JP4053272B2 - Negative electrode for lead acid battery - Google Patents

Negative electrode for lead acid battery Download PDF

Info

Publication number
JP4053272B2
JP4053272B2 JP2001315036A JP2001315036A JP4053272B2 JP 4053272 B2 JP4053272 B2 JP 4053272B2 JP 2001315036 A JP2001315036 A JP 2001315036A JP 2001315036 A JP2001315036 A JP 2001315036A JP 4053272 B2 JP4053272 B2 JP 4053272B2
Authority
JP
Japan
Prior art keywords
negative electrode
lead
acetylene black
weight
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001315036A
Other languages
Japanese (ja)
Other versions
JP2003123760A (en
Inventor
淳 古川
光 坂本
幸蔵 曽我部
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2001315036A priority Critical patent/JP4053272B2/en
Publication of JP2003123760A publication Critical patent/JP2003123760A/en
Application granted granted Critical
Publication of JP4053272B2 publication Critical patent/JP4053272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特にPSOC状態でアイドルストップ、加速アシスト、回生充電等の高率充放電を繰り返すHEV用に適するシール型鉛蓄電池などの鉛蓄電池に関する。
【0002】
【従来の技術】
最近、自動車用鉛蓄電池を従来の12Vから36Vに高電圧化する動きが活発化している。これは当初、利便性や低コスト化を目的とした自動車搭載機器の電動化に伴う電力需要急増への対応やワイヤーハーネス重量抑制を目的として進められていた。しかしその後、環境対策や低燃費化が大きな関心事となると共に、高効率スタータ・ジェネレータが開発された事で、36Vでもアイドルストップ機能は勿論、スタート・アシストやブレーキ時のエネルギー回生が可能となり、従来のHEVの範疇を大幅に拡げる事となった。その結果、安価でメンテナンスフリーのシール型鉛蓄電池をこの用途に用いる試みが活発化している。
ところで、これらの機能のうちアイドルストップやスタート・アシストは鉛蓄電池に高い放電性能を要求する。従来の鉛蓄電池は、この点において非常に優れていると言われていたが、後述するエネルギー回生では充電状態を低めにするため、電解液中の硫酸イオンは不足状態となり、特に急速放電時は極板近傍の硫酸イオンは急激に消費されて放電性能は著しく低下する。エネルギー回生は、高効率の急速充電性能を要求するが、鉛蓄電池はその要求に適さないと言われている。その理由は、高効率の急速充電を行うには電池の充電状態(SOC)を例えば60〜90%と中途半端な充電状態(PSOC)にしておく必要があるが、鉛蓄電池はこの状態で充放電を繰り返すと負極に放電物質である硫酸鉛の結晶が成長・粗大化し、可逆性が失われたサルフェーションと言われる状態になるからである。特に、回生充電のように短時間に大電流で充電を行う場合には、僅か100回程度の回生充電と放電の繰り返しで、即ち、ブレーキを100回踏む操作で、負極の海綿状鉛の表面に生成した硫酸鉛の影響で負極の分極が水素発生電位まで増大し、充電効率は急速に低下する事になる。
これらの問題を解決するために、従来、その負極に導電剤として粒状や繊維状のカーボンを例えば0.5重量%以上或いはアセチレンブラックを0.4〜7.5重量%を添加することが提案されている。(特開平6−349486、特開平7−6767、特開平7−201331などの公報参照)。また、同様の目的で添加するカーボンを微細な繊維状とし、これを0.01〜10wt.%添加したり、粉末と組み合わせたりする事も提案されている。(特開平2−177260、特許第2729644号、特許第2847761号などの公報参照)。
【0003】
【発明が解決しようとする課題】
しかし乍ら、上記の公知技術では、未だ、上記のようなPSOCの使用状態から満足なエネルギー回生特性が得られず、その改善が望まれていた。
本発明は、上記従来の鉛蓄電池の課題を解消し、PSOC状態での充電特性を大幅に改善し、PSOC状態からのエネルギー回生特性に優れ、特にHEV用に鉛蓄電池に適した鉛蓄電池をもたらす負極を開発したものである。
【0004】
【課題を解決するための手段】
本発明は、上記従来の課題を解消し、回生充電特性の優れた鉛蓄電池用負極を提供するもので、負極活物質にアセチレンブラックとバリウム化合物を添加して成る鉛蓄電池用負極において、負極活物質100重量部に対し、平均粒径30nm以下、比表面積100〜150m2 /g、DBP吸油量150m3 /100g以上であるアセチレンブラックを0.5〜4重量部添加し、更に、該アセチレンブラックと硫酸バリウムを、該アセチレンブラックと該硫酸バリウムの重量比率が1:1〜1.7で添加したことを特徴とする。
【0005】
【発明の実施の形態】
本発明の実施例を以下詳述する。
本発明の鉛蓄電池用負極を製造するに当たり、添加されるカーボン粉末としてアセチレンブラックに限定する理由は、カーボンブラックなどの他のカーボン粉末より高温に対し安定であり、而も製造過程で水素や酸素を取り込み難く、水素や酸素含有量が低いため、導電性に優れている基本的な特性を有するからである。
このアセチレンブラックにつき種々検討したところ、後記に明らかにするように、アセチレンブラックの平均粒径は、30nm以下になると海綿状鉛活物質の表面に網目状の導電ネットワークを形成し、PSOC状態でも硫酸鉛の蓄積を抑制する効果があることが判った。また、一般に、微細なカーボンブラックは、通常比表面積が大きくなり、それに伴って水素過電圧の低下と水素発生の増大、即ち充電効率の低下を招くが、特に30nm以下のアセチレンブラックはアグリゲート構造が非常に良く発達しているために比表面積が100〜150m2 /gの範囲において特に水素過電圧がむしろ増加して、充電効率が向上することが判った。また、そのDBP吸油量は200m3 /100g以上であると電解液を保持する効果が非常に高く、急速な充放電を行っても拡散律速による分極を低く抑える事ができることが判った。
【0006】
而して、かゝる特定の条件を有するアセチレンブラックの負極活物質への添加量は、負極活物質100重量部に対し0.5〜4重量部添加し、更に該アセチレンブラックと硫酸バリウムを重量比率1:1〜1.7で添加することにより、下記に詳述するように、回生特性の改善効果を発揮することが判った。
【0007】
また、負極活物質には、アセチレンブラックと共にバリウム化合物を添加併用される。その使用されるバリウム化合物は、硫酸バリウムや炭酸バリウム等であるが、これらは電解液である硫酸と反応し、硫酸バリウムに変化する。そして、硫酸バリウムが有する硫酸鉛の核化剤として働き、即ち硫酸鉛の粗大化を抑制する作用にアセチレンブラックが影響する。この場合、該アセチレンブラックと硫酸バリウムの添加量の配合割合が、重量比でアセチレンブラック1対硫酸バリウム1〜1.7で添加するときは、最良の放電特性と回生特性の向上をもたらすことが判った。尚、硫酸バリウムとしては、平均粒径0.7μmのものを使用することが好ましい。
【0008】
次に、本発明の鉛蓄電池用負極の実施例として、その製造例とこれを用いた鉛蓄電池の諸特性を比較例と共に詳述する。
(1)未化成の負極板の製造:
負極活物質として、ボールミル法で製造した酸化鉛(PbO)に、該酸化鉛100重量部に対し、下記表1の実施例及び比較例に示すように、平均粒径、比表面積、DBP吸油量を異にするアセチレンブラック(C)とその添加量と硫酸バリウム(BaSO4 )の添加量と添加されるCとBaSO4 の配合比率を異にして添加し、次に、リグニンを水溶液として加え、続いてイオン交換水を加え乍ら混練して水ペーストを調製し、更に比重1.36の希硫酸を加え乍ら混練し各種の負極活物質ペーストを調製した。このときに使用したイオン交換水の量は酸化鉛100重量部に対しておよそ10重量部、希硫酸の量は10重量部であった。尚、出来上がったペーストのカップ密度が約135g/2in3となるようにイオン交換水の量を調製した。このように製造したペーストをカルシウム合金から成る鋳造基板に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して各種の未化成の負極板を製造した。
(2)未化成の正極板の製造:
酸化鉛100重量部にイオン交換水10重量部、続いて比重1.27の希硫酸10重量部を加え乍ら混練して正極用ペーストを調製した。このペーストのカップ密度は約140g/2in3であった。このペーストをカルシウム合金から成る鋳造基板に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の正極板を多数製造した。
(3)電池組立、電解液の調製の化成:
これらの未化成板に微細なガラス繊維に約10%のシリカ粉末を加えて成る、20kPa加圧時の厚みが0.8mmのリテーナマットセパレータを組み合わせ、COS方式で極板同士を溶接して極板群とした。これをPP製の電槽に入れ、ヒートシールによって蓋をした。次に、電槽化成に用いる比重1.20の電解液を調製した。これに放電状態での短絡防止用に硫酸ナトリウムを添加して用いた。この電解液を電池に入れて40℃の水槽中で理論容量の200%過充電して電槽化成を行い、表1に示す実施例及び比較例の負極を用いた夫々の2Vのシール型鉛蓄電池を製造した。この電池の電解液比重は1.260であり、電解液量は極板群の理論空間体積の100%に調製した。化成後に行った電池の容量試験で5時間率容量は20Ahであった。
【0009】
放電性能の評価:
次に、このように製造した上記の実施例及び比較例に示す各種の鉛蓄電池につき、25℃、5時間率電流で完全充電した後、5時間率電流でSOCを70%に調製した。即ち6Ah分の放電を行った。次に、電池を−15℃で16時間放置した。その後、300Aで5秒間放電し、5秒目の電圧を測定した。その放電特性の測定の結果を表1に示した。望ましい値は、1.45V以上である。
【0010】
また、上記の各電池を、25℃、5時間率電流で完全充電した後、5時間率電流でSOCを70%に調製した。即ち6Ah分の放電を行った。次に、電池温度が40℃となるように雰囲気温度を調製し、60A、40秒間の定電流放電と40A、50秒間、80A、5秒間、上限電圧2.33Vの定電流・定電圧充電の組み合わせを1サイクルとする回生充電繰り返し試験を行った。そして、80A、5秒間の回生充電時の電池電圧が2.33Vの上限電圧に到達するまでの回数を測定した。この試験は、充電電気量と放電電気量が等しいため、回生充電に相当する80A、5秒間の充電が完全に行われないと充電不足となる。即ち、80A充電中に負極が分極して電池電圧が2.33Vに達すると定電圧充電に切り替わり、電流が減衰して充電不足となる。その回生充電特性の測定の結果を表1に示した。望ましい値の目安は500回である。
【0011】
【表1】

Figure 0004053272
【0012】
上記表1から明らかなように、平均粒径30nm以下、比表面積100〜150m2 /g、DBP吸油量200cm3 /100g以上の特定の条件を有するアセチレンブラックを負極活物質100重量部に対し0.5〜4重量部添加して、更に、上記の条件を満たしたアセチレンブラックと硫酸バリウムの配合割合を重量比で1対1〜1.7の配合で添加して製造した負極を鉛蓄電池に用いるときは、優れた放電特性とPSOC状態からの優れた回生特性を有する鉛蓄電池を確実に製造することができることが判る。
【0013】
【発明の効果】
このように請求項1に係る発明による負極を鉛蓄電池に用いるときは、上記従来の鉛蓄電池用負極の課題を解消し、優れた放電特性とPSOC状態からの優れた回生特性を確保された鉛蓄電池をもたらし、HEV用などに用い優れた鉛蓄電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-acid battery such as a sealed lead-acid battery suitable for HEV that repeats high-rate charging / discharging such as idle stop, acceleration assist, regenerative charging, etc., particularly in a PSOC state.
[0002]
[Prior art]
Recently, the movement to increase the voltage of lead-acid batteries for automobiles from the conventional 12V to 36V has been activated. This was initially promoted for the purpose of responding to the sudden increase in power demand accompanying the electrification of on-board equipment for the purpose of convenience and cost reduction, and reducing the weight of the wire harness. However, environmental measures and fuel efficiency have become a major concern since then, and the development of a high-efficiency starter / generator enables the idling stop function at 36V as well as energy recovery during start assist and braking. The category of conventional HEV was greatly expanded. As a result, attempts to use inexpensive, maintenance-free, sealed lead-acid batteries for this purpose have become active.
By the way, among these functions, idle stop and start assist require high discharge performance for lead-acid batteries. Conventional lead-acid batteries were said to be very good in this regard, but in order to lower the state of charge in energy regeneration, which will be described later, the sulfate ions in the electrolyte became insufficient, especially during rapid discharge. Sulfate ions in the vicinity of the electrode plate are consumed rapidly, and the discharge performance is significantly reduced. Energy regeneration requires high-efficiency rapid charging performance, but lead-acid batteries are said to be unsuitable. The reason for this is that in order to perform high-efficiency rapid charging, the state of charge (SOC) of the battery needs to be half-way charged (PSOC), for example, 60 to 90%, but the lead storage battery is charged in this state. This is because if the discharge is repeated, crystals of lead sulfate, which is a discharge substance, grow and coarsen on the negative electrode, and a state called sulfation is lost. In particular, when recharging with a large current in a short time, such as regenerative charging, the surface of the sponge lead of the negative electrode is obtained by repeating regenerative charging and discharging only about 100 times, that is, by stepping on the brake 100 times. Due to the effect of lead sulfate formed on the electrode, the polarization of the negative electrode increases to the hydrogen generation potential, and the charging efficiency rapidly decreases.
In order to solve these problems, it has been proposed to add 0.5% by weight or more of granular or fibrous carbon or 0.4 to 7.5% by weight of acetylene black as a conductive agent to the negative electrode. Has been. (See JP-A-6-349486, JP-A-7-6767, JP-A-7-201331, etc.). Moreover, carbon added for the same purpose is made into a fine fiber, and this is 0.01 to 10 wt. % Addition or combination with powder is also proposed. (See JP-A-2-177260, Japanese Patent No. 2729644, Japanese Patent No. 2847761, etc.).
[0003]
[Problems to be solved by the invention]
However, in the above-described known technology, satisfactory energy regenerative characteristics are not yet obtained from the use state of PSOC as described above, and an improvement thereof has been desired.
The present invention eliminates the above-mentioned problems of the conventional lead storage battery, greatly improves the charge characteristics in the PSOC state, has excellent energy regeneration characteristics from the PSOC state, and brings about a lead storage battery suitable for lead storage batteries, particularly for HEVs. The negative electrode was developed.
[0004]
[Means for Solving the Problems]
The present invention solves the above-mentioned conventional problems and provides a negative electrode for a lead storage battery having excellent regenerative charge characteristics. In a negative electrode for a lead storage battery comprising acetylene black and a barium compound added to a negative electrode active material, relative to material 100 parts by weight, average particle size below 30 nm, the acetylene black is a specific surface area of 100-150 2 / g, DBP oil absorption of 150 meters 3/100 g or more was added 0.5 to 4 parts by weight, further, the acetylene black And barium sulfate are added at a weight ratio of 1: 1 to 1.7 of the acetylene black and the barium sulfate .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention are described in detail below.
The reason for limiting the added carbon powder to acetylene black in the production of the negative electrode for a lead storage battery of the present invention is that it is more stable at higher temperatures than other carbon powders such as carbon black. This is because it has a basic characteristic of being excellent in conductivity because it is difficult to incorporate hydrogen and has a low content of hydrogen and oxygen.
As a result of various studies on this acetylene black, as will be clarified later, when the average particle size of acetylene black is 30 nm or less, a network-like conductive network is formed on the surface of the spongy lead active material, and sulfuric acid is also in the PSOC state. It was found that there is an effect of suppressing lead accumulation. In general, fine carbon black usually has a large specific surface area, which causes a decrease in hydrogen overvoltage and an increase in hydrogen generation, that is, a decrease in charging efficiency. Particularly, acetylene black of 30 nm or less has an aggregate structure. It has been found that because of its very well developed specific surface area in the range of 100 to 150 m 2 / g, the hydrogen overvoltage is rather increased and the charging efficiency is improved. Further, the DBP oil absorption was found that can effect of retaining the the electrolyte is 200 meters 3/100 g or more is suppressed very high, even if rapid charge and discharge lower polarization due diffusion control.
[0006]
Thus, the amount of acetylene black having such specific conditions added to the negative electrode active material is 0.5 to 4 parts by weight with respect to 100 parts by weight of the negative electrode active material, and the acetylene black and barium sulfate are further added. It has been found that by adding at a weight ratio of 1: 1 to 1.7, the effect of improving the regeneration characteristics is exhibited as described in detail below.
[0007]
The negative electrode active material is used in combination with acetylene black and a barium compound. The barium compound used is barium sulfate, barium carbonate, or the like, but these react with sulfuric acid as an electrolytic solution and change to barium sulfate. And acetylene black influences the effect | action which acts as a nucleating agent of the lead sulfate which barium sulfate has, ie, suppresses the coarsening of lead sulfate. In this case, when the addition ratio of the acetylene black and barium sulfate is added in a weight ratio of 1 acetylene black to 1 to 1.7 barium sulfate, the best discharge characteristics and regenerative characteristics can be improved. understood. As barium sulfate, it is preferable to use one having an average particle size of 0.7 μm.
[0008]
Next, as an example of the negative electrode for a lead storage battery of the present invention, its production example and various characteristics of a lead storage battery using the same will be described in detail together with a comparative example.
(1) Production of unformed negative electrode plate:
As a negative electrode active material, lead oxide (PbO) produced by a ball mill method, with respect to 100 parts by weight of the lead oxide, as shown in Examples and Comparative Examples in Table 1 below, average particle diameter, specific surface area, DBP oil absorption amount The acetylene black (C) and the addition amount thereof, and the addition amount of barium sulfate (BaSO 4 ) and the blending ratio of C and BaSO 4 to be added are added differently, and then lignin is added as an aqueous solution. Subsequently, ion exchange water was added and kneaded while preparing a water paste, and further dilute sulfuric acid having a specific gravity of 1.36 was added and kneaded while preparing various negative electrode active material pastes. The amount of ion-exchanged water used at this time was approximately 10 parts by weight with respect to 100 parts by weight of lead oxide, and the amount of dilute sulfuric acid was 10 parts by weight. The amount of ion-exchanged water was adjusted so that the cup density of the finished paste was about 135 g / 2 in3. The paste thus produced was filled into a cast substrate made of a calcium alloy, aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to produce various unformed negative electrode plates.
(2) Production of unformed positive electrode plate:
A positive electrode paste was prepared by adding 10 parts by weight of ion-exchanged water to 100 parts by weight of lead oxide followed by 10 parts by weight of dilute sulfuric acid having a specific gravity of 1.27 and kneading. The cup density of this paste was about 140 g / 2 in3. This paste was filled in a cast substrate made of a calcium alloy, aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to produce a large number of unformed positive plates.
(3) Formation of battery assembly and preparation of electrolyte:
These unformed sheets are combined with a retainer mat separator with a thickness of 0.8 mm when pressurized to 20 kPa, which is made by adding about 10% silica powder to fine glass fibers, and the electrodes are welded together by the COS method. A group of plates was used. This was put into a battery case made of PP and covered by heat sealing. Next, an electrolytic solution having a specific gravity of 1.20 used for battery case formation was prepared. To this, sodium sulfate was added to prevent short circuit in the discharged state. This electrolyte solution is put into a battery, overcharged by 200% of the theoretical capacity in a 40 ° C. water tank, and then formed into a battery case, and each 2V sealed lead using the negative electrodes of the examples and comparative examples shown in Table 1 A storage battery was manufactured. The specific gravity of the electrolyte of this battery was 1.260, and the amount of the electrolyte was adjusted to 100% of the theoretical space volume of the electrode plate group. In the battery capacity test conducted after the formation, the 5-hour rate capacity was 20 Ah.
[0009]
Evaluation of discharge performance:
Next, the various lead storage batteries shown in the above-described Examples and Comparative Examples were fully charged at 25 ° C. and a 5-hour rate current, and then the SOC was adjusted to 70% at the 5-hour rate current. That is, discharge for 6 Ah was performed. Next, the battery was left at −15 ° C. for 16 hours. Thereafter, the battery was discharged at 300 A for 5 seconds, and the voltage at 5 seconds was measured. The results of measurement of the discharge characteristics are shown in Table 1. A desirable value is 1.45V or more.
[0010]
Moreover, after fully charging each said battery at 25 degreeC and 5 hour rate current, SOC was adjusted to 70% with 5 hour rate current. That is, discharge for 6 Ah was performed. Next, the ambient temperature is adjusted so that the battery temperature is 40 ° C., constant current discharge for 60 A for 40 seconds, and constant current / constant voltage charging for 40 A, 50 seconds, 80 A, 5 seconds, upper limit voltage 2.33 V. A regenerative charge repetition test was performed with the combination as one cycle. The number of times until the battery voltage at the time of regenerative charging at 80 A for 5 seconds reached the upper limit voltage of 2.33 V was measured. In this test, since the amount of charge electricity is equal to the amount of discharge electricity, 80A corresponding to regenerative charge and charging for 5 seconds are not fully performed, resulting in insufficient charge. That is, when the negative electrode is polarized during 80 A charging and the battery voltage reaches 2.33 V, switching to constant voltage charging is performed, the current is attenuated, and charging becomes insufficient. The measurement results of the regenerative charge characteristics are shown in Table 1. A desirable value is 500 times.
[0011]
[Table 1]
Figure 0004053272
[0012]
As is apparent from Table 1, average particle size below 30 nm, with respect to the negative electrode active material 100 parts by weight of acetylene black having a specific surface area of 100-150 2 / g, DBP oil absorption of 200 cm 3/100 g or more specified conditions 0 .5-4 parts by weight , and further, a negative electrode manufactured by adding a mixing ratio of acetylene black and barium sulfate satisfying the above conditions in a weight ratio of 1: 1 to 1.7 is used as a lead storage battery. case, it is Ru determine which can be produced reliably lead storage battery having excellent regeneration characteristics from excellent discharge characteristics and PSOC condition used.
[0013]
【The invention's effect】
When using a negative electrode according to the invention in this way according to claim 1 in lead-acid battery, and canceling the negative electrode challenges for the conventional lead-acid batteries, it is ensured a good regeneration properties from superior discharge characteristics and PSOC condition A lead storage battery can be provided, and an excellent lead storage battery used for HEV or the like can be provided.

Claims (1)

負極活物質にアセチレンブラックとバリウム化合物を添加して成る鉛蓄電池用負極において、負極活物質100重量部に対し、平均粒径30nm以下、比表面積100〜150m2 /g、DBP吸油量150m3 /100g以上であるアセチレンブラックを0.5〜4重量部添加し、更に、該アセチレンブラックと硫酸バリウムを、該アセチレンブラックと該硫酸バリウムの重量比率が1:1〜1.7で添加したことを特徴とする鉛蓄電池用負極。In a negative electrode for a lead storage battery obtained by adding acetylene black and a barium compound to a negative electrode active material, an average particle size of 30 nm or less, a specific surface area of 100 to 150 m 2 / g, a DBP oil absorption of 150 m 3 / g with respect to 100 parts by weight of the negative electrode active material. 0.5-4 parts by weight of acetylene black that is 100 g or more was added, and further, the acetylene black and barium sulfate were added at a weight ratio of 1: 1 to 1.7 of the acetylene black and the barium sulfate. A negative electrode for a lead-acid battery.
JP2001315036A 2001-10-12 2001-10-12 Negative electrode for lead acid battery Expired - Lifetime JP4053272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315036A JP4053272B2 (en) 2001-10-12 2001-10-12 Negative electrode for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315036A JP4053272B2 (en) 2001-10-12 2001-10-12 Negative electrode for lead acid battery

Publications (2)

Publication Number Publication Date
JP2003123760A JP2003123760A (en) 2003-04-25
JP4053272B2 true JP4053272B2 (en) 2008-02-27

Family

ID=19133261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315036A Expired - Lifetime JP4053272B2 (en) 2001-10-12 2001-10-12 Negative electrode for lead acid battery

Country Status (1)

Country Link
JP (1) JP4053272B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309985B (en) 2005-11-16 2011-10-12 精工爱普生株式会社 Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
JP2007173112A (en) * 2005-12-22 2007-07-05 Ntt Data Ex Techno Corp Anode active material for secondary battery, secondary battery and their manufacturing method
JP5115695B2 (en) 2006-04-03 2013-01-09 セイコーエプソン株式会社 Ink set
JP4523580B2 (en) * 2006-12-19 2010-08-11 エヌ・ティ・ティ・データ先端技術株式会社 Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP5293987B2 (en) 2007-07-19 2013-09-18 セイコーエプソン株式会社 Ink set, inkjet recording method
JP5365095B2 (en) 2008-08-25 2013-12-11 セイコーエプソン株式会社 Ink set
JP5365111B2 (en) 2008-09-10 2013-12-11 セイコーエプソン株式会社 Ink set, recording method, and recording apparatus
JP5387037B2 (en) 2009-02-23 2014-01-15 セイコーエプソン株式会社 Ink set, recording apparatus, and recording method
JP2011116876A (en) 2009-12-04 2011-06-16 Seiko Epson Corp Ink set, recording device, and recording method
JP5656116B2 (en) * 2011-04-12 2015-01-21 株式会社Gsユアサ Lead acid battery
DE112013000779T5 (en) * 2012-01-31 2014-10-30 Panasonic Corporation Lead-acid battery
JP6870207B2 (en) * 2016-03-08 2021-05-12 昭和電工マテリアルズ株式会社 Lead-acid battery
US10511016B2 (en) * 2016-11-30 2019-12-17 Global Graphene Group, Inc. Graphene-protected lead acid batteries
JP6458829B2 (en) * 2017-06-29 2019-01-30 株式会社Gsユアサ Lead acid battery
JP7196497B2 (en) * 2018-09-25 2022-12-27 株式会社Gsユアサ Negative electrode for lead-acid battery and lead-acid battery
EP3891826A1 (en) * 2018-12-04 2021-10-13 Cabot Corporation Compositions, electrodes and lead-acid batteries having improved low-temperature performance

Also Published As

Publication number Publication date
JP2003123760A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
JP6597842B2 (en) Lead acid battery
JP5092272B2 (en) Lead-acid battery and method for producing lead-acid battery
JP4960702B2 (en) High performance energy storage device
JP4053272B2 (en) Negative electrode for lead acid battery
EP2661785B1 (en) Advanced graphite additive for enhanced cycle-life of lead-acid batteries
KR20100014606A (en) Optimised energy storage device
CN111279527B (en) Lead-acid battery
JP4544791B2 (en) Sealed lead acid battery
WO2011108175A1 (en) Lead storage battery
CN104393250A (en) Preparation method for lead-carbon composite material of lead acid battery and composite negative plate
JP2008153128A (en) Negative electrode active material for secondary battery
US20240222600A1 (en) Absorbent glass mat battery
JPWO2018229875A1 (en) Liquid lead storage battery
JP2008243493A (en) Lead acid storage battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP5396216B2 (en) Lead acid battery
JP4509660B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2021111445A (en) Lead-acid battery
JP2002198085A (en) Lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP2021077482A (en) Lead-acid battery and method for manufacturing positive electrode plate for lead-acid battery
JP2005268061A (en) Lead storage cell
JP2021096900A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4053272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6