JP5396216B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5396216B2
JP5396216B2 JP2009219960A JP2009219960A JP5396216B2 JP 5396216 B2 JP5396216 B2 JP 5396216B2 JP 2009219960 A JP2009219960 A JP 2009219960A JP 2009219960 A JP2009219960 A JP 2009219960A JP 5396216 B2 JP5396216 B2 JP 5396216B2
Authority
JP
Japan
Prior art keywords
negative electrode
weight
parts
carbon
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009219960A
Other languages
Japanese (ja)
Other versions
JP2011070870A (en
Inventor
淳 古川
朗 土橋
秀仁 中島
トリュー ラン ラム
ロザリー ルーエイ
ピーター ニゲル ハイフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2009219960A priority Critical patent/JP5396216B2/en
Publication of JP2011070870A publication Critical patent/JP2011070870A/en
Application granted granted Critical
Publication of JP5396216B2 publication Critical patent/JP5396216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ハイブリッド自動車、風車、PVなどの産業分野に用いられる鉛蓄電池に関する。   The present invention relates to a lead storage battery used in industrial fields such as hybrid vehicles, windmills, and PV.

従来、PSOCの状態での充電特性の改善や深い充放電サイクル寿命の延長をもたらすシール型鉛蓄電池の発明は、例えば、特開2003-36882号公報や特開2003-51334号公報に公知である。また、負極活物質充填板を本体とし、その表面に導電性を有するカーボンブラックなどの第1カーボン材料とキャパシタ容量及び/又は擬似キャパシタ容量を有する活性炭などの第2カーボン材料から成る2種類のカーボン材料と結着剤を混合して成るカーボン合剤の被覆層を形成することにより、PSOCで急速充放電を繰り返してもキャパシタの機能により寿命を大幅に延長することができるようにした鉛蓄電池が特表2007-506230号公報に公知である。   Conventionally, the invention of a sealed lead-acid battery that improves the charging characteristics in the PSOC state and prolongs the deep charge / discharge cycle life is known, for example, in JP-A-2003-36882 and JP-A-2003-51334 . Also, two types of carbon consisting of a negative electrode active material-filled plate as a main body and a first carbon material such as carbon black having conductivity on its surface and a second carbon material such as activated carbon having a capacitor capacity and / or a pseudocapacitor capacity. A lead-acid battery that can significantly extend the life due to the function of the capacitor even if repeated rapid charge / discharge with PSOC is formed by forming a coating layer of carbon mixture made by mixing the material and binder. It is known in JP-T-2007-506230.

特開2003-36882号公報JP 2003-36882 A 特開2003-51334号公報JP 2003-51334 A 特表2007-506230号公報Special table 2007-506230 gazette

しかしながら、上記特許文献1に提案の鉛蓄電池は、エネルギー回生において、PSOC状態での高効率の急速充電性能を改善するものであるが、PSOC状態での急速充放電サイクル寿命試験では期待した性能が得られない問題があった。また、上記特許文献2に提案の鉛蓄電池は、深い充放電サイクル、特にPSOC条件においてサイクル寿命を延長するものであるが、これもPSOC状態での急速充放電サイクル寿命試験では期待した性能が得られない問題があった。これに対し、上記特許文献3に提案の鉛蓄電池では、上記特許文献1や2の鉛蓄電池と比較して、PSOC状態での急速充放電サイクル寿命性能は改善されるものの、まだ充分な性能は発揮できなかった。
そこで、本発明は、これらの鉛蓄電池の改善に係り、PSOCにおける急速充放電特性が向上し、急速充放電サイクル寿命の延長した鉛蓄電池を提供することを目的とする。
However, the lead storage battery proposed in Patent Document 1 improves the high-efficiency quick charge performance in the PSOC state during energy regeneration, but has the expected performance in the rapid charge / discharge cycle life test in the PSOC state. There was a problem that could not be obtained. The lead storage battery proposed in Patent Document 2 extends the cycle life under deep charge / discharge cycles, especially in PSOC conditions. This also shows the expected performance in the rapid charge / discharge cycle life test in the PSOC state. There was a problem that was not possible. In contrast, in the lead storage battery proposed in Patent Document 3, the rapid charge / discharge cycle life performance in the PSOC state is improved as compared with the lead storage batteries in Patent Documents 1 and 2, but sufficient performance is still not sufficient. I couldn't show it.
Accordingly, an object of the present invention is to provide a lead storage battery having improved rapid charge / discharge characteristics in PSOC and having an extended rapid charge / discharge cycle life, in connection with the improvement of these lead storage batteries.

本発明は、請求項1に記載の通り、負極活物質100重量部に対しカーボン材料を0.5重量部〜3.5重量部の範囲で含む負極の表面の少なくとも一部に、導電性を有する第1カーボン材料とキャパシタ容量及び/又は擬似キャパシタ容量を有する第2カーボン材料から成る2種類のカーボン材料と結着剤を含むポーラスな合剤の被覆層を形成して成ることを特徴とする複合キャパシタ負極を具備した鉛蓄電池に存する。
更に本発明は、請求項2に記載の通り、該負極に含まれるカーボン材料は、カーボンブラック、グラファイト及び活性炭から選択された少なくとも1種であることを特徴とする請求項1に記載の鉛蓄電池に存する。
The present invention provides the first carbon having conductivity on at least a part of the surface of the negative electrode containing the carbon material in the range of 0.5 to 3.5 parts by weight with respect to 100 parts by weight of the negative electrode active material, as described in claim 1. A composite capacitor negative electrode comprising: a porous layer of a composite material including a binder and a binder comprising two types of carbon materials and a second carbon material having a capacitor capacity and / or a pseudocapacitor capacity. It exists in the lead-acid battery provided.
Furthermore, the present invention provides the lead acid battery according to claim 1, wherein the carbon material contained in the negative electrode is at least one selected from carbon black, graphite, and activated carbon. Exist.

請求項1又は2に係る発明によれば、上記の構成により、作用は明らかでないが、負極活物質に含有せしめた上記特定量のカーボン材料により鉛の結晶成長を阻害し、負極活物質の表面積を増大して充電時に鉛イオンの供給を増加させると共に、その表面に形成したポーラスなカーボン合剤の被覆層との界面でこの鉛イオンの還元・析出が起こり易くなる。その結果、負極活物質内部と負極表面のポーラスなカーボン合剤の被覆層が強固な3次元導電ネットワークを形成することとなる。また、負極活物質中のカーボン材料はポーラスなカーボン合剤の被覆層と相まって電極外部から侵入する電解液中のプロトンの負極活物質内部への移動を促進し、充電時の分極を抑制することに寄与する。これらの作用により、鉛蓄電池のPSOCにおける急速充放電を繰り返した場合のサイクル寿命特性を後記に明らかにするように著しく向上することができると考えられる。   According to the invention according to claim 1 or 2, although the operation is not clear by the above configuration, the specific amount of carbon material contained in the negative electrode active material inhibits lead crystal growth, and the surface area of the negative electrode active material To increase the supply of lead ions at the time of charging, and reduction and precipitation of the lead ions easily occur at the interface with the porous carbon mixture coating layer formed on the surface. As a result, the porous carbon mixture coating layer inside the negative electrode active material and the negative electrode surface forms a strong three-dimensional conductive network. In addition, the carbon material in the negative electrode active material promotes the movement of protons in the electrolyte solution entering from the outside of the electrode in combination with the coating layer of the porous carbon mixture into the negative electrode active material, and suppresses polarization during charging. Contribute to. It is considered that these effects can remarkably improve the cycle life characteristics when rapid charge / discharge in the PSOC of the lead storage battery is repeated, as will be described later.

本発明の実施形態例を以下に詳述する。
本発明の鉛蓄電池に用いるキャパシタ複合負極の負極板は、負極活物質として、一酸化鉛を主成分とし鉛との混合粉100重量部に対し、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、グラファイト、活性炭などから選択した少なくとも1種のカーボン材料を0.5重量部から3.5重量部を添加し、所望により硫酸バリウム0.5〜4重量%を添加し、これに水や希硫酸で混練し、ペースト状としたものをPb-Ca系合金の格子基板に充填、乾燥し、次いで化成して成るものである。
Exemplary embodiments of the present invention are described in detail below.
The negative electrode plate of the capacitor composite negative electrode used in the lead storage battery of the present invention is composed of carbon such as acetylene black, ketjen black, and furnace black as a negative electrode active material with 100 parts by weight of mixed powder of lead monoxide as a main component and lead. Add 0.5 to 3.5 parts by weight of at least one carbon material selected from black, graphite, activated carbon, etc., add barium sulfate 0.5 to 4% by weight if desired, knead with water or dilute sulfuric acid, The paste is filled in a Pb—Ca alloy lattice substrate, dried, and then formed.

本発明によれば、上記の該負極板の表面の少なくとも一部に、即ち、その両表面全体に、或いはその全体に、或いはその両面又は片面の一部に、下記のカーボン合剤のペーストを塗布し、乾燥し、ポーラスなカーボン合剤の被覆層を形成してキャパシタ複合負極板を製造し、このキャパシタ複合負極板と正極板とをセパレータを介し積層して極板群を組み立て、これを電槽に不動に収容し、電解液を注入し、制御弁式などの鉛蓄電池とする。この場合の電解液としては、アルミニウムイオン含有の硫酸電解液が好ましい。   According to the present invention, a paste of the following carbon mixture is applied to at least a part of the surface of the negative electrode plate, that is, the entire surface, the entire surface, or both surfaces or a part of one surface. Coating and drying, forming a coating layer of a porous carbon mixture to produce a capacitor composite negative electrode plate, and laminating the capacitor composite negative electrode plate and the positive electrode plate through a separator to assemble an electrode plate group, It is housed in a battery case, and an electrolytic solution is injected to make a lead-acid battery such as a control valve type. As the electrolytic solution in this case, a sulfuric acid electrolytic solution containing aluminum ions is preferable.

上記のポーラスなカーボン合剤の被覆層を上記のように該負極板の表面に形成するための好ましいカーボン合剤ペーストは、少なくとも導電性を有する第1カーボン材料とキャパシタ容量及び/又は擬似キャパシタ容量を有する第2カーボン材料と結着剤とを混練して成るものである。   A preferable carbon mixture paste for forming the porous carbon mixture coating layer on the surface of the negative electrode plate as described above includes at least a first carbon material having conductivity, a capacitor capacity, and / or a pseudo capacitor capacity. The second carbon material having the above and a binder are kneaded.

導電性を確保するための第1カーボン材料としては、アセチレンブラック、ファーネスブラック、ケッチェンブラックなどのカーボンブラック、グラファイトなどから少なくとも1種を選択して使用する。これらのカーボン材料は、導電性を重視する観点から、一般に表面官能基の量が少ないものが好ましい。
キャパシタ容量及び/又は擬似キャパシタ容量を確保するための第2カーボン材料としては、活性炭、アセチレンブラック、ファーネスブラック、ケッチェンブラックなどのカーボンブラック、グラファイトなどから少なくとも1種を選択して使用する。一般に表面官能基の量は、適度に存在するものが好ましい。
As the first carbon material for ensuring conductivity, at least one selected from carbon black such as acetylene black, furnace black and ketjen black, graphite and the like is used. These carbon materials are generally preferably those having a small amount of surface functional groups from the viewpoint of emphasizing conductivity.
As the second carbon material for securing the capacitor capacity and / or the pseudo-capacitor capacity, at least one selected from carbon black such as activated carbon, acetylene black, furnace black and ketjen black, graphite and the like is used. Generally, it is preferable that the amount of the surface functional group is appropriately present.

好ましいカーボン合剤ペーストの成分の配合割合は、30〜70重量部の第1カーボン材料と20〜60重量部の第2カーボン材料と1〜20重量部の結着剤と0〜10重量部の増粘剤と0〜10重量部の短繊維状補強材とから成る。
第1カーボン材料が30重量部未満では良好な導電性を確保できず、キャパシタ容量の低下を招き、70重量部を超えると導電効果が飽和し不経済である。より好ましい配合量は40〜60重量部である。
第2カーボン材料が20重量部未満では、キャパシタ容量が不足し、60重量部を超えると相対的に第1カーボン材料の割合が減少して、むしろ、容量が低下する。より好ましい配合量は、30〜50重量部である。
結着剤は、配合した第1、第2カーボン材料同士の結合及び負極板の表面とカーボン合剤の被覆層との結合を良好にし、電気的な接続を確保できると共にカーボン合剤ペーストの乾燥後のカーボン合剤をポーラスな状態を維持することに役立ち、その種類は、ポリクロロプレン、SBR、PTFE、PVdFなどが好ましい。結着剤が1重量部未満では結合が不充分となり、20重量部を超えると結合効果が飽和する一方、絶縁体として作用し、導電性を低下する。より好ましい配合量は5〜15重量部である。
増粘剤は、カーボン合剤をペースト状に調製するのに有用で、水性のペーストにはCMCやMCなどのセルロース誘導体、ポリアクリル酸塩、ポリビニルアルコールなどが適当であり、有機系にはNMPなどが適当である。増粘剤の配合割合は、乾燥後の残分が10重量部を超えるとカーボン合剤の導電性を損なう。より好ましい配分量は、2〜6重量部である。
短繊維状補強材は、カーボン合剤をペースト状に調製し負極に塗布する場合、乾燥による亀裂の発生を抑制するのに有用である。同材の種類は、カーボン、ガラス、PET、テトロンなど硫酸電解液中で安定であれば良く、太さは直径20μm以下、長さは0.1mm〜4mmが望ましい。その配合量は10重量部を超えると第1、第2カーボン材料や結着剤の相対的な比率を下げて性能を損なうと共に、導電性も低下させる。より好ましい配合量は、0〜6重量部である。
The mixing ratio of the components of the preferred carbon mixture paste is 30 to 70 parts by weight of the first carbon material, 20 to 60 parts by weight of the second carbon material, 1 to 20 parts by weight of the binder, and 0 to 10 parts by weight of the binder. Consists of a thickener and 0 to 10 parts by weight of short fibrous reinforcement.
If the first carbon material is less than 30 parts by weight, good conductivity cannot be ensured, resulting in a decrease in capacitor capacity. If it exceeds 70 parts by weight, the conductive effect is saturated, which is uneconomical. A more preferable blending amount is 40 to 60 parts by weight.
When the second carbon material is less than 20 parts by weight, the capacity of the capacitor is insufficient, and when it exceeds 60 parts by weight, the proportion of the first carbon material is relatively decreased, and the capacity is rather lowered. A more preferable blending amount is 30 to 50 parts by weight.
The binder improves the bonding between the blended first and second carbon materials and the bonding between the surface of the negative electrode plate and the coating layer of the carbon mixture, ensuring electrical connection and drying of the carbon mixture paste. It helps to maintain the porous state of the carbon mixture later, and the type is preferably polychloroprene, SBR, PTFE, PVdF or the like. If the binder is less than 1 part by weight, the bonding is insufficient, and if it exceeds 20 parts by weight, the bonding effect is saturated, while acting as an insulator, the conductivity is lowered. A more preferable blending amount is 5 to 15 parts by weight.
Thickeners are useful for preparing carbon mixtures in paste form. For aqueous pastes, cellulose derivatives such as CMC and MC, polyacrylates, and polyvinyl alcohol are suitable. Etc. are appropriate. If the balance after drying exceeds 10 parts by weight, the conductivity of the carbon mixture is impaired. A more preferable distribution amount is 2 to 6 parts by weight.
The short fibrous reinforcing material is useful for suppressing the occurrence of cracks due to drying when the carbon mixture is prepared in a paste form and applied to the negative electrode. The type of the material may be stable in a sulfuric acid electrolyte such as carbon, glass, PET, and tetron, and the thickness is preferably 20 μm or less and the length is preferably 0.1 mm to 4 mm. If the blending amount exceeds 10 parts by weight, the relative proportions of the first and second carbon materials and the binder are lowered to deteriorate the performance, and the conductivity is also lowered. A more preferable blending amount is 0 to 6 parts by weight.

上記のカーボン合剤ペーストを該負極板の表面に塗布乾燥しポーラスなカーボン合剤の被覆層を形成するに当たり、乾燥後のポーラスなカーボン合剤の被覆層の被覆量は、負極板に含有する負極活物質100重量部に対し、1〜15重量部が好ましい。そのポーラスなカーボン合剤の被覆量が1重量部未満では被覆した効果が充分に得られない。一方、15重量部を超えると該被覆層の厚みが厚くなって被覆効果が飽和し、不経済である。より好ましいカーボン合剤の被覆量は、3〜10重量部である。   In forming the porous carbon mixture coating layer by applying and drying the above carbon mixture paste on the surface of the negative electrode plate, the coating amount of the porous carbon mixture coating layer after drying is contained in the negative electrode plate. The amount is preferably 1 to 15 parts by weight with respect to 100 parts by weight of the negative electrode active material. If the coating amount of the porous carbon mixture is less than 1 part by weight, the coating effect cannot be obtained sufficiently. On the other hand, if it exceeds 15 parts by weight, the coating layer becomes thick and the coating effect is saturated, which is uneconomical. A more preferable coating amount of the carbon mixture is 3 to 10 parts by weight.

該負極板の表面に形成されたポーラスなカーボン合剤の被覆層の気孔率は、40%〜90%が適当で好ましい。40%未満では電解液の移動が阻害され、急速充放電性能の低下を招く。90%を超えると被覆効果が飽和すると共に、厚みが厚くなり、設計に支障をきたす。より好ましい気孔率は50%〜80%である。   The porosity of the porous carbon mixture coating layer formed on the surface of the negative electrode plate is suitably 40% to 90%, and preferably. If it is less than 40%, the movement of the electrolytic solution is hindered, and the rapid charge / discharge performance is deteriorated. If it exceeds 90%, the coating effect will be saturated and the thickness will be increased, which will hinder the design. A more preferable porosity is 50% to 80%.

本発明のキャパシタ複合負極板の一部を構成する負極板の製造の実施例を比較例と共に以下に詳述する。
実施例1:
ボールミル法で製造した一酸化鉛粉を主成分とする鉛粉から成る負極活物質100重量部に対しカーボン材料はカーボンブラックとしてアセチレンブラックの粉末を0.5重量部添加し乾式混合した。この時、硫酸バリウムの粉末をアセチレンブラックの添加量の1.5倍量とした。次に、リグニンを負極活物質に対し0.2重量部を水溶液として加え、更に、イオン交換水を加えながら混練し、更に、比重1.36の希硫酸を加えながら混練して負極活物質ペーストとした。この時に使用したイオン交換水の添加量は鉛粉100重量部に対して約10重量部、希硫酸の量は10重量部であった。尚、出来上がった負極活物質ペーストのカップ密度が約135g/2in3となるようにイオン交換水の量を調整した。このように製造した負極活物質ペーストをPb-Ca系合金から成る鋳造格子基板に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の負極板とし、次いで、これを化成処理し負極板とした。
化成処理は、上記の負極板をそれぞれ未化成の正極板と組み合わせ、タンク化成を行った。化成時の過充電電気量は、正極の理論容量の250%とした。化成終了後、水洗・乾燥を行い、負極板及び正極板とした。
実施例2
実施例1のアセチレンブラックの添加量を1.0重量部に変えた以外は、実施例1と同様にして負極板を製造した。
実施例3
実施例1のアセチレンブラックの添加量を2.0重量部に変えた以外は、実施例1と同様にして負極板を製造した。
実施例4
実施例1のアセチレンブラックの添加量を3.0重量部に変えた以外は、実施例1と同様にして負極板を製造した。
実施例5
実施例1のアセチレンブラックの添加量を3.5重量部に変えた以外は、実施例1と同様にして負極板を製造した。
実施例6
実施例1のアセチレンブラックをケッチェンブラックに変え、これを1.0重量部添加した以外は、実施例1と同様にして負極板を製造した。
実施例7
実施例1のアセチレンブラックをファーネスブラックに変え、これを1.0重量部添加した以外は、実施例1と同様にして負極板を製造した。
実施例8
実施例1のアセチレンブラックをグラファイトに変え、これを1.0重量部添加した以外は、実施例1と同様にして負極板を製造した。
実施例9
実施例1のアセチレンブラックを活性炭に変え、これを1.0重量部添加した以外は、実施例1と同様にして負極板を製造した。
比較例1
実施例1のアセチレンブラックの添加量0.5重量部を0.1重量部に変えた以外は、実施例1と同様にして負極板を製造した。
比較例2
実施例1のアセチレンブラックの添加量0.5重量部を4.0重量部に変えた以外は、実施例1と同様にして負極板を製造した。
An example of manufacturing a negative electrode plate constituting a part of the capacitor composite negative electrode plate of the present invention will be described in detail below together with a comparative example.
Example 1:
To 100 parts by weight of the negative electrode active material composed mainly of lead monoxide powder produced by the ball mill method, 0.5 parts by weight of acetylene black powder as carbon black was added and dry-mixed. At this time, the amount of barium sulfate powder was 1.5 times the amount of acetylene black added. Next, 0.2 parts by weight of lignin was added as an aqueous solution to the negative electrode active material, and further kneaded while adding ion exchange water, and further kneaded while adding dilute sulfuric acid having a specific gravity of 1.36 to obtain a negative electrode active material paste. The amount of ion-exchanged water used at this time was about 10 parts by weight with respect to 100 parts by weight of lead powder, and the amount of dilute sulfuric acid was 10 parts by weight. The amount of ion-exchanged water was adjusted so that the cup density of the completed negative electrode active material paste was about 135 g / 2 in 3 . The negative electrode active material paste thus produced was filled into a cast grid substrate made of a Pb-Ca-based alloy, aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to obtain an unformed negative electrode plate. Then, this was subjected to chemical conversion treatment to obtain a negative electrode plate.
In the chemical conversion treatment, the above-described negative electrode plate was combined with an unchemically formed positive electrode plate, and tank formation was performed. The amount of overcharge electricity during the formation was 250% of the theoretical capacity of the positive electrode. After the chemical conversion, water washing and drying were performed to obtain a negative electrode plate and a positive electrode plate.
Example 2
A negative electrode plate was produced in the same manner as in Example 1 except that the amount of acetylene black added in Example 1 was changed to 1.0 part by weight.
Example 3
A negative electrode plate was produced in the same manner as in Example 1 except that the amount of acetylene black added in Example 1 was changed to 2.0 parts by weight.
Example 4
A negative electrode plate was produced in the same manner as in Example 1 except that the amount of acetylene black added in Example 1 was changed to 3.0 parts by weight.
Example 5
A negative electrode plate was produced in the same manner as in Example 1 except that the amount of acetylene black added in Example 1 was changed to 3.5 parts by weight.
Example 6
A negative electrode plate was produced in the same manner as in Example 1, except that acetylene black in Example 1 was changed to ketjen black and 1.0 part by weight of this was added.
Example 7
A negative electrode plate was produced in the same manner as in Example 1 except that acetylene black in Example 1 was changed to furnace black and 1.0 part by weight of this was added.
Example 8
A negative electrode plate was produced in the same manner as in Example 1 except that the acetylene black of Example 1 was replaced with graphite and 1.0 part by weight thereof was added.
Example 9
A negative electrode plate was produced in the same manner as in Example 1 except that the acetylene black of Example 1 was replaced with activated carbon and 1.0 part by weight of this was added.
Comparative Example 1
A negative electrode plate was produced in the same manner as in Example 1 except that 0.5 part by weight of the acetylene black added in Example 1 was changed to 0.1 part by weight.
Comparative Example 2
A negative electrode plate was produced in the same manner as in Example 1 except that 0.5 part by weight of the acetylene black added in Example 1 was changed to 4.0 parts by weight.

尚、上記の未化成の正極板は、次のように製造したものを使用した。
即ち、一酸化鉛を主成分とする鉛粉から成る正極活物質100重量部にイオン交換水10重量部、続いて比重1.27の希硫酸10重量部を加えながら混練して正極用ペーストを製造した。このペーストのカップ密度は約140g/2in3であった。このペーストをPb-Ca系合金から成る鋳造格子基板に充填し、40℃、湿度95%の雰囲気で24時間熟成した後、乾燥して未化成の正極板とした。
In addition, the said unformed positive electrode plate used what was manufactured as follows.
That is, a positive electrode paste was manufactured by kneading while adding 10 parts by weight of ion-exchanged water and subsequently 10 parts by weight of dilute sulfuric acid having a specific gravity of 1.27 to 100 parts by weight of a positive electrode active material composed of lead powder mainly composed of lead monoxide. . Cup density of the paste was about 140 g / 2in 3. This paste was filled in a cast lattice substrate made of a Pb—Ca alloy, aged in an atmosphere of 40 ° C. and 95% humidity for 24 hours, and then dried to obtain an unformed positive electrode plate.

複合キャパシタ負極板の製造:
実施例1〜9の負極板及び比較例1及び2の負極板について、それぞれの負極板の耳を除く両表面全体に、下記表1に示す組成のカーボン合剤ペーストを乾燥重量換算で負極板に含有する活物質重量の8重量%を塗布した後、空気中60℃で1時間乾燥すると同時に鉛負極を酸化させた。かくして、各負極板の表面に気孔率75%を有するポーラスなカーボン合剤の被覆層が形成された複合キャパシタ負極板を製造した。
尚、比較例3の負極板については、その表面にポーラスなカーボン合剤の被覆層を形成しないものとした。
Manufacture of composite capacitor negative electrode plate:
About the negative electrode plates of Examples 1 to 9 and the negative electrode plates of Comparative Examples 1 and 2, the carbon plate paste having the composition shown in Table 1 below was applied to the entire surface excluding the ears of each negative electrode plate in terms of dry weight. After applying 8% by weight of the active material contained in the solution, it was dried in air at 60 ° C. for 1 hour, and at the same time the lead negative electrode was oxidized. Thus, a composite capacitor negative electrode plate was produced in which a porous carbon mixture coating layer having a porosity of 75% was formed on the surface of each negative electrode plate.
The negative electrode plate of Comparative Example 3 was not formed with a porous carbon mixture coating layer on its surface.

Figure 0005396216
Figure 0005396216

鉛蓄電池の製造:
上記のそれぞれの複合キャパシタ負極板と前記の正極板を、AGMセパレータを介し積層し、公知の制御弁式鉛蓄電池の組み立て方法と同様にして、正極容量規制で、5時間率容量が10Ahの2Vセルから成る制御弁式鉛蓄電池を組み立てた。尚、組立工程で、極板群の圧迫度は50KPaになるようにスペーサーを入れて調整した。次に、電解液として、硫酸アルミニウム・18水塩を30g/l溶解した比重1.30の硫酸水溶液を注入した。次に1Aで20時間充電を行い、その後セル電圧が1.75Vになるまで2Aで放電した。その後、再び1Aで15時間の充電と2Aでセル電圧1.75Vまで放電し、5時間率容量を測定したところ、その容量は10Ahであった。
Lead acid battery manufacturing:
Each composite capacitor negative electrode plate and the positive electrode plate are laminated via an AGM separator, and in the same manner as a known control valve type lead-acid battery assembly method, the positive capacity is regulated and the 5 hour rate capacity is 10 Ah 2V. A control valve type lead acid battery consisting of cells was assembled. In the assembly process, a spacer was inserted and adjusted so that the pressure of the electrode plate group was 50 KPa. Next, an aqueous sulfuric acid solution having a specific gravity of 1.30 in which 30 g / l of aluminum sulfate · 18 hydrate was dissolved was injected as an electrolytic solution. Next, the battery was charged at 1A for 20 hours, and then discharged at 2A until the cell voltage reached 1.75V. Thereafter, the battery was charged again at 1 A for 15 hours and discharged at 2 A to a cell voltage of 1.75 V. When the 5-hour rate capacity was measured, the capacity was 10 Ah.

鉛蓄電池のPSOCにおける急速充放電サイクル寿命試験:
次に上記のキャパシタ複合負極を具備した鉛蓄電池のそれぞれを用いて、HEVによる走行を模擬してPSOCで急速充放電を繰り返すことによるサイクル寿命試験を行った。同試験はセルを2Aで1時間放電してSOC 80%とした後、40℃の雰囲気中で50A・1秒放電と20A・1秒充電を500回繰り返した後、30A・1秒充電と休止・1秒を510回繰り返し、これを1サイクルとした。この試験を繰り返し、2Vセルの放電電圧が1.0Vに達した時点を寿命とした。それぞれの鉛蓄電池のサイクル寿命試験の結果を下記表2に示す。
Rapid charge / discharge cycle life test at PSOC of lead-acid battery:
Next, using each of the lead-acid batteries equipped with the capacitor composite negative electrode, a cycle life test was conducted by simulating running by HEV and repeating rapid charge and discharge with PSOC. In this test, the cell was discharged at 2A for 1 hour to make SOC 80%, then 50A, 1 second discharge and 20A, 1 second charge were repeated 500 times in an atmosphere of 40 ° C, and then 30A, 1 second charge and rest. -One second was repeated 510 times, and this was taken as one cycle. This test was repeated, and the time when the discharge voltage of the 2V cell reached 1.0 V was defined as the life. The results of the cycle life test of each lead-acid battery are shown in Table 2 below.

Figure 0005396216
Figure 0005396216

表2から明らかなように、負極活物質100重量部に対し、アセチレンブラックを0.5〜3.5重量部の範囲で含有する実施例1〜5の負極板の表面に上記のポーラスなカーボン合剤の被覆層を形成して成る複合キャパシタ負極板のそれぞれを具備した鉛蓄電池のPSOCにおける急速充放電サイクル寿命は、アセチレンブラックを0.5重量部未満含有する比較例1或いは3.5重量部を超えて含有する比較例2の負極板の表面に上記のカーボン合剤被覆層を形成して成る複合キャパシタ負極板を具備した鉛蓄電池のそれに比し著しく長くなり、0.5〜3.5重量部のうち、1〜3重量部において更に長寿命となることが分かる。
また、負極に含まれるカーボン材料の種類をケッチェンブラック、ファーネスブラック、グラファイト、活性炭のそれぞれについても、0.5〜3.5重量部の範囲でアセチレンブラックと同様に長寿命の鉛蓄電池が得られることを確認した。
尚又、表1に示すカーボン合剤ペーストを、乾燥重量換算で負極板に含有する活物質重量に対する塗布量を、前記の8重量%を15重量%と20重量%にそれぞれ変えて複合キャパシタ負極板をそれぞれ製造し、そのそれぞれを用い、上記と同様にして鉛蓄電池を組み立て、上記のPSOCにおける急速充放電サイクル寿命試験を行ったところ、15重量%塗布の場合は同サイクル寿命320回、20重量%塗布の場合は250回の結果となり、塗布量15重量%までが好ましいことが分かった。
更に、表1に示すカーボン合剤ペーストの組成成分を種々変えて比較試験したところ、結局、第1カーボン材料30〜70重量部、第2カーボン材料20〜60重量部、結着剤1〜20重量部、増粘剤0〜10重量部、短繊維補強剤0〜10重量部の範囲で上記のPSOCにおける急充放電寿命試験を行うときは、200回から300回の長寿命が得られることが分かった。
As is apparent from Table 2, the surface of the negative electrode plate of Examples 1 to 5 containing acetylene black in the range of 0.5 to 3.5 parts by weight with respect to 100 parts by weight of the negative electrode active material was coated with the above porous carbon mixture. The quick charge / discharge cycle life at PSOC of a lead storage battery comprising each of the composite capacitor negative electrode plates formed with layers is Comparative Example 1 containing less than 0.5 parts by weight of acetylene black or Comparative Example containing more than 3.5 parts by weight 2 is significantly longer than that of the lead-acid battery having the composite capacitor negative electrode plate formed by forming the carbon mixture coating layer on the surface of the negative electrode plate, and in 0.5 to 3.5 parts by weight in 1 to 3 parts by weight. Furthermore, it turns out that it becomes long life.
Also, confirm that long-life lead-acid batteries can be obtained in the same manner as acetylene black in the range of 0.5 to 3.5 parts by weight for each of the Ketjen Black, Furnace Black, Graphite, and Activated Carbon types of carbon materials contained in the negative electrode did.
In addition, the carbon mixture paste shown in Table 1 was applied to the weight of the active material contained in the negative electrode plate in terms of dry weight, and the composite capacitor negative electrode was changed from 8% by weight to 15% by weight and 20% by weight, respectively. Each plate was produced, and each was used to assemble a lead-acid battery in the same manner as described above, and a rapid charge / discharge cycle life test was performed in the above PSOC. In the case of application by weight%, the result was 250 times, and it was found that an application amount of up to 15% by weight was preferable.
Furthermore, when various composition components of the carbon mixture paste shown in Table 1 were changed and subjected to a comparative test, eventually, the first carbon material 30 to 70 parts by weight, the second carbon material 20 to 60 parts by weight, and the binder 1 to 20 When conducting the rapid charge / discharge life test in the above-mentioned PSOC in the range of parts by weight, thickener 0-10 parts by weight, short fiber reinforcement 0-10 parts by weight, a long life of 200 to 300 times should be obtained. I understood.

従来例:
従来の鉛蓄電池のPSOC状態における急速充放電サイクル寿命試験:
カーボン合剤の被覆層を欠いた負極板として、上記の実施例2の負極板を用い、前記段落0018に記載の鉛蓄電池の組立と同様にして2Vセルから成り、5時間率10Ahの鉛蓄電池を組み立て、該鉛蓄電池を前記段落0019に記載と同様にそのPSOCにおける急速充放電サイクル寿命試験を行った。その結果を表2に示す。これから明らかなように、負極板にカーボン合剤の被覆層を形成した複合キャパシタ負極板を負極として用いた本発明の鉛蓄電池とすることにより、PSOC状態における急速放電サイクル寿命が著しく向上することが分かる。
Conventional example:
Rapid charge / discharge cycle life test in PSOC state of conventional lead-acid batteries:
As the negative electrode plate lacking the coating layer of the carbon mixture, the negative electrode plate of Example 2 above was used, and the lead storage battery was composed of 2V cells in the same manner as the assembly of the lead storage battery described in paragraph 0018, and had a 5-hour rate of 10 Ah. The lead storage battery was subjected to a rapid charge / discharge cycle life test at PSOC as described in paragraph 0019 above. The results are shown in Table 2. As is apparent from the above, the rapid discharge cycle life in the PSOC state can be remarkably improved by using the composite capacitor negative electrode plate in which the coating layer of the carbon mixture is formed on the negative electrode plate as the negative electrode. I understand.

以上のように、本発明の鉛蓄電池は、従来の鉛蓄電池に比し、PSOCにおける急速充放電サイクル寿命性能が優れているので、エンジンのオンオフを繰り返すハイブリッド自動車や風車、PVなどの産業における利用価値は非常に大きい。   As described above, the lead-acid battery of the present invention has excellent rapid charge / discharge cycle life performance in PSOC compared to conventional lead-acid batteries, so it can be used in industries such as hybrid cars, windmills, and PV that repeatedly turn on and off the engine. The value is very great.

Claims (2)

負極活物質100重量部に対しカーボン材料を0.5重量部〜3.5重量部の範囲で含む負極の表面の少なくとも一部に、導電性を有する第1カーボン材料とキャパシタ容量及び/又は擬似キャパシタ容量を有する第2カーボン材料から成る2種類のカーボン材料と結着剤を含むポーラスな合剤の被覆層を形成して成ることを特徴とする複合キャパシタ負極を具備した鉛蓄電池。   At least part of the surface of the negative electrode containing the carbon material in the range of 0.5 to 3.5 parts by weight with respect to 100 parts by weight of the negative electrode active material has the first carbon material having conductivity and the capacitor capacity and / or the pseudo capacitor capacity. A lead-acid battery comprising a composite capacitor negative electrode, comprising a coating layer of a porous mixture containing two types of carbon materials composed of a second carbon material and a binder. 該負極に含まれるカーボン材料は、カーボンブラック、グラファイト及び活性炭から選択された少なくとも1種であることを特徴とする請求項1に記載の鉛蓄電池。   2. The lead acid battery according to claim 1, wherein the carbon material contained in the negative electrode is at least one selected from carbon black, graphite, and activated carbon.
JP2009219960A 2009-09-25 2009-09-25 Lead acid battery Active JP5396216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009219960A JP5396216B2 (en) 2009-09-25 2009-09-25 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219960A JP5396216B2 (en) 2009-09-25 2009-09-25 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2011070870A JP2011070870A (en) 2011-04-07
JP5396216B2 true JP5396216B2 (en) 2014-01-22

Family

ID=44015966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219960A Active JP5396216B2 (en) 2009-09-25 2009-09-25 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5396216B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637858B (en) * 2012-03-16 2015-01-14 天能电池集团有限公司 Microwave preparation method for carbon-coated lead powder composite for lead-carbon super batteries
US10411236B2 (en) * 2012-04-12 2019-09-10 Johns Manville Mat made of glass fibers or polyolefin fibers used as a separator in a lead-acid battery
JP6278756B2 (en) * 2014-03-07 2018-02-14 古河電気工業株式会社 Secondary battery identification device and secondary battery identification method
JP6115796B2 (en) * 2015-02-18 2017-04-19 株式会社Gsユアサ Lead acid battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092272B2 (en) * 2005-05-31 2012-12-05 新神戸電機株式会社 Lead-acid battery and method for producing lead-acid battery
JP4983304B2 (en) * 2007-02-26 2012-07-25 新神戸電機株式会社 Energy conversion device
JP5380659B2 (en) * 2009-04-23 2014-01-08 古河電池株式会社 Method for producing coated electrode plate and flat nozzle for producing coated electrode plate
JP5711483B2 (en) * 2009-08-27 2015-04-30 古河電池株式会社 Method for producing negative electrode plate of composite capacitor for lead storage battery and lead storage battery

Also Published As

Publication number Publication date
JP2011070870A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5092272B2 (en) Lead-acid battery and method for producing lead-acid battery
JP4983304B2 (en) Energy conversion device
JP4364460B2 (en) Negative electrode for lead acid battery
CN102064319B (en) Negative plate of lead acid super battery, production method and lead acid super battery assembled by negative plate
KR101730888B1 (en) Lead-acid battery and method for manufacturing a composite negative capacitor plate for use in a lead-acid battery
JP5680528B2 (en) Method for producing negative electrode plate for lead acid battery and lead acid battery
KR20100014606A (en) Optimised energy storage device
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP2012133959A (en) Composite capacitor negative electrode plate for lead storage battery, and lead storage battery
JP5016306B2 (en) Lead acid battery
JP2008098009A (en) Cathode plate for lead-acid battery
Hao et al. Review on the roles of carbon materials in lead-carbon batteries
JP4053272B2 (en) Negative electrode for lead acid battery
JPWO2016084858A1 (en) Lead acid battery
Vangapally et al. Lead-acid batteries and lead–carbon hybrid systems: A review
JP5396216B2 (en) Lead acid battery
JP2003036882A (en) Sealed type lead storage battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP2008243493A (en) Lead acid storage battery
JP5017746B2 (en) Control valve type lead acid battery
JP7010556B2 (en) Positive electrode plate and lead acid battery
JP6628070B2 (en) Manufacturing method of positive electrode plate for control valve type lead-acid battery
CN103606682A (en) Cathode paste for manufacturing cathode of nickel-metal hydride battery, cathode of nickel-metal hydride battery as well as nickel-metal hydride battery
JP2004327299A (en) Sealed lead-acid storage battery
CN107068983A (en) A kind of lead carbon battery, lead carbon battery negative plate and preparation method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5396216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150