JP2015008151A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2015008151A
JP2015008151A JP2014182415A JP2014182415A JP2015008151A JP 2015008151 A JP2015008151 A JP 2015008151A JP 2014182415 A JP2014182415 A JP 2014182415A JP 2014182415 A JP2014182415 A JP 2014182415A JP 2015008151 A JP2015008151 A JP 2015008151A
Authority
JP
Japan
Prior art keywords
active material
mol
negative electrode
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014182415A
Other languages
Japanese (ja)
Other versions
JP5708959B2 (en
Inventor
和馬 齋藤
Kazuma Saito
和馬 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2014182415A priority Critical patent/JP5708959B2/en
Publication of JP2015008151A publication Critical patent/JP2015008151A/en
Application granted granted Critical
Publication of JP5708959B2 publication Critical patent/JP5708959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To suppress accumulation of lead sulphate due to the repetition of idling stop while increasing capacity, such as a 5 hour rate capacity, of a lead-acid battery.SOLUTION: A lead-acid battery includes a positive electrode plate, a negative electrode plate, and an electrolyte containing sulfuric acid and aluminum ions. The mass ratio between a negative electrode active material of the negative electrode plate and a positive electrode active material of the positive electrode plate is 0.6 or more and 0.85 or less, and the aluminum ion concentration in the electrolyte is 0.02 mol/L or more and 0.2 mol/L or less. Accordingly, a lead-acid battery high in capacity and excellent in idling stop life can be obtained.

Description

この発明は鉛蓄電池に関する。   The present invention relates to a lead storage battery.

アイドリングストップ車、充電制御車等では、蓄電池へ充電する機会が制限され、その一方でアイドリングストップ後のエンジンの再起動等に見られるように、蓄電池から取り出す電力が増している。このため高容量の鉛蓄電池が必要とされている。発明者は、鉛蓄電池の正極活物質量を負極活物質量よりも増すことにより、蓄電池の5時間率容量等の容量を増すことを検討した。しかし負極活物質量と正極活物質量との質量比を0.85以下とすると、低温高率放電性能が低下すると共に、アイドリングストップの繰り返しにより負極へ多量の硫酸鉛が蓄積することを見出した。そこで、鉛蓄電池の容量を増しながら、低温高率放電性能を維持し、かつアイドリングストップの繰り返しによる硫酸鉛の蓄積を抑制することが必要になる。   In an idling stop vehicle, a charge control vehicle, etc., the opportunity to charge the storage battery is limited. On the other hand, as seen in restarting the engine after the idling stop, the electric power taken out from the storage battery is increasing. For this reason, a high capacity lead acid battery is required. The inventor examined increasing the capacity of the storage battery, such as the 5-hour rate capacity, by increasing the amount of the positive electrode active material of the lead storage battery than the amount of the negative electrode active material. However, when the mass ratio of the negative electrode active material amount to the positive electrode active material amount is 0.85 or less, the low-temperature high-rate discharge performance is lowered, and a large amount of lead sulfate accumulates on the negative electrode due to repeated idling stops. Therefore, it is necessary to maintain the low temperature and high rate discharge performance while increasing the capacity of the lead storage battery and to suppress the accumulation of lead sulfate due to repeated idling stops.

ここで関連する先行技術を示す。特許文献1(WO2007/036979)は、
・ 鉛蓄電池の電解液にアルミニウムイオンを含有させると、負極への硫酸鉛の蓄積が抑制され、
・ 鉛蓄電池の電解液にリチウムイオンを含有させると、5時間率容量が増加するとしている。
しかしながら発明者らの実験では、電解液にリチウムイオンを含有させることにより蓄電池の5時間率容量が増加することはなかった。
Here is related prior art. Patent Document 1 (WO2007 / 036979)
・ When aluminum ions are included in the electrolyte of lead-acid batteries, accumulation of lead sulfate on the negative electrode is suppressed,
・ It is said that when lithium ion is included in the electrolyte of a lead storage battery, the 5-hour rate capacity increases.
However, in the experiments by the inventors, inclusion of lithium ions in the electrolytic solution did not increase the 5-hour rate capacity of the storage battery.

WO2007/036979WO2007 / 036979

この発明の課題は、鉛蓄電池の5時間率容量等の容量を増しながら、アイドリングストップの繰り返しによる硫酸鉛の蓄積を抑制することにある。   An object of the present invention is to suppress the accumulation of lead sulfate due to repeated idling stops while increasing the capacity of the lead-acid battery such as the 5-hour rate capacity.

この発明は、正極板と、負極板と、硫酸とアルミニウムイオンとを含む電解液を備えた鉛蓄電池において、負極板の負極活物質と正極板の正極活物質との質量比が0.6以上0.85以下で、かつ電解液中のアルミニウムイオン濃度が0.02mol/L以上0.2mol/L以下であることを特徴とする。   The present invention provides a lead storage battery including a positive electrode plate, a negative electrode plate, and an electrolyte solution containing sulfuric acid and aluminum ions, wherein a mass ratio of the negative electrode active material of the negative electrode plate to the positive electrode active material of the positive electrode plate is 0.6 or more and 0.85 or less And the aluminum ion concentration in the electrolyte is 0.02 mol / L or more and 0.2 mol / L or less.

発明者の実験によると、負極活物質と正極活物質との質量比を0.6以上0.85以下とし、かつ電解液中のアルミニウムイオン濃度を0.02mol/L以上0.2mol/L以下とすることにより、5時間率容量等の容量が大きく、かつ負極への硫酸鉛の蓄積量が少ない鉛蓄電池が得られる。各要素の影響を個別に検討すると、負極活物質と正極活物質との質量比を0.85以下にすることにより、蓄電池の容量が増す。この一方で、負極活物質と正極活物質との質量比が0.6を下回ると、低温高率放電性能が低下する。従って、負極活物質と正極活物質との質量比を0.6以上とする。   According to the inventor's experiment, the mass ratio between the negative electrode active material and the positive electrode active material is 0.6 or more and 0.85 or less, and the aluminum ion concentration in the electrolytic solution is 0.02 mol / L or more and 0.2 mol / L or less. A lead-acid battery having a large capacity such as a time rate capacity and a small amount of lead sulfate accumulated in the negative electrode can be obtained. When the influence of each element is examined individually, the capacity of the storage battery is increased by setting the mass ratio of the negative electrode active material and the positive electrode active material to 0.85 or less. On the other hand, when the mass ratio of the negative electrode active material to the positive electrode active material is less than 0.6, the low-temperature high-rate discharge performance is degraded. Therefore, the mass ratio of the negative electrode active material to the positive electrode active material is set to 0.6 or more.

アルミニウムイオン濃度が0.02mol/L未満では負極への硫酸鉛の蓄積を僅かしか抑制できないのに対して、0.02mol/L以上で硫酸鉛の蓄積を充分に抑制できる。またアルミニウムイオン濃度が0.2mol/Lを越えると低温高率放電性能が低下する。従って、アルミニウムイオン濃度を0.02mol/L以上0.2mol/L以下とする。   When the aluminum ion concentration is less than 0.02 mol / L, the accumulation of lead sulfate on the negative electrode can be suppressed only slightly, while at 0.02 mol / L or more, the accumulation of lead sulfate can be sufficiently suppressed. Moreover, when the aluminum ion concentration exceeds 0.2 mol / L, the low-temperature high-rate discharge performance deteriorates. Therefore, the aluminum ion concentration is set to 0.02 mol / L or more and 0.2 mol / L or less.

電解液中のリチウムイオン濃度は例えば0.01mol/L以下とする。   The lithium ion concentration in the electrolyte is, for example, 0.01 mol / L or less.

負極活物質と正極活物質との質量比を0.7以上0.8以下とすると、表1に示すように、鉛蓄電池の5時間率容量等の容量を特に大きくすることができる。   When the mass ratio of the negative electrode active material to the positive electrode active material is 0.7 or more and 0.8 or less, as shown in Table 1, the capacity of the lead storage battery such as the 5-hour rate capacity can be particularly increased.

以下に、本願発明の実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Examples of the present invention will be shown below. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

Pb-Ca-Sn系合金を用い、ロータリーエキスパンド法により正極格子と負極格子とを作製した。格子の組成は任意で、ロータリエキスパンド法に代えて、レシプロエキスパンド法、重力鋳造法等を用いても良い。   Using a Pb—Ca—Sn alloy, a positive electrode lattice and a negative electrode lattice were produced by a rotary expanding method. The composition of the lattice is arbitrary, and instead of the rotary expanding method, a reciprocating expanding method, a gravity casting method or the like may be used.

正極活物質としてボールミル法で作製した鉛粉に定法に従い合成樹脂繊維を加え、水と希硫酸とでペースト化し、正極格子に充填し、熟成と乾燥とを行い、未化成の正極板とした。負極活物質として同様にボールミル法で作製した鉛粉に、定法に従い合成樹脂繊維とBaSO4とリグニンとカーボンブラックとを加え、水と希硫酸とでペースト化し、負極格子に充填し、熟成と乾燥とを行い、未化成の負極板とした。ペーストを充填する際に、負極側と正極側との活物質の質量比が、1,0.9,0.85,0.8,0.75,0.6,0.55の7段階となるように、ペースト質量を変化させて充填した。活物質の質量比が1と0.9は従来例に相当し、0.85〜0.55が従来例よりも質量比を小さくした範囲である。また活物質の質量比を変える際に、負極活物質と正極活物質の合計質量を一定にし、蓄電池の質量が変化しないようにした。なお活物質の質量は、化成後の状態で蓄電池を解体し、負極板と正極板とを水洗して硫酸を除き、次いで乾燥させた負極板と正極板から分離した活物質の質量を意味する。負極活物質と正極活物質の質量比は、極板1枚当たりの活物質の質量比ではなく、同じセル内の複数枚の負極板での合計の負極活物質の質量と、複数枚の正極板での合計の正極活物質の質量との比である。鉛粉の製造方法と製造条件は任意で、鉛粉への添加物も任意である。 Synthetic resin fiber was added to lead powder produced by a ball mill method as a positive electrode active material according to a conventional method, pasted with water and dilute sulfuric acid, filled into a positive electrode lattice, aged and dried to obtain an unformed positive electrode plate. Similarly, synthetic resin fiber, BaSO 4 , lignin and carbon black are added to the lead powder produced by the ball mill method as the negative electrode active material according to a conventional method, and the mixture is pasted with water and dilute sulfuric acid, filled into the negative electrode lattice, aged and dried. To obtain an unformed negative electrode plate. When filling the paste, the paste mass was changed and filled so that the mass ratio of the active material on the negative electrode side to the positive electrode side was 7 steps of 1,0.9,0.85,0.8,0.75,0.6,0.55. . An active material mass ratio of 1 and 0.9 corresponds to the conventional example, and 0.85 to 0.55 is a range in which the mass ratio is smaller than that of the conventional example. Further, when changing the mass ratio of the active material, the total mass of the negative electrode active material and the positive electrode active material was kept constant so that the mass of the storage battery did not change. The mass of the active material means the mass of the active material separated from the negative electrode plate and the positive electrode plate after the storage battery is disassembled in the state after chemical conversion, the negative electrode plate and the positive electrode plate are washed with water to remove sulfuric acid, and then dried. . The mass ratio of the negative electrode active material to the positive electrode active material is not the mass ratio of the active material per electrode plate, but the total mass of the negative electrode active material in a plurality of negative electrode plates in the same cell and the plurality of positive electrodes It is a ratio with the mass of the total positive electrode active material in a board. The manufacturing method and manufacturing conditions of lead powder are arbitrary, and the additive to lead powder is also arbitrary.

未化成の負極板をポリエチレンの多孔質セパレータで包み、未化成の負極板と未化成の正極板とを互い違いに積層した。次いで積層体の負極板の耳部をストラップで互いに接続し、正極板の耳部をストラップで互いに接続し、未化成のエレメントとした。エレメントを電槽内に直列に6組収納し、水と、0〜0.3mol/Lの範囲のアルミニウムイオンと0〜0.3mol/Lの範囲のリチウムイオンとを含有する希硫酸とを加え、定法に従った電気量の電槽化成によりQ-55タイプの鉛蓄電池とした。なお電槽化成に代えてタンク化成等を行っても良い。   The unformed negative plate was wrapped with a polyethylene porous separator, and the unformed negative plate and the unformed positive plate were alternately stacked. Next, the ears of the negative electrode plate of the laminate were connected to each other with a strap, and the ears of the positive electrode plate were connected to each other with a strap to obtain an unformed element. Six sets of elements are housed in series in a battery case, water is added, and dilute sulfuric acid containing aluminum ions in the range of 0 to 0.3 mol / L and lithium ions in the range of 0 to 0.3 mol / L is added. A lead-acid battery of the Q-55 type was obtained by forming a battery with a quantity of electricity according to In addition, it may replace with battery case formation and tank formation etc. may be performed.

アルミニウムイオンは硫酸アルミニウムとして加え、リチウムイオンは硫酸リチウムとして加えたが、希硫酸に可溶な塩、酸化物、水酸化物等であれば、添加形態は任意である。また電解液は希硫酸とアルミニウムイオンとリチウムイオンの他に、例えば0.02mol/L以下のナトリウムイオン、カリウムイオン、マグネシウムイオン等を含んでいても良い。各蓄電池は、活物質の質量比とアルミニウムイオン濃度とリチウムイオン濃度を異ならせた他は、同一の材料を同一の条件で処理して作製した。また電槽へ注入した電解液は、20℃で比重が1.230の希硫酸に、硫酸アルミニウムと硫酸リチウムとを溶解したものである。   Aluminum ions were added as aluminum sulfate and lithium ions were added as lithium sulfate. However, the addition form is arbitrary as long as it is a salt, oxide, hydroxide or the like soluble in dilute sulfuric acid. In addition to dilute sulfuric acid, aluminum ions, and lithium ions, the electrolytic solution may contain, for example, 0.02 mol / L or less of sodium ions, potassium ions, magnesium ions, and the like. Each storage battery was produced by processing the same material under the same conditions except that the mass ratio of active material, aluminum ion concentration, and lithium ion concentration were different. The electrolytic solution injected into the battery case is a solution in which aluminum sulfate and lithium sulfate are dissolved in dilute sulfuric acid having a specific gravity of 1.230 at 20 ° C.

負極活物質と正極活物質の質量比、及び電解液のアルミニウムイオンとリチウムイオン含有量の組み合わせ毎に、鉛蓄電池を3個ずつ作製し、JIS D 5301:2006の9.5.2b)に規定する5時間率容量(5hR容量)を測定し、次いでJIS D 5301:2006の9.5.3b)に規定する高率放電特性試験を行った。高率放電特性試験では、-15℃の環境で所定の電流値で放電しながら、端子電圧が6Vへ低下するまでの時間を測定する。これは低温での高率放電性能を試験するものなので、低温高率放電性能の試験として行った。次いで、電池工業会の規格である、SBA S 0101:2006のアイドリングストップ寿命試験を行った。アイドリングストップ寿命試験では、45Aで59秒と300Aで1秒の放電、及び充電電圧14V(制限電流100A)での60秒の充電とから成るサイクルを行い、3600サイクル毎に40〜48時間放置する。そして300A放電時に端子電圧が7.2V未満となると寿命とする。ここではアイドリングストップ寿命試験の条件を変更し、18,000サイクル後に鉛蓄電池を解体して、負極での硫酸鉛の蓄積量を測定した。   Three lead storage batteries were prepared for each mass ratio of the negative electrode active material to the positive electrode active material and the combination of the aluminum ion and lithium ion contents of the electrolyte, and are defined in 9.5.2b) of JIS D 5301: 2006 5 The time rate capacity (5 hR capacity) was measured, and then a high rate discharge characteristic test specified in JIS D 5301: 2006 9.5.3b) was performed. In the high rate discharge characteristic test, the time until the terminal voltage drops to 6V is measured while discharging at a predetermined current value in an environment of -15 ° C. Since this is for testing high rate discharge performance at low temperature, it was conducted as a test for low temperature high rate discharge performance. Next, an idle stop life test of SBA S 0101: 2006, which is a standard of the battery industry association, was performed. In the idling stop life test, a cycle consisting of 59 seconds at 45A and 1 second at 300A and 60 seconds at a charging voltage of 14V (limit current 100A) is performed, and left for 40 to 48 hours every 3600 cycles. . When the terminal voltage becomes less than 7.2V during 300A discharge, it is considered as the life. Here, the conditions for the idling stop life test were changed, the lead storage battery was disassembled after 18,000 cycles, and the amount of lead sulfate accumulated in the negative electrode was measured.

以上のようにして、5hR容量と低温ハイレート放電持続時間と負極への硫酸鉛の蓄積量を測定した。負極活物質と正極活物質の質量比が1:1の比較例の試料A1での性能を100%とする相対値で、3個の蓄電池の平均値により、各鉛蓄電池の性能を表1に示す。   As described above, the 5 hR capacity, the low temperature high rate discharge duration, and the amount of lead sulfate accumulated on the negative electrode were measured. The performance of each lead storage battery is shown in Table 1 as a relative value with the performance of the sample A1 of the comparative example having a mass ratio of the negative electrode active material and the positive electrode active material being 100% as an average value of three batteries Show.

Figure 2015008151
Figure 2015008151

表1から明らかなように、負極活物質と正極活物質との質量比を1よりも小さくすると、5hR容量が増加し、5hR容量は質量比が0.75で最大となり、0.7以上0.85以下で特に大きな5hR容量が得られる。しかしアルミニウムイオンもリチウムイオンも含まない電解液では、質量比を1未満にすることにより、低温高率放電性能とアイドリングストップ寿命性能とが低下する。これに対して、例えば各0.1mol/Lのアルミニウムイオンとリチウムイオンとを電解液に含有させると、低温高率放電性能とアイドリングストップ寿命性能とが向上する。例えば電解液がアルミニウムイオンとリチウムイオンとを各0.1mol/L含有する場合、質量比が0.85以下0.6以上の試料での低温高率放電性能とアイドリングストップ寿命性能とを総合すると、電解液がアルミニウムイオンとリチウムイオンとを各0.1mol/L含有しかつ質量比が0.9の試料A3と同等である。従って、比較例の試料A3を基準として実施例では、低温高率放電性能とアイドリングストップ寿命性能とを維持したままで、5hR容量が増加している。   As is clear from Table 1, when the mass ratio between the negative electrode active material and the positive electrode active material is smaller than 1, the 5hR capacity increases, and the 5hR capacity becomes maximum when the mass ratio is 0.75 and is particularly large at 0.7 or more and 0.85 or less. 5hR capacity is obtained. However, in an electrolyte solution containing neither aluminum ions nor lithium ions, the low-temperature high-rate discharge performance and the idling stop life performance are lowered by making the mass ratio less than 1. On the other hand, for example, when 0.1 mol / L of aluminum ions and lithium ions are contained in the electrolytic solution, the low-temperature high-rate discharge performance and the idling stop life performance are improved. For example, if the electrolyte contains 0.1 mol / L each of aluminum ions and lithium ions, combining the low-temperature high-rate discharge performance and idling stop life performance of samples with a mass ratio of 0.85 or less and 0.6 or more, the electrolyte is aluminum It is equivalent to sample A3 containing 0.1 mol / L each of ions and lithium ions and having a mass ratio of 0.9. Therefore, in the example based on the sample A3 of the comparative example, the 5 hR capacity is increased while maintaining the low temperature high rate discharge performance and the idling stop life performance.

アルミニウムイオンの濃度の影響を検討すると、試料A7のように0.01mol/Lではアイドリングストップ寿命性能の改善が不十分で、試料A8のように0.02mol/Lとするとアイドリングストップ寿命性能が著しく改善される。従って、アルミニウムイオン濃度は0.02mol/L以上とする。この一方で、試料A10のようにアルミニウムイオン濃度を0.3mol/Lとすると、低温高率放電性能が顕著に低下し、しかもアイドリングストップ寿命性能の点では頭打ちである。従って、アルミニウムイオン濃度は0.02mol/L以上0.2mol/L以下とする。   Examining the effect of aluminum ion concentration, 0.01 mol / L as in sample A7 is insufficient to improve the idling stop life performance, and 0.02 mol / L as in sample A8, the idling stop life performance is significantly improved. The Therefore, the aluminum ion concentration is 0.02 mol / L or more. On the other hand, when the aluminum ion concentration is 0.3 mol / L as in sample A10, the low-temperature high-rate discharge performance is remarkably lowered, and the idling stop life performance is peak. Therefore, the aluminum ion concentration is 0.02 mol / L or more and 0.2 mol / L or less.

リチウムイオンの濃度の影響を検討すると、試料A11のように0.01mol/Lでは低温高率放電性能が不十分で、試料A12のように0.02mol/Lとすると低温高率放電性能が著しく改善される。従って、リチウムイオン濃度を0.02mol/L以上とする。リチウムイオン濃度を0.02mol/Lから0.2mol/Lへと増すと低温高率放電性能が改善されるが、0.2mol/Lを超過させても蓄電池の性能はほとんど改善しない(試料A14,A15)。このためリチウムイオン濃度を0.02mol/L以上0.3mol/L以下、好ましくは0.02mol/L以上0.2mol/L以下とする。   Examining the effect of lithium ion concentration, the low temperature high rate discharge performance is insufficient at 0.01 mol / L as in sample A11, and the low temperature high rate discharge performance is significantly improved at 0.02 mol / L as in sample A12. The Accordingly, the lithium ion concentration is set to 0.02 mol / L or more. Increasing the lithium ion concentration from 0.02 mol / L to 0.2 mol / L improves the low-temperature, high-rate discharge performance, but exceeding 0.2 mol / L does not improve the performance of the storage battery (Samples A14 and A15) . Therefore, the lithium ion concentration is set to 0.02 mol / L to 0.3 mol / L, preferably 0.02 mol / L to 0.2 mol / L.

試料A29に見られるように、負極活物質と正極活物質との質量比を0.55まで小さくすると、各0.1mol/Lのアルミニウムイオンとリチウムイオンを含有させても、低温高率放電性能が不十分となる。これは負極活物質と正極活物質の質量比が小さ過ぎるため、正極活物質の化成性が低下したことによるものと推定できる。   As seen in Sample A29, if the mass ratio of the negative electrode active material to the positive electrode active material is reduced to 0.55, even if each 0.1 mol / L aluminum ion and lithium ion are contained, the low temperature high rate discharge performance is insufficient. It becomes. This is presumably because the mass ratio of the negative electrode active material and the positive electrode active material was too small, and the chemical conversion property of the positive electrode active material was lowered.

この発明ではアイドリングストップ寿命性能を保ちながら、鉛蓄電池の5時間率容量等の容量を増加させることができる。   In the present invention, it is possible to increase the capacity such as the 5-hour rate capacity of the lead storage battery while maintaining the idling stop life performance.

この発明は、正極板と、負極板と、ポリエチレンの多孔質セパレータと、硫酸とアルミニウムイオンとを含む液状の電解液を備えた鉛蓄電池において、負極板の負極活物質と正極板の正極活物質との質量比が0.7以上0.85以下で、かつ電解液中のアルミニウムイオン濃度が0.02mol/L以上0.2mol/L以下であり、前記電解液はリチウムイオン濃度が0.01mol/L以下であることを特徴とする。 The present invention relates to a lead-acid battery comprising a positive electrode plate, a negative electrode plate, a polyethylene porous separator, and a liquid electrolyte containing sulfuric acid and aluminum ions, and a negative electrode active material for the negative electrode plate and a positive electrode active material for the positive electrode plate a mass ratio of 0.7 to 0.85 and, and aluminum ion concentration in the electrolyte 0.02 mol / L or more 0.2 mol / L Ri der hereinafter the electrolyte lithium ion concentration is less than 0.01 mol / L characterized in that there.

発明者の実験によると、負極活物質と正極活物質との質量比を0.6以上0.85以下とし、かつ電解液中のアルミニウムイオン濃度を0.02mol/L以上0.2mol/L以下とすることにより、5時間率容量等の容量が大きく、かつ負極への硫酸鉛の蓄積量が少ない鉛蓄電池が得られる。各要素の影響を個別に検討すると、負極活物質と正極活物質との質量比を0.85以下にすることにより、蓄電池の容量が増す。この一方で、負極活物質と正極活物質との質量比が0.6を下回ると、低温高率放電性能が低下する。従って、負極活物質と正極活物質との質量比を0.6以上とする。さらに負極活物質と正極活物質との質量比を0.7以上とすると、鉛蓄電池の5時間率容量等の容量を特に大きくするできるので、この質量比を0.7以上0.85以下とする。 According to the inventor's experiment, the mass ratio between the negative electrode active material and the positive electrode active material is 0.6 or more and 0.85 or less, and the aluminum ion concentration in the electrolytic solution is 0.02 mol / L or more and 0.2 mol / L or less. A lead-acid battery having a large capacity such as a time rate capacity and a small amount of lead sulfate accumulated in the negative electrode can be obtained. When the influence of each element is examined individually, the capacity of the storage battery is increased by setting the mass ratio of the negative electrode active material and the positive electrode active material to 0.85 or less. On the other hand, when the mass ratio of the negative electrode active material to the positive electrode active material is less than 0.6, the low-temperature high-rate discharge performance is degraded. Therefore, the mass ratio of the negative electrode active material to the positive electrode active material is set to 0.6 or more. Furthermore, when the mass ratio of the negative electrode active material to the positive electrode active material is 0.7 or more, the capacity of the lead storage battery such as the 5-hour rate capacity can be particularly increased, so this mass ratio is set to 0.7 or more and 0.85 or less.

電解液中のリチウムイオン濃度は0.01mol/L以下とする。 The lithium ion concentration in the electrolyte is 0.01 mol / L or less .

Figure 2015008151
Figure 2015008151

リチウムイオンの濃度の影響を検討すると、試料A11のように0.01mol/Lでは低温高率放電性能が不十分で、試料A12のように0.02mol/Lとすると低温高率放電性能が著しく改善される。リチウムイオン濃度を0.02mol/Lから0.2mol/Lへと増すと低温高率放電性能が改善されるが、0.2mol/Lを超過させても蓄電池の性能はほとんど改善しない(試料A14,A15)。ただし電解液が0.01mol/L超のリチウムイオンを含むものは、この発明には含まれない。 Examining the effect of lithium ion concentration, the low temperature high rate discharge performance is insufficient at 0.01 mol / L as in sample A11, and the low temperature high rate discharge performance is significantly improved at 0.02 mol / L as in sample A12. The Increasing the lithium ion concentration from 0.02 mol / L to 0.2 mol / L improves the low-temperature, high-rate discharge performance, but exceeding 0.2 mol / L does not improve the performance of the storage battery (Samples A14 and A15) . However, an electrolyte containing lithium ions exceeding 0.01 mol / L is not included in the present invention.

Claims (3)

正極板と、負極板と、硫酸とアルミニウムイオンとを含む電解液を備えた鉛蓄電池において、
負極板の負極活物質と正極板の正極活物質との質量比が0.6以上0.85以下で、かつ電解液中のアルミニウムイオン濃度が0.02mol/L以上0.2mol/L以下であることを特徴とする、鉛蓄電池。
In a lead storage battery comprising a positive electrode plate, a negative electrode plate, and an electrolyte containing sulfuric acid and aluminum ions,
The mass ratio of the negative electrode active material of the negative electrode plate to the positive electrode active material of the positive electrode plate is 0.6 or more and 0.85 or less, and the aluminum ion concentration in the electrolyte is 0.02 mol / L or more and 0.2 mol / L or less. Lead acid battery.
前記電解液はリチウムイオン濃度が0.01mol/L以下であることを特徴とする、請求項1の鉛蓄電池。   The lead acid battery according to claim 1, wherein the electrolyte has a lithium ion concentration of 0.01 mol / L or less. 負極活物質と正極活物質との質量比が0.7以上0.8以下であることを特徴とする、請求項1または2の鉛蓄電池。   The lead acid battery according to claim 1 or 2, wherein a mass ratio of the negative electrode active material to the positive electrode active material is 0.7 or more and 0.8 or less.
JP2014182415A 2014-09-08 2014-09-08 Lead acid battery Active JP5708959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014182415A JP5708959B2 (en) 2014-09-08 2014-09-08 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182415A JP5708959B2 (en) 2014-09-08 2014-09-08 Lead acid battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011210433A Division JP5637503B2 (en) 2011-09-27 2011-09-27 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2015008151A true JP2015008151A (en) 2015-01-15
JP5708959B2 JP5708959B2 (en) 2015-04-30

Family

ID=52338268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182415A Active JP5708959B2 (en) 2014-09-08 2014-09-08 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5708959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154132A (en) * 2015-02-18 2016-08-25 株式会社Gsユアサ Lead acid storage battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136332A (en) * 1976-05-08 1977-11-15 Kouhei Mogi Lead battery and method of regenerating lead battery
JPH04296464A (en) * 1991-03-26 1992-10-20 Shin Kobe Electric Mach Co Ltd Sealed-type lead-acid battery
JP2001028263A (en) * 1999-07-14 2001-01-30 Japan Storage Battery Co Ltd Lead-acid battery formation method
JP2001155762A (en) * 1999-11-26 2001-06-08 Shin Kobe Electric Mach Co Ltd Sealed lead cell for automobile
JP2006049025A (en) * 2004-08-03 2006-02-16 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
JP2011181436A (en) * 2010-03-03 2011-09-15 Shin Kobe Electric Mach Co Ltd Lead acid battery
JP2011222446A (en) * 2010-04-14 2011-11-04 Gs Yuasa Corp Lead acid storage battery
JP2012074279A (en) * 2010-09-29 2012-04-12 Gs Yuasa Corp Lead acid battery
JP2012079432A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead battery
JP2013073716A (en) * 2011-09-27 2013-04-22 Gs Yuasa Corp Lead acid battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136332A (en) * 1976-05-08 1977-11-15 Kouhei Mogi Lead battery and method of regenerating lead battery
JPH04296464A (en) * 1991-03-26 1992-10-20 Shin Kobe Electric Mach Co Ltd Sealed-type lead-acid battery
JP2001028263A (en) * 1999-07-14 2001-01-30 Japan Storage Battery Co Ltd Lead-acid battery formation method
JP2001155762A (en) * 1999-11-26 2001-06-08 Shin Kobe Electric Mach Co Ltd Sealed lead cell for automobile
JP2006049025A (en) * 2004-08-03 2006-02-16 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
JP2011181436A (en) * 2010-03-03 2011-09-15 Shin Kobe Electric Mach Co Ltd Lead acid battery
JP2011222446A (en) * 2010-04-14 2011-11-04 Gs Yuasa Corp Lead acid storage battery
JP2012074279A (en) * 2010-09-29 2012-04-12 Gs Yuasa Corp Lead acid battery
JP2012079432A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead battery
JP2013073716A (en) * 2011-09-27 2013-04-22 Gs Yuasa Corp Lead acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154132A (en) * 2015-02-18 2016-08-25 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
JP5708959B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6331161B2 (en) Control valve type lead acid battery
JP6168138B2 (en) Liquid lead-acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP5748091B2 (en) Lead acid battery
JP2017183283A (en) Positive electrode plate for lead storage battery, lead storage battery using the same, and method for manufacturing positive electrode plate for lead storage battery
JP5532245B2 (en) Lead-acid battery and method for manufacturing the same
JP5983985B2 (en) Lead acid battery
JP5637503B2 (en) Lead acid battery
WO2013114822A1 (en) Lead-acid battery
JP5656068B2 (en) Liquid lead-acid battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP6495862B2 (en) Lead acid battery
JP2018055903A (en) Positive electrode plate for lead storage battery and lead storage battery
JP5729579B2 (en) Lead acid battery
JP5708959B2 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP5879888B2 (en) Control valve type lead acid battery
JP2017117758A (en) Lead storage battery
JP5569164B2 (en) Lead acid battery
JP6115841B2 (en) Lead acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP6164502B2 (en) Lead acid battery
JP6203472B2 (en) Lead acid battery
JP6071116B2 (en) Lead acid battery
CN103695705A (en) Lead acid battery positive grid alloy for traction

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150217

R150 Certificate of patent or registration of utility model

Ref document number: 5708959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150