JP7010556B2 - Positive electrode plate and lead acid battery - Google Patents

Positive electrode plate and lead acid battery Download PDF

Info

Publication number
JP7010556B2
JP7010556B2 JP2017219070A JP2017219070A JP7010556B2 JP 7010556 B2 JP7010556 B2 JP 7010556B2 JP 2017219070 A JP2017219070 A JP 2017219070A JP 2017219070 A JP2017219070 A JP 2017219070A JP 7010556 B2 JP7010556 B2 JP 7010556B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
pbo
electrode active
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017219070A
Other languages
Japanese (ja)
Other versions
JP2019091598A (en
Inventor
隆之 木村
敏夫 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017219070A priority Critical patent/JP7010556B2/en
Publication of JP2019091598A publication Critical patent/JP2019091598A/en
Application granted granted Critical
Publication of JP7010556B2 publication Critical patent/JP7010556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極板及び鉛蓄電池に関する。 The present invention relates to a positive electrode plate and a lead storage battery.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。近年では、炭酸ガス排出規制対策、低燃費化等を目的として、発電制御、信号待ち等の際にエンジンを停止するシステムを搭載したアイドリングストップシステム車(以下「ISS車」という)の検討が盛んに行われており、鉛蓄電池にもISS車用途に適した特性が求められている。 Lead-acid batteries are widely used in industry and are used, for example, in automobile batteries, backup power sources, and main power sources for electric vehicles. In recent years, for the purpose of measures against carbon dioxide emission regulations, fuel efficiency, etc., an idling stop system vehicle (hereinafter referred to as "ISS vehicle") equipped with a system that stops the engine when controlling power generation, waiting for a signal, etc. has been actively studied. Lead-acid batteries are also required to have characteristics suitable for ISS vehicle applications.

例えば、ISS車においては、鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用される。鉛蓄電池がPSOC下で使用される場合、完全充電状態で使用される場合よりも、鉛蓄電池の寿命が短くなる傾向にある。したがって、ISS車用の鉛蓄電池には、PSOC下で繰り返し使用された場合でも、寿命等の特性の低下を抑制できる(サイクル性能に優れる)ことが求められる。 For example, in an ISS vehicle, a lead-acid battery is used in a partially charged state called PSOC (Partial State Of Charge). When a lead-acid battery is used under PSOC, the life of the lead-acid battery tends to be shorter than when it is used in a fully charged state. Therefore, lead-acid batteries for ISS vehicles are required to be able to suppress deterioration of characteristics such as life (excellent in cycle performance) even when repeatedly used under PSOC.

これに対して、例えば特許文献1には、活物質比表面積が6m/g以上である正極板と、所定の材料が添加された負極板とを備える鉛蓄電池によって、PSOC下での使用における寿命(サイクル性能)を向上できることが開示されている。 On the other hand, for example, in Patent Document 1, a lead storage battery including a positive electrode plate having an active material specific surface area of 6 m 2 / g or more and a negative electrode plate to which a predetermined material is added is used under PSOC. It is disclosed that the life (cycle performance) can be improved.

国際公開第2011/108056号International Publication No. 2011/108056

しかし、鉛蓄電池のサイクル性能には、未だ改善の余地がある。そこで、本発明は、サイクル性能に優れる鉛蓄電池、及び該鉛蓄電池用の正極板を提供することを目的とする。 However, there is still room for improvement in the cycle performance of lead-acid batteries. Therefore, an object of the present invention is to provide a lead storage battery having excellent cycle performance and a positive electrode plate for the lead storage battery.

本発明の一側面は、正極集電体と、正極集電体に保持された正極活物質とを備え、正極活物質は、層状構造を有する炭素繊維を含む、鉛蓄電池用正極板である。 One aspect of the present invention is a positive electrode plate for a lead storage battery, comprising a positive electrode current collector and a positive electrode active material held by the positive electrode current collector, and the positive electrode active material contains carbon fibers having a layered structure.

炭素繊維は、カーボンナノチューブであってよい。正極活物質の比表面積は、7.0m/g以上であってよい。正極活物質は、PbOを含んでいてよく、正極活物質におけるα-PbO及びβ-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)が0.60以下であってよい。 The carbon fiber may be a carbon nanotube. The specific surface area of the positive electrode active material may be 7.0 m 2 / g or more. The positive electrode active material may contain PbO 2 , and the ratio of the peak intensities of the X-ray diffraction patterns of α-PbO 2 and β-PbO 2 in the positive electrode active material (α-PbO 2 / β-PbO 2 ) is 0. It may be 60 or less.

本発明の他の一側面は、上記の正極板を備える鉛蓄電池である。 Another aspect of the present invention is a lead-acid battery provided with the above-mentioned positive electrode plate.

本発明によれば、サイクル性能に優れる鉛蓄電池、及び該鉛蓄電池用の正極板を提供することができる。 According to the present invention, it is possible to provide a lead storage battery having excellent cycle performance and a positive electrode plate for the lead storage battery.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。It is a perspective view which shows the whole structure and the internal structure of the lead storage battery which concerns on one Embodiment. 図1に示した鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery shown in FIG.

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 FIG. 1 is a perspective view showing the overall configuration and internal structure of the lead storage battery according to the embodiment. As shown in FIG. 1, the lead-acid battery 1 includes an electric tank 2 having an open upper surface and a lid 3 for closing the opening of the electric tank 2. The battery case 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 for closing the liquid injection port provided in the lid 3.

電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。 Inside the battery case 2, an electrode group 7, a negative electrode column 8 connecting the electrode group 7 to the negative electrode terminal 4, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 5, dilute sulfuric acid, etc. Electrolyte and is stored.

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、負極板9と、正極板10と、負極板9と正極板10との間に配置されたセパレータ11と、を備えている。負極板9は、負極集電体(負極格子体)12と、負極集電体12に保持された負極活物質13と、を備えている。正極板10は、正極集電体(正極格子体)14と、正極集電体14に保持された正極活物質15と、を備えている。なお、本明細書では、化成後の負極板から負極集電体を除いたものを「負極活物質」、化成後の正極板から正極集電体を除いたものを「正極活物質」とそれぞれ定義する。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a negative electrode plate 9, a positive electrode plate 10, and a separator 11 arranged between the negative electrode plate 9 and the positive electrode plate 10. The negative electrode plate 9 includes a negative electrode current collector (negative electrode grid) 12 and a negative electrode active material 13 held by the negative electrode current collector 12. The positive electrode plate 10 includes a positive electrode current collector (positive electrode lattice body) 14 and a positive electrode active material 15 held by the positive electrode current collector 14. In the present specification, the negative electrode plate after chemical conversion from which the negative electrode current collector is removed is referred to as “negative electrode active material”, and the positive electrode plate after chemical conversion from which the positive electrode current collector is removed is referred to as “positive electrode active material”. Define.

電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。電極群7において、複数の負極板9における各負極集電体12が有する耳部12a同士は、負極側ストラップ16で集合溶接されている。同様に、複数の正極板10における各正極集電体14が有する耳部14a同士は、正極側ストラップ17で集合溶接されている。負極側ストラップ16及び正極側ストラップ17は、それぞれ、負極柱8及び正極柱を介して負極端子4及び正極端子5に接続されている。 The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately laminated in a direction substantially parallel to the opening surface of the electric tank 2 via a separator 11. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged so that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2. In the electrode group 7, the selvage portions 12a of the negative electrode current collectors 12 in the plurality of negative electrode plates 9 are collectively welded by the negative electrode side strap 16. Similarly, the selvage portions 14a of each of the positive electrode current collectors 14 in the plurality of positive electrode plates 10 are collectively welded by the positive electrode side strap 17. The negative electrode side strap 16 and the positive electrode side strap 17 are connected to the negative electrode terminal 4 and the positive electrode terminal 5 via the negative electrode column 8 and the positive electrode column, respectively.

セパレータ11は、例えば袋状に形成されており、負極板9を収容している。セパレータ11は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等で形成されている。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。 The separator 11 is formed in a bag shape, for example, and houses the negative electrode plate 9. The separator 11 is made of, for example, polyethylene (PE), polypropylene (PP), or the like. The separator 11 may be made by adhering inorganic particles such as SiO 2 and Al 2 O 3 to a woven fabric, a non-woven fabric, a porous membrane or the like formed of these materials.

負極集電体12及び正極集電体14は、それぞれ、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb-Sn-Ca系合金)であってよい。 The negative electrode current collector 12 and the positive electrode current collector 14 are each made of a lead alloy. The lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead, and specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn). -Ca-based alloy) may be used.

負極活物質13は、Pb成分として少なくともPbを含み、必要に応じて、Pb以外のPb成分(例えばPbSO)及び添加剤を更に含む。負極活物質13は、好ましくは、多孔質の海綿状鉛(Spongy Lead)を含む。 The negative electrode active material 13 contains at least Pb as a Pb component, and further contains a Pb component other than Pb (for example, PbSO 4 ) and an additive, if necessary. The negative electrode active material 13 preferably contains a porous spongy lead.

添加剤としては、例えば、スルホ基及び/又はスルホン酸塩基を有する樹脂、硫酸バリウム、炭素材料(炭素繊維を除く)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。 Additives include, for example, resins having sulfo groups and / or sulfonic acid bases, barium sulfate, carbon materials (excluding carbon fibers) and short reinforcing fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon). Fiber, etc.).

スルホ基及び/又はスルホン酸塩基を有する樹脂は、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種であってよい。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Resins having a sulfo group and / or a sulfonic acid base include lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and formaldehyde). It may be at least one selected from the group consisting of condensates). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.

負極活物質13は、負極集電体12に保持された負極活物質ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に、未化成の負極活物質を化成することで得ることができる。負極活物質ペーストは、例えば、鉛粉、添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。負極活物質ペーストは、例えば、鉛粉と添加剤とを混合することにより混合物を得た後に、この混合物に溶媒及び硫酸を加えて混練することにより得られる。 The negative electrode active material 13 can be obtained by aging and drying the negative electrode active material paste held in the negative electrode current collector 12 to obtain an unchemicald negative electrode active material, and then forming an unchemicald negative electrode active material. Can be done. The negative electrode active material paste contains, for example, lead powder, additives, solvent (eg water or organic solvent) and sulfuric acid (eg dilute sulfuric acid). The negative electrode active material paste is obtained, for example, by mixing a lead powder and an additive to obtain a mixture, and then adding a solvent and sulfuric acid to the mixture and kneading the mixture.

鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。 The lead powder is, for example, lead powder produced by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in a ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scaly metal lead). ).

熟成は、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間行われてよい。乾燥は、温度45~80℃で15~30時間行われてよい。 The aging may be carried out in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH% for 15 to 60 hours. Drying may be carried out at a temperature of 45 to 80 ° C. for 15 to 30 hours.

正極活物質15は、一実施形態において、Pb成分であるPbOと、層状構造を有する炭素繊維とを含む。正極活物質15は、必要に応じて、PbO以外のPb成分(例えばPbSO)及び添加剤を更に含んでいてよい。 In one embodiment, the positive electrode active material 15 contains PbO 2 , which is a Pb component, and carbon fibers having a layered structure. The positive electrode active material 15 may further contain a Pb component (for example, PbSO 4 ) other than PbO 2 and an additive, if necessary.

Pb成分の含有量は、低温高率放電性能及びサイクル性能が更に向上する観点から、正極活物質の全質量を基準として、好ましくは90質量%以上、より好ましくは95質量%以上である。Pb成分の含有量は、製造コストの低減及び軽量化の観点から、正極活物質の全質量を基準として、好ましくは99.9質量%以下、より好ましくは98質量%以下である。これらの観点から、Pb成分の含有量は、正極活物質の全質量を基準として、90~99.9質量%、95~99.9質量%、90~98質量%又は95~98質量%であってよい。 The content of the Pb component is preferably 90% by mass or more, more preferably 95% by mass or more, based on the total mass of the positive electrode active material, from the viewpoint of further improving the low temperature and high rate discharge performance and the cycle performance. The content of the Pb component is preferably 99.9% by mass or less, more preferably 98% by mass or less, based on the total mass of the positive electrode active material from the viewpoint of reducing the manufacturing cost and weight. From these viewpoints, the content of the Pb component is 90 to 99.9% by mass, 95 to 99.9% by mass, 90 to 98% by mass or 95 to 98% by mass based on the total mass of the positive electrode active material. It may be there.

正極活物質15は、好ましくは、Pb成分としてβ-PbOを含む。正極活物質15は、Pb成分として、α-PbOを更に含んでいてもよい。すなわち、正極活物質15は、一実施形態において、Pb成分としてβ-PbOのみを含んでいてよく、他の一実施形態において、Pb成分としてα-PbO及びβ-PbOを含んでいてよい。 The positive electrode active material 15 preferably contains β-PbO 2 as a Pb component. The positive electrode active material 15 may further contain α-PbO 2 as a Pb component. That is, the positive electrode active material 15 may contain only β-PbO 2 as a Pb component in one embodiment, and may contain α-PbO 2 and β-PbO 2 as Pb components in another embodiment. good.

正極活物質15におけるα-PbO及びβ-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)は、充電受入性能及び低温高率放電性能に優れる観点から、好ましくは0.60以下、より好ましくは0.50以下、更に好ましくは0.40以下、特に好ましくは0.30以下である。比率α-PbO/β-PbOは、サイクル性能に更に優れる観点から、好ましくは0.01以上、より好ましくは0.10以上、更に好ましくは0.25以上である。これらの観点から、比率α-PbO/β-PbOは、0.01~0.60、0.01~0.50、0.01~0.40、0.01~0.30、0.10~0.60、0.10~0.50、0.10~0.40、0.10~0.30、0.25~0.60、0.25~0.50、0.25~0.40、又は0.25~0.30であってよい。 The ratio of the peak intensity of the X-ray diffraction pattern of α-PbO 2 and β-PbO 2 in the positive electrode active material 15 (α-PbO 2 / β-PbO 2 ) is from the viewpoint of excellent charge acceptance performance and low-temperature high-rate discharge performance. It is preferably 0.60 or less, more preferably 0.50 or less, still more preferably 0.40 or less, and particularly preferably 0.30 or less. The ratio α-PbO 2 / β-PbO 2 is preferably 0.01 or more, more preferably 0.10 or more, still more preferably 0.25 or more, from the viewpoint of further excellent cycle performance. From these viewpoints, the ratio α-PbO 2 / β-PbO 2 is 0.01 to 0.60, 0.01 to 0.50, 0.01 to 0.40, 0.01 to 0.30, 0. .10 to 0.60, 0.10 to 0.50, 0.10 to 0.40, 0.10 to 0.30, 0.25 to 0.60, 0.25 to 0.50, 0.25 It may be ~ 0.40 or 0.25 ~ 0.30.

比率α-PbO/β-PbOは、化成後(満充電状態)の正極活物質15における比率である。比率α-PbO/β-PbOは、例えば、正極活物質15の製造時に用いる希硫酸の量、化成時の温度等により調整することができる。例えば、正極活物質15の製造時に用いる希硫酸の量を多くするほど比率α-PbO/β-PbOは低くなり、化成温度を高くするほど比率α-PbO/β-PbOは高くなる。 The ratio α-PbO 2 / β-PbO 2 is the ratio in the positive electrode active material 15 after chemical conversion (fully charged state). The ratio α-PbO 2 / β-PbO 2 can be adjusted, for example, by adjusting the amount of dilute sulfuric acid used in the production of the positive electrode active material 15, the temperature at the time of chemical conversion, and the like. For example, the larger the amount of dilute sulfuric acid used in the production of the positive electrode active material 15, the lower the ratio α-PbO 2 / β-PbO 2 , and the higher the chemical conversion temperature, the higher the ratio α-PbO 2 / β-PbO 2 . Become.

比率α-PbO/β-PbOは、正極活物質15の広角X線回折測定により算出される。正極活物質15の広角X線回折測定では、例えば、主な化合物としてα-PbO、β-PbO及びPbSOに由来するピークが検出される。α-PbO及びβ-PbOのそれぞれとして特定されるメインピーク強度(cps)を用いて、「α-PbOのメインピーク強度」/「β-PbOのメインピーク強度」の比率を比率α-PbO/β-PbOとして算出する。 The ratio α-PbO 2 / β-PbO 2 is calculated by wide-angle X-ray diffraction measurement of the positive electrode active material 15. In the wide-angle X-ray diffraction measurement of the positive electrode active material 15, for example, peaks derived from α-PbO 2 , β-PbO 2 and PbSO 4 are detected as the main compounds. Using the main peak intensity (cps) specified as α-PbO 2 and β-PbO 2 , the ratio of "main peak intensity of α-PbO 2 " / "main peak intensity of β-PbO 2 " Calculated as α-PbO 2 / β-PbO 2 .

広角X線回折測定は、例えば、以下のような方法で行う。
・測定装置:全自動多目的水平型X線回折装置 SmartLab(株式会社リガク製)
・X線源:Cu-Kα / 1.541862Å
・フィルター:Cu-Kβ
・出力:40kV、30mA
・スキャンモード:CONTINUOUS
・スキャン範囲:20.0000度~60.0000度
・ステップ幅:0.0200度
・スキャン軸:2θ/θ
・スキャンスピード:10.0000度/分
・試料ホルダー:ガラス製、深さ0.2mm
・試料作製方法:測定試料は、下記の手順により作製できる。まず、化成した電池を解体して正極板を取り出し水洗をした後、50℃で24時間乾燥する。次に、前記正極板の中央部から正極活物質を3g採取してすり潰す。
・算出方法:正極活物質の厚みが試料ホルダーの深さと同等になるように正極活物質を試料ホルダーに充填し、平滑な試料面を作製する。広角X線回折を測定し、回折角(2θ)と回折ピーク強度とのX線回折パターン(X線回折チャート)を得る。X線回折パターンにおいては、例えば、回折角度28.6度に位置するα-PbO、及び、回折角度25.3度に位置するβ-PbOが検出される。α-PbO(110面)及びβ-PbO(111面)のそれぞれとして特定されるピーク強度(cps)を用いて、「α-PbOのピーク強度」/「β-PbOのピーク強度」の比率を比率α-PbO/β-PbOとして算出する。
Wide-angle X-ray diffraction measurement is performed by, for example, the following method.
-Measuring device: Fully automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Co., Ltd.)
・ X-ray source: Cu-Kα / 1.541862Å
-Filter: Cu-Kβ
・ Output: 40kV, 30mA
-Scan mode: CONTINUOUS
・ Scan range: 20.0000 degrees to 60.000 degrees ・ Step width: 0.0200 degrees ・ Scan axis: 2θ / θ
・ Scan speed: 10.000 degrees / min ・ Sample holder: Made of glass, depth 0.2 mm
-Sample preparation method: The measurement sample can be prepared by the following procedure. First, the formed battery is disassembled, the positive electrode plate is taken out, washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode active material is collected from the central portion of the positive electrode plate and ground.
-Calculation method: Fill the sample holder with the positive electrode active material so that the thickness of the positive electrode active material is equal to the depth of the sample holder, and prepare a smooth sample surface. Wide-angle X-ray diffraction is measured, and an X-ray diffraction pattern (X-ray diffraction chart) of the diffraction angle (2θ) and the diffraction peak intensity is obtained. In the X-ray diffraction pattern, for example, α-PbO 2 located at a diffraction angle of 28.6 degrees and β-PbO 2 located at a diffraction angle of 25.3 degrees are detected. "Peak intensity of α-PbO 2 " / "Peak intensity of β-PbO 2 " using the peak intensities (cps) specified as α-PbO 2 (110 planes) and β-PbO 2 (111 planes) respectively. Is calculated as the ratio α-PbO 2 / β-PbO 2 .

層状構造を有する炭素繊維は、繊維状(細長形状)の炭素材料である。本明細書では、「層状構造を有する炭素繊維」における「炭素繊維」(繊維状(細長形状)の炭素材料)は、アスペクト比が100以上である炭素材料として定義される。当該アスペクト比は、炭素材料の走査型電子顕微鏡写真から算出される、炭素材料の最大長さと、当該最大長さを有する方向に垂直な方向における炭素材料の最小長さとの比(最大長さ/最小長さ)として定義される。 The carbon fiber having a layered structure is a fibrous (elongated shape) carbon material. In the present specification, "carbon fiber" (fibrous (elongated shape) carbon material) in "carbon fiber having a layered structure" is defined as a carbon material having an aspect ratio of 100 or more. The aspect ratio is the ratio (maximum length /) of the maximum length of the carbon material to the minimum length of the carbon material in the direction perpendicular to the direction having the maximum length, which is calculated from the scanning electron micrograph of the carbon material. Minimum length).

層状構造を有する炭素繊維は、層状構造として、例えば、炭素繊維の長手方向に垂直な断面をみたときに、複数の炭素原子で構成された1又は2以上の層を有している。層状構造を有する炭素繊維は、例えば、複数の炭素原子で構成された筒状の層を1又は2以上有している。層状構造を有する炭素繊維は、耐酸化性に更に優れる観点から、好ましくは2以上の層を有する多層構造の炭素繊維である。層状構造を有する炭素繊維は、長手方向に貫通する中空部を有する中空筒状であってよい。炭素繊維が層状構造を有していることは、例えば、粉末X線回折法によって、回折プロファイルから積層(格子面)間隔を求めることによって確認することができる。層状構造を有する炭素繊維は、特に限定されないが、例えばカーボンナノチューブであってよい。 The carbon fiber having a layered structure has one or more layers composed of a plurality of carbon atoms as the layered structure, for example, when the cross section perpendicular to the longitudinal direction of the carbon fiber is viewed. The carbon fiber having a layered structure has, for example, one or two or more tubular layers composed of a plurality of carbon atoms. The carbon fiber having a layered structure is preferably a carbon fiber having a multi-layer structure having two or more layers from the viewpoint of further excellent oxidation resistance. The carbon fiber having a layered structure may be in the shape of a hollow cylinder having a hollow portion penetrating in the longitudinal direction. It can be confirmed that the carbon fibers have a layered structure, for example, by obtaining the lamination (lattice surface) spacing from the diffraction profile by powder X-ray diffraction method. The carbon fiber having a layered structure is not particularly limited, but may be, for example, a carbon nanotube.

鉛蓄電池1では、正極活物質15がこのような層状構造を有する炭素繊維を含んでいることにより、優れたサイクル性能が得られる。その理由として、炭素材料が、繊維状であることにより、正極活物質15中のPb成分(PbO、PbSO等)同士をつなぎとめて正極活物質15の泥状化を抑制すると共に、層状構造を有していることにより、正極活物質15の耐酸化性を向上させるためである、と本発明者らは推察している。 In the lead storage battery 1, excellent cycle performance can be obtained because the positive electrode active material 15 contains carbon fibers having such a layered structure. The reason is that since the carbon material is fibrous, the Pb components (PbO 2 , PbSO 4 , etc.) in the positive electrode active material 15 are connected to each other to suppress the muddy formation of the positive electrode active material 15 and have a layered structure. The present inventors presume that this is to improve the oxidation resistance of the positive electrode active material 15.

層状構造を有する炭素繊維の含有量は、電気伝導性を更に好適に付与し、Pb成分(PbO、PbSO等)同士を更に良好に結合させる観点から、正極活物質の全質量を基準として、好ましくは0.02質量%以上、より好ましくは0.1質量%以上、更に好ましくは1.5質量%以上である。層状構造を有する炭素繊維の含有量は、電解液の減液量を抑制する観点から、正極活物質の全質量を基準として、好ましくは3.0質量%以下、より好ましくは1.0質量%以下、更に好ましくは0.5質量%以下である。 The content of the carbon fiber having a layered structure is based on the total mass of the positive electrode active material from the viewpoint of more preferably imparting electrical conductivity and better binding Pb components (PbO 2 , PbSO 4 , etc.) to each other. It is preferably 0.02% by mass or more, more preferably 0.1% by mass or more, and further preferably 1.5% by mass or more. The content of the carbon fiber having a layered structure is preferably 3.0% by mass or less, more preferably 1.0% by mass, based on the total mass of the positive electrode active material from the viewpoint of suppressing the amount of reduction of the electrolytic solution. Hereinafter, it is more preferably 0.5% by mass or less.

添加剤としては、例えば、炭素材料(層状構造を有する炭素繊維を除く。)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等。層状構造を有する炭素繊維を除く。)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive include carbon materials (excluding carbon fibers having a layered structure) and short reinforcing fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, etc. Excluding carbon fibers having a layered structure). Can be mentioned. Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.

以上のような正極活物質15の比表面積は、充電受入性能及び低温高率放電性能に優れる観点から、好ましくは7.0m/g以上、より好ましくは9.0m/g以上、更に好ましくは12.0m/g以上である。正極活物質15の比表面積は、サイクル性能に更に優れる観点から、好ましくは20.0m/g以下、より好ましくは15.0m/g以下、より好ましくは10.0m/g以下である。これらの観点から、正極活物質15の比表面積は、7.0~20.0m/g、7.0~15.0m/g、7.0~10.0m/g、9.0~20.0m/g、9.0~15.0m/g、9.0~10.0m/g、12.0~20.0m/g、又は12.0~15.0m/gであってもよい。 The specific surface area of the positive electrode active material 15 as described above is preferably 7.0 m 2 / g or more, more preferably 9.0 m 2 / g or more, still more preferably, from the viewpoint of excellent charge acceptance performance and low temperature high rate discharge performance. Is 12.0 m 2 / g or more. The specific surface area of the positive electrode active material 15 is preferably 20.0 m 2 / g or less, more preferably 15.0 m 2 / g or less, and more preferably 10.0 m 2 / g or less from the viewpoint of further excellent cycle performance. .. From these viewpoints, the specific surface areas of the positive electrode active material 15 are 7.0 to 20.0 m 2 / g, 7.0 to 15.0 m 2 / g, 7.0 to 10.0 m 2 / g, 9.0. ~ 20.0m 2 / g, 9.0 ~ 15.0m 2 / g, 9.0 ~ 10.0m 2 / g, 12.0 ~ 20.0m 2 / g, or 12.0-15.0m 2 It may be / g.

正極活物質の比表面積は、化成後(満充電状態)の正極活物質の比表面積であり、BET法により測定される。BET法は、一つの分子の大きさが既知の不活性ガス(例えば窒素ガス)を測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積の一般的な測定手法である。正極活物質の比表面積は、例えば、後述する正極活物質ペーストを作製する際の硫酸及び水の添加量を調整する方法、未化成の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。 The specific surface area of the positive electrode active material is the specific surface area of the positive electrode active material after chemical conversion (fully charged state), and is measured by the BET method. The BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorbed amount and the occupied area of the inert gas. This is a general method for measuring surface area. The specific surface area of the positive electrode active material is, for example, a method of adjusting the amount of sulfuric acid and water added when producing a positive electrode active material paste, which will be described later, a method of refining the active material at the unchemical stage, and changing the chemical conditions. It can be adjusted by a method or the like.

正極活物質15は、正極集電体14に保持された正極活物質ペーストを、負極活物質作製時と同様の条件で熟成及び乾燥することにより未化成の正極活物質を得た後に、未化成の正極活物質を化成することで得ることができる。正極活物質ペーストは、例えば、負極活物質ペーストに用いられるものと同様の鉛粉、層状構造を有する炭素繊維、必要に応じて添加される添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。正極活物質ペーストは、化成時間を短縮できる観点から、鉛丹(Pb)を更に含んでいてもよい。 The positive electrode active material 15 is obtained by aging and drying the positive electrode active material paste held in the positive electrode current collector 14 under the same conditions as at the time of producing the negative electrode active material to obtain an unchemicald positive electrode active material, and then unchemicalized. It can be obtained by forming the positive electrode active material of. The positive electrode active material paste may be, for example, lead powder similar to that used for the negative electrode active material paste, carbon fibers having a layered structure, additives added as necessary, a solvent (for example, water or an organic solvent) and sulfuric acid (for example, water or organic solvent). For example, dilute sulfuric acid) is contained. The positive electrode active material paste may further contain lead tan (Pb 3 O 4 ) from the viewpoint of shortening the chemical formation time.

以上説明した鉛蓄電池1は、例えば、電極板(負極板及び正極板)を得る電極板製造工程と、電極板を含む構成部材を組み立てて鉛蓄電池1を得る組立工程とを備える製造方法により製造される。 The lead-acid battery 1 described above is manufactured by, for example, a manufacturing method including an electrode plate manufacturing process for obtaining an electrode plate (negative electrode plate and a positive electrode plate) and an assembly step for assembling components including the electrode plate to obtain a lead-acid battery 1. Will be done.

電極板製造工程では、例えば、負極集電体12に負極活物質ペーストを保持させた後に、上述した条件で熟成及び乾燥することにより未化成の負極板9を得ると共に、正極集電体14に正極活物質ペーストを保持させた後に、上述した条件で熟成及び乾燥することにより未化成の正極板10を得る。 In the electrode plate manufacturing process, for example, the negative electrode current collector 12 holds the negative electrode active material paste, and then the negative electrode plate 9 is obtained by aging and drying under the above-mentioned conditions, and the positive electrode current collector 14 is formed. After retaining the positive electrode active material paste, the unchemicald positive electrode plate 10 is obtained by aging and drying under the above-mentioned conditions.

組立工程では、例えば、得られた負極板及び正極板を、セパレータ11を介して積層し、同極性の電極板の集電部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の鉛蓄電池を作製する。次に、未化成の鉛蓄電池に希硫酸を入れて、直流電流を通電して電槽化成する。続いて、化成後の硫酸の比重(20℃)を適切な電解液の比重に調整することで、鉛蓄電池1が得られる。化成に用いる硫酸の比重(20℃)は、1.15~1.25であってよい。化成後の硫酸の比重(20℃)は、好ましくは1.25~1.33、より好ましくは1.26~1.30である。化成条件及び硫酸の比重は、電極板のサイズに応じて調整することができる。化成処理は、組立工程において実施されてもよく、電極板製造工程において実施されてもよい(タンク化成)。 In the assembly step, for example, the obtained negative electrode plates and positive electrode plates are laminated via the separator 11 and the current collecting portions of the electrode plates having the same polarity are welded with a strap to obtain an electrode group. This group of electrodes is arranged in an electric tank to manufacture an unchemical lead-acid battery. Next, dilute sulfuric acid is put into a non-chemical lead-acid battery, and a direct current is applied to form an electric tank. Subsequently, the lead storage battery 1 can be obtained by adjusting the specific gravity (20 ° C.) of the sulfuric acid after chemical conversion to an appropriate specific density of the electrolytic solution. The specific gravity (20 ° C.) of sulfuric acid used for chemical formation may be 1.15 to 1.25. The specific gravity (20 ° C.) of sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30. The chemical conversion conditions and the specific density of sulfuric acid can be adjusted according to the size of the electrode plate. The chemical conversion treatment may be carried out in the assembly process or in the electrode plate manufacturing process (tank chemical conversion).

以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.

<実施例1>
(正極板の作製)
鉛粉100質量部に対して、カーボンナノチューブ(多層構造の炭素繊維、Sigma-Aldrich社製、商品名:SWeNTSMW 200)0.2質量部を加えて乾式混合した。次に、鉛粉及びカーボンナノチューブからなる混合物100質量部に対して、水3質量部を加えると共に、希硫酸(比重1.28)9質量部を段階的に加え、1時間混練して正極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式正極集電体に、正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を得た。
<Example 1>
(Manufacturing of positive electrode plate)
To 100 parts by mass of lead powder, 0.2 parts by mass of carbon nanotubes (multi-walled carbon fiber, manufactured by Sigma-Aldrich, trade name: SWeNTSMW 200) were added and dry-mixed. Next, 3 parts by mass of water was added to 100 parts by mass of the mixture composed of lead powder and carbon nanotubes, and 9 parts by mass of dilute sulfuric acid (specific gravity 1.28) was added stepwise and kneaded for 1 hour to activate the positive electrode. A material paste was made. An expanded positive electrode current collector produced by expanding a rolled sheet made of a lead alloy was filled with a positive electrode active material paste and then aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried at a temperature of 50 degreeC for 16 hours to obtain an unchemical positive electrode plate.

(負極板の作製)
鉛粉100質量部に対して、ビスパーズP215(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、商品名、日本製紙株式会社製)0.2質量部(樹脂固形分)、アクリル繊維0.1質量部、硫酸バリウム1.0質量部、及びファーネスブラック0.2質量部の混合物を添加し、乾式混合した。次に、この混合物に水を加えて混練した後、比重1.280の希硫酸を少量ずつ添加しながら更に混練して、負極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式負極集電体に、この負極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の負極板を得た。
(Manufacturing of negative electrode plate)
Vispers P215 (condensed product of bisphenol, aminobenzenesulfonic acid and formaldehyde, trade name, manufactured by Nippon Paper Co., Ltd.) 0.2 parts by mass (resin solid content), 0.1 part by mass of acrylic fiber with respect to 100 parts by mass of lead powder. A mixture of parts by mass, 1.0 part by mass of barium sulfate, and 0.2 parts by mass of furnace black was added and mixed dry. Next, water was added to this mixture and kneaded, and then the mixture was further kneaded while adding dilute sulfuric acid having a specific gravity of 1.280 little by little to prepare a negative electrode active material paste. An expanded negative electrode current collector produced by expanding a rolled sheet made of a lead alloy was filled with this negative electrode active material paste and then aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried at a temperature of 50 degreeC for 16 hours to obtain an unchemical negative electrode plate.

(鉛蓄電池の組み立て)
袋状に加工したポリエチレン製のセパレータに、未化成の負極板を挿入した。次に、未化成の正極板7枚と、袋状セパレータに挿入された未化成の負極板8枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極板の耳部同士を溶接して電極群を作製した。電極群を電槽に挿入して2V単セル電池(JIS D 5301規定のD23サイズの単セルに相当)を組み立てた。その後、比重1.240の硫酸を注入し、40℃の水槽に入れて1時間静置した。その後、17Aにて18時間の定電流で化成を行った。なお、化成後の電解液(硫酸溶液)の比重を1.29(20℃)に調整した。
(Assembly of lead-acid battery)
An unchemical negative electrode plate was inserted into a polyethylene separator processed into a bag shape. Next, seven unchemical positive electrode plates and eight unchemical negative electrode plates inserted into the bag-shaped separator were alternately laminated. Subsequently, the ears of the electrode plates having the same polarity were welded to each other by a cast-on-strap (COS) method to prepare an electrode group. The electrode group was inserted into the battery case to assemble a 2V single cell battery (corresponding to a D23 size single cell specified in JIS D 5301). Then, sulfuric acid having a specific density of 1.240 was injected, and the mixture was placed in a water tank at 40 ° C. and allowed to stand for 1 hour. Then, chemical conversion was carried out at 17 A with a constant current for 18 hours. The specific gravity of the electrolytic solution (sulfuric acid solution) after chemical conversion was adjusted to 1.29 (20 ° C.).

(X線回折パターンのピーク強度に基づく比率α-PbO/β-PbOの測定)
測定試料は、下記の手順により作製した。まず、上記の手順で化成した電池を解体して、一つの電極群を取り出した。次に、取り出した電極群から全ての正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、正極板の中央部から正極活物質を3g採取してすり潰した。続いて、正極活物質の厚みが試料ホルダーの深さと同等になるように正極活物質を試料ホルダーに充填して平滑な試料面を作製した後、比率α-PbO/β-PbOの測定を行った。比率α-PbO/β-PbOは電極群から取り出した全ての正極板について算出した比率α-PbO/β-PbOの平均値とした。比率α-PbO/β-PbOの測定条件を下記に示す。
(Measurement of ratio α-PbO 2 / β-PbO 2 based on peak intensity of X-ray diffraction pattern)
The measurement sample was prepared by the following procedure. First, the battery formed by the above procedure was disassembled, and one electrode group was taken out. Next, all the positive electrode plates were taken out from the taken-out electrode group, washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode active material was collected from the central portion of the positive electrode plate and ground. Subsequently, the sample holder is filled with the positive electrode active material so that the thickness of the positive electrode active material is equal to the depth of the sample holder to prepare a smooth sample surface, and then the ratio α-PbO 2 / β-PbO 2 is measured. Was done. The ratio α-PbO 2 / β-PbO 2 was taken as the average value of the ratio α-PbO 2 / β-PbO 2 calculated for all the positive electrode plates taken out from the electrode group. The measurement conditions for the ratio α-PbO 2 / β-PbO 2 are shown below.

[比率α-PbO/β-PbOの測定条件]
・測定装置:全自動多目的水平型X線回折装置 SmartLab(株式会社リガク製)
・X線源:Cu-Kα / 1.541862Å
・フィルター:Cu-Kβ
・出力:40kV、30mA
・スキャンモード:CONTINUOUS
・スキャン範囲:20.0000度~60.0000度
・ステップ幅:0.0200度
・スキャン軸:2θ/θ
・スキャンスピード:10.0000度/分
・試料ホルダー:ガラス製、深さ0.2mm
・算出方法:作製した試料(正極活物質)3gを用いて広角X線回折を測定した結果、得られた回折角(2θ)と回折ピーク強度のX線回折チャートから、回折角度28.6度に位置するα-PbO、及び、回折角度25.3度に位置するβ-PbOが検出された。α-PbO(110面)及びβ-PbO(111面)それぞれの化合物として特定される波形のピーク強度(cps)を用いて、「α-PbOのピーク強度」/「β-PbOのピーク強度」の比率を比率α-PbO/β-PbOとして算出した。
[Measurement conditions for ratio α-PbO 2 / β-PbO 2 ]
-Measuring device: Fully automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Co., Ltd.)
・ X-ray source: Cu-Kα / 1.541862Å
-Filter: Cu-Kβ
・ Output: 40kV, 30mA
-Scan mode: CONTINUOUS
・ Scan range: 20.0000 degrees to 60.000 degrees ・ Step width: 0.0200 degrees ・ Scan axis: 2θ / θ
・ Scan speed: 10.000 degrees / min ・ Sample holder: Made of glass, depth 0.2 mm
-Calculation method: As a result of measuring wide-angle X-ray diffraction using 3 g of the prepared sample (positive electrode active material), the diffraction angle is 28.6 degrees from the X-ray diffraction chart of the diffraction angle (2θ) and the diffraction peak intensity obtained. Α-PbO 2 located at and β-PbO 2 located at a diffraction angle of 25.3 degrees were detected. "Peak intensity of α-PbO 2 " / "β-PbO 2 " using the peak intensity (cps) of the waveform specified as a compound of α-PbO 2 (110 planes) and β-PbO 2 (111 planes) respectively. The ratio of "peak intensity of" was calculated as the ratio α-PbO 2 / β-PbO 2 .

(正極活物質の比表面積の測定)
比表面積の測定試料は、下記の手順により作製した。まず、上記の手順で化成した電池を解体して、一つの電極群を取り出した。次に、取り出した電極群から全ての正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、正極板の中央部から正極活物質を2g採取して、130℃で30分乾燥して測定試料を作製した。
(Measurement of specific surface area of positive electrode active material)
A sample for measuring the specific surface area was prepared by the following procedure. First, the battery formed by the above procedure was disassembled, and one electrode group was taken out. Next, all the positive electrode plates were taken out from the taken-out electrode group, washed with water, and then dried at 50 ° C. for 24 hours. Next, 2 g of the positive electrode active material was collected from the central portion of the positive electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.

上記のとおり作製した測定試料を液体窒素で冷却しながら、液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って正極活物質の比表面積を算出した。正極活物質の比表面積は、電極群から取り出した全ての正極板について算出した正極活物質の比表面積の平均値とした。測定条件を下記に示す。 While cooling the measurement sample prepared as described above with liquid nitrogen, the amount of nitrogen gas adsorbed was measured by a multi-point method at the liquid nitrogen temperature, and the specific surface area of the positive electrode active material was calculated according to the BET method. The specific surface area of the positive electrode active material was the average value of the specific surface areas of the positive electrode active material calculated for all the positive electrode plates taken out from the electrode group. The measurement conditions are shown below.

[比表面積の測定条件]
・装置:Macsorb1201(株式会社マウンテック製)
・脱気時間:130℃で10分
・冷却:液体窒素で5分間
・吸着ガス流量:25mL/分
[Measurement conditions for specific surface area]
-Device: Macsorb1201 (manufactured by Mountech Co., Ltd.)
・ Degassing time: 10 minutes at 130 ° C ・ Cooling: 5 minutes with liquid nitrogen ・ Adsorbed gas flow rate: 25 mL / min

<比較例1>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
<Comparative Example 1>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 1 except that carbon nanotubes were not used when preparing the positive electrode active material paste.

<実施例2>
正極活物質ペースト作製時に用いる希硫酸を、希硫酸(比重1.28)11質量部に変更し、化成時に注入する硫酸の比重を1.235に変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 2>
The same as in Example 1 except that the dilute sulfuric acid used for producing the positive electrode active material paste was changed to 11 parts by mass of dilute sulfuric acid (specific gravity 1.28) and the specific gravity of the sulfuric acid injected at the time of chemical conversion was changed to 1.235. , A lead-acid battery was prepared and each measurement was performed.

<比較例2>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例2と同様にして、鉛蓄電池の作製及び各測定を行った。
<Comparative Example 2>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 2 except that carbon nanotubes were not used when preparing the positive electrode active material paste.

<実施例3>
正極活物質ペースト作製時に、水の配合量を12質量部に、用いる希硫酸を希硫酸(比重1.28)15質量部に、化成時に注入する硫酸の比重を1.230にそれぞれ変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 3>
Except for changing the blending amount of water to 12 parts by mass, the dilute sulfuric acid to be used to 15 parts by mass of dilute sulfuric acid (specific gravity 1.28), and the specific gravity of sulfuric acid to be injected at the time of chemical conversion to 1.230 when preparing the positive electrode active material paste. Made a lead-acid battery and measured each of them in the same manner as in Example 1.

<比較例3>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例3と同様にして、鉛蓄電池の作製及び各測定を行った。
<Comparative Example 3>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 3 except that carbon nanotubes were not used when preparing the positive electrode active material paste.

<実施例4>
化成時に注入する硫酸の比重を1.200に、硫酸注入後の静置時間を5時間にそれぞれ変更した以外は、実施例3と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 4>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 3 except that the specific gravity of the sulfuric acid to be injected at the time of chemical conversion was changed to 1.200 and the standing time after the injection of sulfuric acid was changed to 5 hours.

<比較例4>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例4と同様にして、鉛蓄電池の作製及び各測定を行った。
<Comparative Example 4>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 4 except that carbon nanotubes were not used when preparing the positive electrode active material paste.

<実施例5>
正極活物質ペースト作製時に、水の配合量を9質量部に、用いる希硫酸を希硫酸(比重1.34)25質量部に、化成時に注入する硫酸の比重を1.200にそれぞれ変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 5>
Except for changing the blending amount of water to 9 parts by mass, the dilute sulfuric acid to be used to 25 parts by mass of dilute sulfuric acid (specific gravity 1.34), and the specific gravity of sulfuric acid to be injected during chemical conversion to 1.200 when preparing the positive electrode active material paste. Made a lead-acid battery and measured each of them in the same manner as in Example 1.

<比較例5>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例5と同様にして、鉛蓄電池の作製及び各測定を行った。
<Comparative Example 5>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 5 except that carbon nanotubes were not used when preparing the positive electrode active material paste.

<実施例6>
硫酸注入後の静置時間を5時間に変更した以外は、実施例3と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 6>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 3 except that the standing time after the injection of sulfuric acid was changed to 5 hours.

<実施例7>
化成時の水槽温度を45℃に変更した以外は、実施例5と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 7>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 5 except that the water tank temperature at the time of chemical conversion was changed to 45 ° C.

<実施例8>
正極活物質ペースト作製時に、水の配合量を11質量部に、用いる希硫酸を希硫酸(比重1.55)23質量部に、化成時に注入する硫酸の比重を1.185にそれぞれ変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 8>
Except for changing the blending amount of water to 11 parts by mass, the dilute sulfuric acid to be used to 23 parts by mass of dilute sulfuric acid (specific gravity 1.55), and the specific gravity of sulfuric acid to be injected during chemical conversion to 1.185 when preparing the positive electrode active material paste. Made a lead-acid battery and measured each of them in the same manner as in Example 1.

<実施例9>
正極活物質ペースト作製時に、水の配合量を3質量部に、用いる希硫酸を希硫酸(比重1.55)30質量部に、化成時に注入する硫酸の比重を1.170にそれぞれ変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 9>
Except for changing the amount of water to be added to 3 parts by mass, the dilute sulfuric acid to be used to 30 parts by mass of dilute sulfuric acid (specific gravity 1.55), and the specific gravity of sulfuric acid to be injected during chemical conversion to 1.170 when preparing the positive electrode active material paste. Made a lead-acid battery and measured each of them in the same manner as in Example 1.

各実施例及び比較例の鉛蓄電池の性能を以下のとおり評価した。
(充電受入性能)
作製した鉛蓄電池について、化成後、約12時間放置した後、25℃で10.4Aの電流値で30分間定電流放電を行い、さらに、6時間放置した後、2.33Vで100Aの制限電流として60秒間の定電圧充電を行い、その開始から5秒目までの電流値を測定し、正極活物質の単位質量あたりの電流値(「電流値」/「正極活物質の含有量(g)」)を算出した。比較例1の測定結果(正極活物質の単位質量あたりの電流値)を100として相対評価した。
The performance of the lead-acid batteries of each Example and Comparative Example was evaluated as follows.
(Charge acceptance performance)
The produced lead storage battery was left for about 12 hours after chemical conversion, then subjected to constant current discharge at 25 ° C. at a current value of 10.4 A for 30 minutes, and after being left for 6 hours, a current limit of 100 A at 2.33 V. The constant voltage charge is performed for 60 seconds, the current value from the start to the 5th second is measured, and the current value per unit mass of the positive electrode active material (“current value” / “content of positive electrode active material (g)). ") Was calculated. The measurement result of Comparative Example 1 (current value per unit mass of the positive electrode active material) was set as 100 for relative evaluation.

(低温高率放電性能)
作製した鉛蓄電池の電池温度を-15℃に調整した後、300Aで定電流放電を行い、セル電圧が1.0Vを下回るまでの放電持続時間を測定し、正極活物質の単位質量あたりの放電持続時間(「放電持続時間」/「正極活物質の含有量(g)」)を算出した。低温高率放電性能は、比較例1の測定結果(正極活物質の単位質量あたりの放電持続時間)を100として相対評価した。
(Low temperature and high rate discharge performance)
After adjusting the battery temperature of the manufactured lead-acid battery to -15 ° C, constant current discharge is performed at 300 A, the discharge duration until the cell voltage falls below 1.0 V is measured, and the discharge per unit mass of the positive electrode active material is performed. The duration (“discharge duration” / “content of positive electrode active material (g)”) was calculated. The low temperature and high rate discharge performance was relatively evaluated with the measurement result of Comparative Example 1 (discharge duration per unit mass of the positive electrode active material) as 100.

(サイクル性能)
作製した鉛蓄電池について、電池温度が25℃になるように雰囲気温度を調整し、45A-59秒間の定電流放電及び300A-1秒間の定電流放電を行った後に制限電流100A-2.33V-60秒間の定電流・定電圧充電を行う操作を1サイクルとする試験を行った。この試験は、ISS車での鉛蓄電池の使われ方を模擬したサイクル試験である。このサイクル試験では、放電量に対して充電量が少ないため、充電が完全に行われないと徐々に充電不足になり、その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。すなわち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。このサイクル試験では、300A放電時の1秒目電圧を測定し、1.2Vを下回ったときのサイクル数を求め、正極活物質の単位質量あたりのサイクル数(「1.2Vを下回ったときのサイクル数」/「正極活物質の含有量(g)」)を求めた。サイクル性能は、比較例1の測定結果(正極活物質の単位質量あたりのサイクル数)を100として相対評価した。
(Cycle performance)
For the produced lead-acid battery, the ambient temperature was adjusted so that the battery temperature became 25 ° C., and after performing constant current discharge for 45A-59 seconds and constant current discharge for 300A-1 second, the current limit current was 100A-2.33V-. A test was conducted in which the operation of performing constant current / constant voltage charging for 60 seconds was one cycle. This test is a cycle test that simulates how lead-acid batteries are used in ISS vehicles. In this cycle test, since the charge amount is small with respect to the discharge amount, if the charge is not completely performed, the charge gradually becomes insufficient, and as a result, the voltage at the first second when the discharge current is set to 300 A and the discharge is performed for 1 second. It gradually decreases. That is, if the negative electrode is polarized during constant current / constant voltage charging and switches to constant voltage charging at an early stage, the charging current is attenuated and charging becomes insufficient. In this cycle test, the voltage at the first second when discharged at 300 A is measured, the number of cycles when the voltage drops below 1.2 V is determined, and the number of cycles per unit mass of the positive electrode active material (“when the voltage drops below 1.2 V”). The number of cycles ”/“ content of positive electrode active material (g) ”) was determined. The cycle performance was relatively evaluated with the measurement result of Comparative Example 1 (the number of cycles per unit mass of the positive electrode active material) as 100.

各実施例及び比較例における正極活物質の特性及び鉛蓄電池の性能を表1に示す。

Figure 0007010556000001
Table 1 shows the characteristics of the positive electrode active material and the performance of the lead storage battery in each Example and Comparative Example.
Figure 0007010556000001

1…鉛蓄電池、9…負極板、10…正極板、11…セパレータ、12…負極集電体、13…負極活物質、14…正極集電体、15…正極活物質。 1 ... Lead-acid battery, 9 ... Negative electrode plate, 10 ... Positive electrode plate, 11 ... Separator, 12 ... Negative electrode current collector, 13 ... Negative electrode active material, 14 ... Positive electrode current collector, 15 ... Positive electrode active material.

Claims (5)

正極集電体と、前記正極集電体に保持された正極活物質とを備え、
前記正極活物質は、層状構造を有する炭素繊維を含み、
前記正極活物質の比表面積が7.0m /g以上10.3m /g以下である、鉛蓄電池用正極板。
A positive electrode current collector and a positive electrode active material held by the positive electrode current collector are provided.
The positive electrode active material contains carbon fibers having a layered structure and contains carbon fibers.
A positive electrode plate for a lead storage battery, wherein the specific surface area of the positive electrode active material is 7.0 m 2 / g or more and 10.3 m 2 / g or less .
前記炭素繊維がカーボンナノチューブである、請求項1に記載の正極板。 The positive electrode plate according to claim 1, wherein the carbon fibers are carbon nanotubes. 前記正極活物質がPbOを含み、
前記正極活物質におけるα-PbO及びβ-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)が0.60以下である、請求項1又は2に記載の正極板。
The positive electrode active material contains PbO 2 and contains
The invention according to claim 1 or 2 , wherein the ratio of the peak intensities of the X-ray diffraction patterns of α-PbO 2 and β-PbO 2 (α-PbO 2 / β-PbO 2 ) in the positive electrode active material is 0.60 or less. Positive electrode plate.
前記正極活物質がPbOThe positive electrode active material is PbO 2 を含み、Including
前記正極活物質におけるα-PbOΑ-PbO in the positive electrode active material 2 及びβ-PbOAnd β-PbO 2 のX線回折パターンのピーク強度の比率(α-PbORatio of peak intensities of the X-ray diffraction pattern of (α-PbO) 2 /β-PbO/ Β-PbO 2 )が0.35以上である、請求項1~3のいずれか一項に記載の正極板。) Is 0.35 or more, the positive electrode plate according to any one of claims 1 to 3.
請求項1~4のいずれか一項に記載の正極板を備える、鉛蓄電池。 A lead-acid battery comprising the positive electrode plate according to any one of claims 1 to 4.
JP2017219070A 2017-11-14 2017-11-14 Positive electrode plate and lead acid battery Active JP7010556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219070A JP7010556B2 (en) 2017-11-14 2017-11-14 Positive electrode plate and lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219070A JP7010556B2 (en) 2017-11-14 2017-11-14 Positive electrode plate and lead acid battery

Publications (2)

Publication Number Publication Date
JP2019091598A JP2019091598A (en) 2019-06-13
JP7010556B2 true JP7010556B2 (en) 2022-02-10

Family

ID=66837469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219070A Active JP7010556B2 (en) 2017-11-14 2017-11-14 Positive electrode plate and lead acid battery

Country Status (1)

Country Link
JP (1) JP7010556B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011023B2 (en) * 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP7097403B2 (en) * 2020-03-31 2022-07-07 古河電池株式会社 Lead-acid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077475A (en) 2001-08-30 2003-03-14 Univ Shinshu Additive for electrode of lead acid storage battery, electrode for lead acid storage battery and lead acid battery using the same
JP2008098009A (en) 2006-10-12 2008-04-24 Furukawa Battery Co Ltd:The Cathode plate for lead-acid battery
WO2016084858A1 (en) 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077475A (en) 2001-08-30 2003-03-14 Univ Shinshu Additive for electrode of lead acid storage battery, electrode for lead acid storage battery and lead acid battery using the same
JP2008098009A (en) 2006-10-12 2008-04-24 Furukawa Battery Co Ltd:The Cathode plate for lead-acid battery
WO2016084858A1 (en) 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell

Also Published As

Publication number Publication date
JP2019091598A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP5797384B2 (en) Composite capacitor negative electrode plate for lead acid battery and lead acid battery
JP5783170B2 (en) Lead acid battery
JP6977770B2 (en) Liquid lead-acid battery
JP6311799B2 (en) Lead acid battery
JP7010556B2 (en) Positive electrode plate and lead acid battery
JP2008243493A (en) Lead acid storage battery
JP6954353B2 (en) Lead-acid battery
JP5396216B2 (en) Lead acid battery
JP2016162612A (en) Control valve type lead storage battery
CN110603671B (en) Lead storage battery
CN110998924B (en) Lead storage battery
JP6996274B2 (en) Lead-acid battery
JP6582636B2 (en) Lead acid battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP2017183160A (en) Lead storage battery
JP7493329B2 (en) Lead-acid battery
JP7285206B2 (en) Method for determining electrode performance, lead-acid battery, and method for manufacturing the same
JPWO2018199053A1 (en) Lead storage battery
JP7372914B2 (en) lead acid battery
JP2020161316A (en) Positive electrode plate and lead acid battery
JP2011171035A (en) Negative electrode plate for lead storage battery, and lead storage battery
WO2021070230A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing same
JP6866896B2 (en) Lead-acid battery and its manufacturing method
WO2019234862A1 (en) Lead storage battery
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7010556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350