陽隆 阿部
Kazunari Ando
和成 安藤
Takehiro Sasaki
健浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012223888A priority Critical patent/JP2014078325A/en
Publication of JP2014078325A publication Critical patent/JP2014078325A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead storage battery capable of exhibiting a satisfactory output characteristic in charge/discharge cycle in which a low-rate discharge capacity has the maximum value while preventing internal short circuit.SOLUTION: The lead storage battery includes: at least one electrode plate group; electrolytic solution; battery case storing the electrode plate group and the electrolyte; a lid closing an opening of the battery case; and a control valve. The electrode plate group includes: a positive electrode plate; a negative electrode plate; and a separator for separating the positive electrode plate from the negative electrode plate. The separator further include a mat separator of glass fiber; and an unwoven fabric separator. The ratio A/B between the total pore volume A of the mat separator and the total pore volume B of the unwoven fabric separator is 5-10.

Description

本発明は、ガラス繊維からなるマットセパレータと不織布セパレータとを併用した鉛蓄電池に関する。   The present invention relates to a lead storage battery in which a mat separator made of glass fiber and a nonwoven fabric separator are used in combination.

鉛蓄電池は、蓄電システムや電動機器、電動車両の電源として広く用いられている。このような用途に用いられる鉛蓄電池は、自動車の始動用途に用いられる場合とは異なり、電解液を減量して、正極板、負極板およびこれらを隔てるセパレータに吸収させる構成を採ることが多い。この構成を採る鉛蓄電池は、電解液が減量したときに開封して補水するための液口栓に代えて、電池の内圧が所定値に達したら開弁する制御弁を用いることから、制御弁式鉛蓄電池と呼ばれる。   Lead storage batteries are widely used as power sources for power storage systems, electric devices, and electric vehicles. Unlike the case where the lead acid battery used for such an application is used for starting an automobile, the electrolyte is often reduced and absorbed in the positive electrode plate, the negative electrode plate and the separator separating them. The lead storage battery adopting this configuration uses a control valve that opens when the internal pressure of the battery reaches a predetermined value, instead of a liquid plug for opening and replenishing water when the electrolyte is reduced. It is called a type lead acid battery.

鉛蓄電池の単位体積当たり容量を高める場合、正極板と負極板との間(極間)の距離を小さくする(すなわち、電池を構成した時点のセパレータを薄くする)必要がある。極間距離を小さくすると、充放電サイクルの繰り返しで膨張した活物質が極間を占めることで内部短絡が起こりやすくなる。   In order to increase the capacity per unit volume of the lead storage battery, it is necessary to reduce the distance between the positive electrode plate and the negative electrode plate (between the electrodes) (that is, to reduce the separator when the battery is configured). When the distance between the electrodes is reduced, the active material expanded by repeating the charge / discharge cycle occupies the distance between the electrodes, so that an internal short circuit easily occurs.

そこで、特許文献1に示すようにガラス繊維からなるマットセパレータと不織布セパレータとを併用したり、特許文献2に示すように2種の不織布セパレータを併用したりすることで、電解液を保持しつつ内部短絡を防ぐことになる。   Therefore, as shown in Patent Document 1, a mat separator made of glass fiber and a nonwoven fabric separator are used together, or as shown in Patent Document 2, two kinds of nonwoven fabric separators are used together, while holding the electrolytic solution. This will prevent internal short circuit.

特開平10−040896号公報JP-A-10-040896 特開2008−226697号公報JP 2008-226697 A

しかしこれら特許文献に示された鉛蓄電池を無作為に構成しても、充放電サイクルを繰り返した後の出力特性が芳しくなかった。本発明はこの課題を解決するためのものであって、内部短絡を抑制しつつ、低レート放電容量が最大値を示す充放電サイクルにおいて良好な出力特性を示す鉛蓄電池を提供することを目的とする。   However, even when the lead storage batteries shown in these patent documents are randomly configured, the output characteristics after repeated charge / discharge cycles are not good. The present invention is for solving this problem, and an object thereof is to provide a lead-acid battery that exhibits good output characteristics in a charge / discharge cycle in which a low rate discharge capacity exhibits a maximum value while suppressing an internal short circuit. To do.

前述した課題を解決するために、請求項1に記載の発明は、少なくとも1つの極板群と、電解液と、これらを収納する電槽と、電槽の開口部を封口する蓋と、制御弁とを備え、極板群は、正極板と、負極板と、これらを隔てるセパレータとを含み、セパレータは、ガラス繊維からなるマットセパレータと、不織布セパレータとをさらに含み、マットセパレータの全細孔容積Aと不織布セパレータの全細孔容積Bとの比A/Bが5以上10以下であることを特徴とする鉛蓄電池に関する。   In order to solve the above-described problem, the invention described in claim 1 includes at least one electrode plate group, an electrolytic solution, a battery case for storing these, a lid for sealing the opening of the battery case, and a control. And the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator separating the positive electrode plate, the separator further including a mat separator made of glass fiber and a non-woven fabric separator, and the total pores of the mat separator It is related with the lead acid battery characterized by ratio A / B of the volume A and the total pore volume B of a nonwoven fabric separator being 5-10.

請求項2に記載の発明は、請求項1において、マットセパレータの厚みが0.8mm以上1.4mm以下であることを特徴とする。   The invention according to claim 2 is characterized in that, in claim 1, the mat separator has a thickness of 0.8 mm or more and 1.4 mm or less.

請求項3に記載の発明は、請求項1において、極板群を複数個備え、極板群どうしを接続する接続部品を備えたことを特徴とする。   The invention described in claim 3 is characterized in that, in claim 1, a plurality of electrode plate groups are provided, and a connecting part for connecting the electrode plate groups is provided.

本発明を用いれば、内部短絡を抑制しつつ、低レート放電容量が最大値を示す充放電サイクルにおいて良好な出力特性を示す鉛蓄電池を提供することができる。   By using the present invention, it is possible to provide a lead-acid battery that exhibits good output characteristics in a charge / discharge cycle in which a low rate discharge capacity exhibits a maximum value while suppressing an internal short circuit.

実施形態1の鉛蓄電池を示す概略図Schematic which shows the lead acid battery of Embodiment 1.

以下、本発明の実施の形態を、図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は実施形態1の鉛蓄電池を示す概略図である。鉛蓄電池は、複数の極板群1と、電解液(図示せず)と、これらを収納する電槽2と、電槽2の開口部を封口する蓋3と、制御弁(図示せず)と、極板群1どうしを接続する接続部品4と、正極性と負極性の端子5とを備える。極板群1は、正極板1aと、負極板1bと、これらを隔てるガラス繊維からなるマットセパレータ1cと不織布セパレータ1dとを含む。
(Embodiment 1)
FIG. 1 is a schematic view showing a lead-acid battery according to the first embodiment. The lead-acid battery includes a plurality of electrode plate groups 1, an electrolytic solution (not shown), a battery case 2 for storing them, a lid 3 for sealing the opening of the battery case 2, and a control valve (not shown). A connecting component 4 for connecting the electrode plate groups 1 to each other, and a positive polarity and a negative polarity terminal 5. The electrode plate group 1 includes a positive electrode plate 1a, a negative electrode plate 1b, and a mat separator 1c and a nonwoven fabric separator 1d made of glass fibers separating them.

実施形態1では、マットセパレータ1cの全細孔容積Aと不織布セパレータ1dの全細孔容積Bとの比A/Bが5以上10以下であることを特徴とする。   The first embodiment is characterized in that the ratio A / B between the total pore volume A of the mat separator 1c and the total pore volume B of the nonwoven fabric separator 1d is 5 or more and 10 or less.

以下に、本発明者らが得た知見を含めて、実施形態1に至った詳細を記す。   The details that led to the first embodiment will be described below, including the knowledge obtained by the present inventors.

特許文献2には、電解液保持力と負の相関を示す引張強度の値を適正化することで、不織布からなる第1のマットセパレータの電解液保持力と強度とのバランスがとれることが記載されている。この知見を活かして、特許文献2における第2のマットセパレータ(不織布)をガラス繊維からなるマットセパレータ1cに置き換えても、低レート放電容量が最大値を示す充放電サイクルにおいて、十分な出力特性が得られないことが分かった。   Patent Document 2 describes that the balance between the electrolytic solution holding force and the strength of the first mat separator made of a nonwoven fabric can be achieved by optimizing the tensile strength value that shows a negative correlation with the electrolytic solution holding force. Has been. Taking advantage of this knowledge, even if the second mat separator (nonwoven fabric) in Patent Document 2 is replaced with a mat separator 1c made of glass fiber, sufficient output characteristics can be obtained in a charge / discharge cycle in which the low rate discharge capacity is maximum. I knew that I couldn't get it.

2種のセパレータを併用した時の電解液の保持力のバランスは、特許文献2のように不織布セパレータどうしなら強度のみを考慮すれば良いが、発明者らが鋭意検討した結果、ガラス繊維からなるマットセパレータ1cとこれより平均細孔径が大きい不織布セパレータ1dという異種のセパレータを組み合わせる場合、ガラス繊維からなるマットセパレータ1cと不織布セパレータ1dとの空孔体積(全細孔容積)のバランスに留意する必要があることを突き止めた。具体的には、電解液の保持力が小さい(電解液が導入されにくい)不織布セパレータ1dが枯渇している状態を上手く制御することが、低レート放電容量が最大値を示す充放電サイクルにおいて、十分な出力特性を得るために必要であることを突き止めた。その結果、マットセパレータ1cの全細孔容積Aと不織布セパレータ1dの全細孔容積Bとの比A/Bを適正化するという発想に至った。   As for the balance of the holding power of the electrolytic solution when using two kinds of separators together, it is sufficient to consider only the strength of the nonwoven fabric separators as in Patent Document 2, but as a result of the intensive studies by the inventors, it is made of glass fibers. When combining different types of separators such as the mat separator 1c and the nonwoven separator 1d having a larger average pore diameter than this, it is necessary to pay attention to the balance of the pore volume (total pore volume) between the mat separator 1c made of glass fiber and the nonwoven fabric separator 1d. I found out that there is. Specifically, in a charge / discharge cycle in which the low-rate discharge capacity shows the maximum value, it is possible to control the state where the non-woven fabric separator 1d having a low electrolytic solution holding power (electrolytic solution is difficult to be introduced) is exhausted, It was determined that it is necessary to obtain sufficient output characteristics. As a result, the inventors have come up with the idea of optimizing the ratio A / B between the total pore volume A of the mat separator 1c and the total pore volume B of the nonwoven fabric separator 1d.

マットセパレータ1cよりも不織布セパレータ1dの方が薄いので、上述した比A/Bが5未満の構成とは、不織布セパレータ1dに電解液が導入されやすい構成であることを示す。この構成では、マットセパレータ1cよりもさらに電解液が導入されやすい(平均細孔径が小さい)正極板1aあるいは負極板1bに、不織布セパレータ1dが蓄えていた電解液が移動することになる。そして電解液が枯渇した不織布セパレータ1dは、隣接したマットセパレータ1cから電解液を吸い取りやすくなる。これを繰り返すことによって、不織布セパレータ1dを介して電解液がマットセパレータ1cから正極板1aあるいは負極板1bに過剰に移動すると、マットセパレータ1cから電解液が枯渇することで電池反応そのものが困難になることで、電池容量(低レート放電容量)が低下するようになる。   Since the nonwoven fabric separator 1d is thinner than the mat separator 1c, the above-described configuration in which the ratio A / B is less than 5 indicates that the electrolyte is easily introduced into the nonwoven fabric separator 1d. In this configuration, the electrolytic solution stored in the nonwoven fabric separator 1d moves to the positive electrode plate 1a or the negative electrode plate 1b in which the electrolytic solution is more easily introduced (smaller average pore diameter) than the mat separator 1c. Then, the nonwoven fabric separator 1d depleted of the electrolytic solution can easily absorb the electrolytic solution from the adjacent mat separator 1c. By repeating this, if the electrolyte moves excessively from the mat separator 1c to the positive electrode plate 1a or the negative electrode plate 1b via the nonwoven fabric separator 1d, the battery reaction itself becomes difficult because the electrolyte is depleted from the mat separator 1c. As a result, the battery capacity (low rate discharge capacity) is reduced.

一方、上述した比A/Bが10を超える構成とは、不織布セパレータ1dに電解液が導入されにくい構成であることを示す。この構成では、不織布セパレータ1d中の電解液が枯渇しやすくなる。したがって充放電サイクルを始めた当初から、電池容量(低レート放電容量)自体への影響はないものの、電解液が枯渇している不織布セパレータ1dを跨いだイオンの授受が困難になることで、出力特性(高レート放電特性)が低下するようになる。   On the other hand, the above-described configuration in which the ratio A / B exceeds 10 indicates that the electrolyte solution is difficult to be introduced into the nonwoven fabric separator 1d. In this configuration, the electrolyte in the nonwoven fabric separator 1d is easily depleted. Therefore, since there is no effect on the battery capacity (low-rate discharge capacity) itself from the beginning of the charge / discharge cycle, it is difficult to exchange ions across the nonwoven fabric separator 1d where the electrolyte is depleted. Characteristics (high-rate discharge characteristics) are deteriorated.

したがって、上述した比A/Bを5以上10以下とする必要がある。   Therefore, the above-described ratio A / B needs to be 5 or more and 10 or less.

マットセパレータ1cの厚みは0.8mm以上1.4mm以下であることが望ましい。この厚みが0.8mm未満だと、極板群の製造工程において、双方のセパレータが破損して内部短絡がやや発生しやすくなり、1.4mmを超えると出力特性(高レート放電特性)がやや低下する。   The thickness of the mat separator 1c is desirably 0.8 mm or greater and 1.4 mm or less. If this thickness is less than 0.8 mm, both separators are damaged in the manufacturing process of the electrode plate group, and an internal short circuit is somewhat likely to occur. If the thickness exceeds 1.4 mm, the output characteristics (high rate discharge characteristics) are somewhat higher. descend.

マットセパレータ1cには極細ガラス繊維からなるものなどを用いることができる。また不織布セパレータ1dには、ポリプロピレン、ポリエチレン等の繊維からなり親水処理したものなどを用いることができる。   The mat separator 1c may be made of ultrafine glass fiber. The nonwoven fabric separator 1d may be made of a fiber such as polypropylene or polyethylene and subjected to a hydrophilic treatment.

なお実施形態1は、極板群1を複数個備え、極板群1どうしを接続する接続部品4を備えた形態であるが、単一の極板群1であっても、本発明が適用されることはいうまでもない。   Although Embodiment 1 is provided with a plurality of electrode plate groups 1 and a connecting component 4 for connecting the electrode plate groups 1 to each other, the present invention is applicable to a single electrode plate group 1 as well. It goes without saying that it is done.

また、マットセパレータ1cおよび不織布セパレータ1dの全細孔容積は、これら自身の厚みを変化させること以外に、単位体積当たりの繊維の存在量に依存する重量を変化させることで、任意の値とすることができる。この全細孔容積は、水銀ポロシメータによる細孔分布測定とその測定より得られた積算細孔容積(cm3/g)に、正極板と負極板の間に位置するセパレータ1枚あたりの乾燥状態の質量(g)を乗じることにより、容易に求めることができる。 Further, the total pore volume of the mat separator 1c and the nonwoven fabric separator 1d can be set to an arbitrary value by changing the weight depending on the amount of fibers per unit volume in addition to changing the thickness of the mat separator 1c and the nonwoven fabric separator 1d. be able to. This total pore volume is the mass of the dry state per separator located between the positive electrode plate and the negative electrode plate in the pore distribution measurement with a mercury porosimeter and the integrated pore volume (cm 3 / g) obtained by the measurement. It can be easily obtained by multiplying (g).

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

酸化鉛粉を硫酸と精製水とで混練して正極活物質ペーストを作製し、鉛合金シートをエキスパンド展開して得た格子の連続体にこの正極活物質ペーストを充填し、所定の寸法に切断して正極板1aを作製した。一方、酸化鉛粉に対して有機添加剤や硫酸バリウム、カーボンなどを常法により添加したものを硫酸と精製水とで混練して負極活物質ペーストを作製し、鉛合金シートをエキスパンド展開して得た格子にこの活物質ペーストを充填し、負極板1bを作製した。   A positive electrode active material paste is prepared by kneading lead oxide powder with sulfuric acid and purified water, and this positive electrode active material paste is filled in a grid continuum obtained by expanding a lead alloy sheet and cut into a predetermined size. Thus, the positive electrode plate 1a was produced. On the other hand, a negative electrode active material paste is prepared by kneading an organic additive, barium sulfate, carbon, etc. added to lead oxide powder with sulfuric acid and purified water, and a lead alloy sheet is expanded. The obtained lattice was filled with this active material paste to produce a negative electrode plate 1b.

袋状の不織布セパレータ1d(ポリプロピレン繊維をスルホン化処理したもの)に内包した正極板1aと負極板1bとを、ガラス繊維製のマットセパレータ1cを介して対峙させることにより、正極板1a・不織布セパレータ1d・マットセパレータ1c・負極板1bの順に隣り合った極板群1を作製した。   A positive electrode plate 1a and a non-woven fabric separator are formed by facing a positive electrode plate 1a and a negative electrode plate 1b encapsulated in a bag-shaped non-woven fabric separator 1d (polypropylene fiber sulfonated) through a glass fiber mat separator 1c. The electrode plate group 1 adjacent in the order of 1d, mat separator 1c, and negative electrode plate 1b was produced.

複数の極板群1を電槽2のセル室にそれぞれ収納し、隣り合った極板群1の異なる極性どうしを接続部品4で接続した。両端のセル室の正極板1aは正極性の端子6に、負極板1bは負極性の端子6にそれぞれ接続した。電槽2の開口部を蓋3で封止して液口から電解液(希硫酸)を注入し、液口を制御弁4で封止して、12V60Ah(3時間率容量)の制御弁式鉛蓄電池A〜Mを作製した。また不織布セパレータ1dを用いないこと以外は他の電池と同様に電池Nを作製した。   A plurality of electrode plate groups 1 were respectively stored in the cell chambers of the battery case 2, and different polarities of the adjacent electrode plate groups 1 were connected to each other by a connection component 4. The positive electrode plate 1a of the cell chambers at both ends was connected to the positive terminal 6 and the negative electrode plate 1b was connected to the negative terminal 6. The opening of the battery case 2 is sealed with a lid 3, an electrolytic solution (dilute sulfuric acid) is injected from the liquid port, the liquid port is sealed with a control valve 4, and a control valve type of 12V60Ah (3 hour rate capacity) Lead acid batteries A to M were produced. A battery N was prepared in the same manner as other batteries except that the nonwoven fabric separator 1d was not used.

これらの電池A〜Nのマットセパレータ1cおよび不織布セパレータ1dの諸物性は、後述する諸特性の評価結果(全て25℃雰囲気内で行った)とともに(表1)に詳述する。   Various physical properties of the mat separators 1c and nonwoven fabric separators 1d of these batteries A to N will be described in detail in (Table 1) together with evaluation results of properties described later (all performed in an atmosphere at 25 ° C.).

上述した電池A〜Nを、1.5Aで3時間の定電流充電と、20Aで2.4時間の定電流放電を、100サイクルに達するまで充放電を繰り返した。この100サイクルとは、本実施例に用いる鉛蓄電池が低レート放電容量の最大値を示してきた充放電サイクルとほぼ同じである。   The above-described batteries A to N were charged and discharged repeatedly at a constant current charge of 1.5 A for 3 hours and a constant current discharge of 2.4 hours at 20 A until reaching 100 cycles. This 100 cycle is substantially the same as the charge / discharge cycle in which the lead storage battery used in this example has shown the maximum value of the low rate discharge capacity.

(低レート放電容量)
上述した条件で100サイクルの充放電を行った次のサイクルは、上述の充電の後、開回路状態で12時間放置してから、20Aで9.9Vに達するまで定電流放電を行った。このときの放電容量を、低レート放電容量として(表1)に示す。
(Low rate discharge capacity)
In the next cycle in which 100 cycles of charge and discharge were performed under the above-described conditions, after the above charge, the battery was left in an open circuit state for 12 hours, and then a constant current discharge was performed until 20 V reached 9.9 V. The discharge capacity at this time is shown in Table 1 as a low rate discharge capacity.

(出力特性)
低レート放電特性を評価した次のサイクルは、上述の充電の後、開回路状態で12時間放置してから、150Aで8.4Vに達するまで定電流放電を行った。このときの放電容量を前述の低レート放電容量で除した値を、出力特性の尺度として百分率で(表1)に示す。
(Output characteristics)
In the next cycle in which the low-rate discharge characteristics were evaluated, after the above-described charging, the battery was left in an open circuit state for 12 hours, and then a constant current discharge was performed until 150 V reached 8.4V. The value obtained by dividing the discharge capacity at this time by the low-rate discharge capacity is shown in Table 1 as a percentage of the output characteristics.

(耐短絡性)
電池A〜Nをそれぞれ100個ずつ作製し、各々の開回路電圧を1週間毎に計8回測定し、平均値と標準偏差を毎回求めた。毎回の測定において、平均値から標準偏差の4倍を差分した値より小さな開回路電圧を示したものを短絡電池とみなし、8回の測定における短絡電池の累計数を電池の総数(100)で除して短絡不良発生率を求めた。この短絡不良発生率を、耐短絡性の尺度として(表1)に示す。
(Short circuit resistance)
100 batteries A to N were produced, and each open circuit voltage was measured 8 times in total every week, and an average value and a standard deviation were obtained each time. In each measurement, an open circuit voltage that is smaller than a value obtained by subtracting four times the standard deviation from the average value is regarded as a short-circuit battery, and the total number of short-circuit batteries in eight measurements is the total number of batteries (100). The incidence of short circuit failure was calculated. The occurrence rate of short circuit failure is shown in Table 1 as a measure of short circuit resistance.

Figure 2014078325
Figure 2014078325

電池A〜Gを対比する。マットセパレータ1cの全細孔容積Aと不織布セパレータ1dの全細孔容積Bとの比A/Bが5未満であると、低レート放電容量が顕著に低下し、これに伴って出力特性もやや低下する。一方で比A/Bが10を超えると、出力特性が顕著に低下する。よって比A/Bは5以上10以下でなければいけないことがわかる。   The batteries A to G are compared. When the ratio A / B between the total pore volume A of the mat separator 1c and the total pore volume B of the nonwoven fabric separator 1d is less than 5, the low-rate discharge capacity is remarkably reduced, and the output characteristics are somewhat reduced accordingly. descend. On the other hand, when the ratio A / B exceeds 10, the output characteristics are remarkably deteriorated. Therefore, it can be seen that the ratio A / B must be 5 or more and 10 or less.

電池Dと電池H〜Kとを対比する。マットセパレータ1cの厚みが0.8mm未満であると、極板群の製造工程において双方のセパレータが破損して内部短絡発生率がやや増える。一方でマットセパレータ1cの厚みが1.4mmを超えると、高率放電容量が1.1mmの場合の80%程度になる。よって一方でマットセパレータ1cの厚みは0.8mm以上1.4mm以下が好ましいことがわかる。   The battery D and the batteries H to K are compared. If the thickness of the mat separator 1c is less than 0.8 mm, both separators are damaged in the manufacturing process of the electrode plate group, and the internal short-circuit occurrence rate slightly increases. On the other hand, when the thickness of the mat separator 1c exceeds 1.4 mm, it becomes about 80% of the case where the high rate discharge capacity is 1.1 mm. Therefore, it can be seen that the thickness of the mat separator 1c is preferably 0.8 mm or more and 1.4 mm or less.

電池CおよびEと、電池LおよびMとを対比する。電池CとL、電池EとMとの特性差が顕著でないことから、100サイクル後の低レート放電容量と出力特性とのバランスは、厚み等の変化量が少なければ全細孔容積の比A/Bが支配していることがわかる。   The batteries C and E are compared with the batteries L and M. Since the difference in characteristics between the batteries C and L and the batteries E and M is not significant, the balance between the low rate discharge capacity after 100 cycles and the output characteristics is the ratio A of the total pore volume if the variation such as the thickness is small. It can be seen that / B dominates.

電池Nと他の電池とを対比する。マットセパレータ1cのみで電解液を蓄えるのに十分な細孔容積を設けても耐短絡性は不十分であって、マットセパレータ1cと不織布セパレータ1dとを併用した上で、全細孔容積の比A/Bを適正化しなければ、低レート放電容量・出力特性および耐短絡性が鼎立しないことがわかる。   The battery N is compared with other batteries. Even if the pore volume sufficient to store the electrolyte with only the mat separator 1c is provided, the short-circuit resistance is insufficient, and the ratio of the total pore volume is obtained after the mat separator 1c and the nonwoven fabric separator 1d are used in combination. It can be seen that unless A / B is optimized, low-rate discharge capacity / output characteristics and short-circuit resistance are not achieved.

本発明の鉛蓄電池は、低レート放電容量・出力特性および耐短絡性が鼎立した高度なものであり、工業上、極めて有用である。   The lead acid battery of the present invention is highly advanced in terms of low rate discharge capacity / output characteristics and short circuit resistance, and is extremely useful industrially.

1 極板群
1a 正極板
1b 負極板
1c マットセパレータ
1d 不織布セパレータ
2 電槽
3 蓋
4 接続部品
5 端子
DESCRIPTION OF SYMBOLS 1 Electrode plate group 1a Positive electrode plate 1b Negative electrode plate 1c Matte separator 1d Non-woven fabric separator 2 Battery case 3 Lid 4 Connection component 5 Terminal

Claims (3)

少なくとも1つの極板群と、電解液と、これらを収納する電槽と、電槽の開口部を封口する蓋と、制御弁とを備え、
前記極板群は、正極板と、負極板と、これらを隔てるセパレータとを含み、
前記セパレータは、ガラス繊維からなるマットセパレータと、不織布セパレータとをさらに含み、
前記マットセパレータの全細孔容積Aと前記不織布セパレータの全細孔容積Bとの比A/Bが5以上10以下であることを特徴とする鉛蓄電池。
Comprising at least one electrode plate group, an electrolyte, a battery case for storing these, a lid for sealing the opening of the battery case, and a control valve;
The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator separating them,
The separator further includes a mat separator made of glass fiber and a nonwoven fabric separator,
A lead acid battery, wherein the ratio A / B of the total pore volume A of the mat separator and the total pore volume B of the nonwoven fabric separator is 5 or more and 10 or less.
前記マットセパレータの厚みが0.8mm以上1.4mm以下であることを特徴とする、請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the mat separator has a thickness of 0.8 mm to 1.4 mm. 前記極板群を複数個備え、前記極板群どうしを接続する接続部品を備えたことを特徴とする、請求項1に記載の鉛蓄電池。 The lead storage battery according to claim 1, further comprising a plurality of the electrode plate groups, and a connection component that connects the electrode plate groups to each other.
JP2012223888A 2012-10-09 2012-10-09 Lead storage battery Pending JP2014078325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223888A JP2014078325A (en) 2012-10-09 2012-10-09 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223888A JP2014078325A (en) 2012-10-09 2012-10-09 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2014078325A true JP2014078325A (en) 2014-05-01

Family

ID=50783496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223888A Pending JP2014078325A (en) 2012-10-09 2012-10-09 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2014078325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073408A1 (en) * 2018-10-11 2020-04-16 天能电池集团有限公司 Lead-acid storage battery
JP2021068551A (en) * 2019-10-21 2021-04-30 株式会社Gsユアサ Lead-acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073408A1 (en) * 2018-10-11 2020-04-16 天能电池集团有限公司 Lead-acid storage battery
JP2021068551A (en) * 2019-10-21 2021-04-30 株式会社Gsユアサ Lead-acid battery
JP7294057B2 (en) 2019-10-21 2023-06-20 株式会社Gsユアサ lead acid battery

Similar Documents

Publication Publication Date Title
JP6331161B2 (en) Control valve type lead acid battery
JP2014157703A (en) Lead accumulator
JP6045329B2 (en) Lead acid battery
CN111149240B (en) Lead storage battery
JP5614567B2 (en) Lithium ion secondary battery
JP5720947B2 (en) Lead acid battery
JP2014207198A (en) Control valve type lead-acid battery
JP6575536B2 (en) Lead acid battery
JP2011070904A (en) Separator for lead-acid battery and lead-acid battery using it
JP2014078325A (en) Lead storage battery
JP6573150B2 (en) Electricity storage element
JP5994545B2 (en) Lead acid battery
JP5729579B2 (en) Lead acid battery
JP2018055903A (en) Positive electrode plate for lead storage battery and lead storage battery
JP6398111B2 (en) Lead acid battery
JP6205811B2 (en) Lead acid battery
CN111295791B (en) Valve-controlled lead storage battery
JP2017117758A (en) Lead storage battery
JP2013145664A (en) Control valve type lead storage battery
WO2019064854A1 (en) Lead acid storage battery
JP2006156022A (en) Charging method of control valve type lead acid storage battery
JP6766811B2 (en) Lead-acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2017069022A (en) Lead storage battery
JP2023046379A (en) Lead storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150225