JP6996274B2 - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP6996274B2
JP6996274B2 JP2017240842A JP2017240842A JP6996274B2 JP 6996274 B2 JP6996274 B2 JP 6996274B2 JP 2017240842 A JP2017240842 A JP 2017240842A JP 2017240842 A JP2017240842 A JP 2017240842A JP 6996274 B2 JP6996274 B2 JP 6996274B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
electrode active
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017240842A
Other languages
Japanese (ja)
Other versions
JP2019079778A (en
Inventor
大祐 保坂
真輔 小林
正寿 戸塚
拓弥 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2019079778A publication Critical patent/JP2019079778A/en
Application granted granted Critical
Publication of JP6996274B2 publication Critical patent/JP6996274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

本開示は、鉛蓄電池に関する。 The present disclosure relates to lead acid batteries.

近年、自動車においては、大気汚染防止又は地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、例えば、エンジンの動作時間を少なくするアイドリングストップシステム車(以下、「ISS車」という)、エンジンの動力によるオルタネータの発電を低減する発電制御車等のマイクロハイブリッド車が検討されている。 In recent years, various fuel efficiency improvement measures have been studied for automobiles in order to prevent air pollution or global warming. Vehicles with measures to improve fuel efficiency include, for example, micro-hybrid vehicles such as idling stop system vehicles (hereinafter referred to as "ISS vehicles") that reduce engine operating time, and power generation control vehicles that reduce alternator power generation by engine power. A car is being considered.

鉛蓄電池では、回生充電等により大電流充電が繰り返される場合がある。比較的深い充放電が繰り返された場合、鉛蓄電池の高率放電性能が不充分であると、例えばアイドリングストップ後のエンジン再始動時にバッテリ電圧が低下し、再始動できなくなる。特に、近年では、氷点下で使用されるような低温地域においても対応できるように、低温高率放電性能を向上させることが重要な課題となっている。 In lead-acid batteries, large current charging may be repeated due to regenerative charging or the like. When relatively deep charging / discharging is repeated, if the high rate discharging performance of the lead storage battery is insufficient, for example, when the engine is restarted after idling stop, the battery voltage drops and restarting cannot be performed. In particular, in recent years, it has become an important issue to improve low-temperature and high-rate discharge performance so that it can be used even in low-temperature areas such as those used below freezing point.

これに対し、下記特許文献1には、負極活物質に含有させるリグニンスルホン酸塩として、共役二重結合を有するリグニンスルホン酸塩を用いることで、低温高率放電性能を向上させる技術が開示されている。 On the other hand, Patent Document 1 below discloses a technique for improving low temperature and high rate discharge performance by using a lignin sulfonate having a conjugated double bond as the lignin sulfonate contained in the negative electrode active material. ing.

特開平9-147871号公報Japanese Unexamined Patent Publication No. 9-147771

ところで、鉛蓄電池において大電流充電が繰り返されると、電解液中の水の電気分解が起こることが知られている。電気分解が起こると、水が分解して生じる酸素ガス及び水素ガスが電池外に排出されるため、電解液中の水が減少する。その結果、電解液中の硫酸濃度が上昇し、電極(正極等)の腐食劣化等により容量低下が進行する。このような理由から、鉛蓄電池の電解液中の水が減少した場合、減少した分の水を補水してメンテナンスを行う必要がある。そのため、鉛蓄電池に対しては、メンテナンスフリーの観点から、電解液中の水の減少(減液)を抑制することが求められており、特に、過充電状態における電解液の減液を抑制することが求められている。 By the way, it is known that when high current charging is repeated in a lead storage battery, electrolysis of water in the electrolytic solution occurs. When electrolysis occurs, oxygen gas and hydrogen gas generated by the decomposition of water are discharged to the outside of the battery, so that the amount of water in the electrolytic solution is reduced. As a result, the concentration of sulfuric acid in the electrolytic solution increases, and the capacity decreases due to corrosion deterioration of the electrodes (positive electrode and the like). For this reason, when the amount of water in the electrolyte of the lead-acid battery decreases, it is necessary to replenish the reduced amount of water for maintenance. Therefore, lead-acid batteries are required to suppress the decrease (reduction) of water in the electrolytic solution from the viewpoint of maintenance-free, and in particular, suppress the decrease of the electrolytic solution in the overcharged state. Is required.

本開示は、前記事情を鑑みてなされたものであり、過充電状態における電解液の減液を抑制することが可能な鉛蓄電池を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present invention is to provide a lead storage battery capable of suppressing a decrease in the electrolytic solution in an overcharged state.

本開示の一態様は、過充電状態において5mA/Ahの酸素発生電流を与える正極電位が、水銀/硫酸第一水銀電極を参照電極として1.27V以上であり、過充電状態において5mA/Ahの水素発生電流を与える負極電位が、水銀/硫酸第一水銀電極を参照電極として-1.07V以下である、鉛蓄電池を提供する。 In one aspect of the present disclosure, the positive electrode potential that gives an oxygen generation current of 5 mA / Ah in the overcharged state is 1.27 V or more with the mercury / primrose sulfate electrode as a reference electrode, and 5 mA / Ah in the overcharged state. Provided is a lead-acid battery having a negative electrode potential that gives a hydrogen generation current of −1.07 V or less with a mercury / primary mercury sulfate electrode as a reference electrode.

本開示の一態様に係る鉛蓄電池によれば、過充電状態における電解液の減液を抑制することができる。 According to the lead storage battery according to one aspect of the present disclosure, it is possible to suppress the decrease of the electrolytic solution in the overcharged state.

本開示によれば、過充電状態における電解液の減液を抑制することが可能な鉛蓄電池を提供することができる。本開示によれば、このような鉛蓄電池を備えるマイクロハイブリッド車(例えば、ISS車及び発電制御車)を提供することができる。本開示によれば、マイクロハイブリッド車への鉛蓄電池の応用を提供できる。本開示によれば、ISS車への鉛蓄電池の応用を提供できる。本開示によれば、発電制御車への鉛蓄電池の応用を提供できる。 According to the present disclosure, it is possible to provide a lead storage battery capable of suppressing a decrease in the electrolytic solution in an overcharged state. According to the present disclosure, it is possible to provide a micro-hybrid vehicle (for example, an ISS vehicle and a power generation control vehicle) equipped with such a lead storage battery. According to the present disclosure, the application of lead-acid batteries to micro-hybrid vehicles can be provided. According to the present disclosure, it is possible to provide an application of a lead storage battery to an ISS vehicle. According to the present disclosure, it is possible to provide an application of a lead storage battery to a power generation control vehicle.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。It is a perspective view which shows the whole structure and the internal structure of the lead storage battery which concerns on one Embodiment. 一実施形態に係る鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery which concerns on one Embodiment. 袋状のセパレータと、袋状のセパレータに収容される電極とを示す図である。It is a figure which shows the bag-shaped separator and the electrode accommodated in the bag-shaped separator. セパレータの一例を示す図である。It is a figure which shows an example of a separator. セパレータ及び電極板の配置の一例を示す断面図である。It is sectional drawing which shows an example of the arrangement of a separator and an electrode plate. 電極電位と電流量との関係を示す図である。It is a figure which shows the relationship between the electrode potential and the amount of current. 電極電位と電流量との関係を示す図である。It is a figure which shows the relationship between the electrode potential and the amount of current.

以下、図面を適宜参照しながら、本開示の実施形態について説明する。なお、本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as appropriate. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step.

図1は、本実施形態に係る鉛蓄電池(液式鉛蓄電池)の全体構成及び内部構造を示す斜視図である。図1に示すように、本実施形態に係る鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、正極端子4と、負極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 FIG. 1 is a perspective view showing the overall configuration and internal structure of the lead storage battery (liquid type lead storage battery) according to the present embodiment. As shown in FIG. 1, the lead-acid battery 1 according to the present embodiment includes an electric tank 2 having an open upper surface and a lid 3 for closing the opening of the electric tank 2. The battery case 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a positive electrode terminal 4, a negative electrode terminal 5, and a liquid port plug 6 for closing the liquid injection port provided in the lid 3.

電槽2の内部には、電極群7と、電極群7を正極端子4に接続する正極柱(図示せず)と、電極群7を負極端子5に接続する負極柱8と、電解液とが収容されている。電解液は、例えば、硫酸を含有している。電解液は、アルミニウムイオンを更に含有していてもよい。アルミニウムイオンを含有する電解液は、例えば、硫酸及び硫酸アルミニウムを混合することにより得ることができる。 Inside the battery case 2, there are an electrode group 7, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 4, a negative electrode column 8 connecting the electrode group 7 to the negative electrode terminal 5, and an electrolytic solution. Is housed. The electrolytic solution contains, for example, sulfuric acid. The electrolytic solution may further contain aluminum ions. The electrolytic solution containing aluminum ions can be obtained, for example, by mixing sulfuric acid and aluminum sulfate.

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、正極板(正極)9と、負極板(負極)10と、正極板9及び負極板10の間に配置されたセパレータ11と、を備えている。正極板9は、正極集電体13と、正極活物質充填部14とを有しており、正極活物質が正極集電体13に充填されることにより正極活物質充填部14が形成されている。負極板10は、負極集電体15と、負極活物質充填部16とを有しており、負極活物質が負極集電体15に充填されることにより負極活物質充填部16が形成されている。本明細書では、化成後の正極板から正極集電体を除いたものを「正極活物質」と称し、化成後の負極板から負極集電体を除いたものを「負極活物質」と称する。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a positive electrode plate (positive electrode) 9, a negative electrode plate (negative electrode) 10, and a separator 11 arranged between the positive electrode plate 9 and the negative electrode plate 10. The positive electrode plate 9 has a positive electrode current collector 13 and a positive electrode active material filling portion 14, and the positive electrode active material is filled in the positive electrode current collector 13 to form the positive electrode active material filling portion 14. There is. The negative electrode plate 10 has a negative electrode current collector 15 and a negative electrode active material filling portion 16, and the negative electrode active material is filled in the negative electrode current collector 15 to form a negative electrode active material filling portion 16. There is. In the present specification, the positive electrode plate after chemical conversion from which the positive electrode current collector is removed is referred to as "positive electrode active material", and the negative electrode plate after chemical conversion from which the negative electrode current collector is removed is referred to as "negative electrode active material". ..

電極群7は、複数の正極板9と負極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。電極群7における正極板9及び負極板10の枚数は、例えば、正極板6枚に対し負極板7枚であってよい。 The electrode group 7 has a structure in which a plurality of positive electrode plates 9 and negative electrode plates 10 are alternately laminated in a direction substantially parallel to the opening surface of the electric tank 2 via a separator 11. The number of the positive electrode plate 9 and the negative electrode plate 10 in the electrode group 7 may be, for example, 7 negative electrode plates with respect to 6 positive electrode plates.

電極群7において、複数の正極板9の耳部9a同士は、正極側ストラップ17で集合溶接されている。同様に、複数の負極板10の耳部10a同士は、負極側ストラップ18で集合溶接されている。そして、正極側ストラップ17及び負極側ストラップ18のそれぞれが、正極柱及び負極柱8を介して正極端子4及び負極端子5に接続される。 In the electrode group 7, the selvage portions 9a of the plurality of positive electrode plates 9 are collectively welded by the positive electrode side strap 17. Similarly, the selvage portions 10a of the plurality of negative electrode plates 10 are collectively welded by the negative electrode side strap 18. Then, each of the positive electrode side strap 17 and the negative electrode side strap 18 is connected to the positive electrode terminal 4 and the negative electrode terminal 5 via the positive electrode column and the negative electrode column 8.

セパレータ11は袋状に形成されており、負極板10がセパレータ11内に収容されている。図3は、袋状のセパレータ11と、セパレータ11に収容される負極板10とを示す図である。図4は、セパレータの一例を示す図である。図4(a)は、袋状のセパレータ11の作製に用いるシート状物20を示す正面図であり、図4(b)は、シート状物20の断面図である。図5は、セパレータ11及び電極板(正極板9及び負極板10)の断面図である。 The separator 11 is formed in a bag shape, and the negative electrode plate 10 is housed in the separator 11. FIG. 3 is a diagram showing a bag-shaped separator 11 and a negative electrode plate 10 housed in the separator 11. FIG. 4 is a diagram showing an example of a separator. FIG. 4A is a front view showing a sheet-like object 20 used for manufacturing the bag-shaped separator 11, and FIG. 4B is a cross-sectional view of the sheet-like object 20. FIG. 5 is a cross-sectional view of the separator 11 and the electrode plate (positive electrode plate 9 and negative electrode plate 10).

シート状物20は、図4に示すように、平板状のベース部21と、凸状の複数のリブ22と、ミニリブ23とを備えている。ベース部21は、リブ22及びミニリブ23を支持している。リブ22は、シート状物20の幅方向における中央において、シート状物20の長手方向に延びるように複数形成されている。複数のリブ22は、シート状物20の一方面20aにおいて互いに略平行に配置されている。リブ22の高さ方向の一端はベース部21に一体化しており、リブ22の高さ方向の他端は、正極板9に接している(図5参照)。ベース部21は、リブ22の高さ方向において正極板9と対向している。シート状物20の他方面20bにはリブは配置されておらず、シート状物20の他方面20bは、負極板10と接している(図5参照)。 As shown in FIG. 4, the sheet-shaped object 20 includes a flat plate-shaped base portion 21, a plurality of convex ribs 22, and mini ribs 23. The base portion 21 supports the rib 22 and the mini rib 23. A plurality of ribs 22 are formed so as to extend in the longitudinal direction of the sheet-like object 20 at the center in the width direction of the sheet-like object 20. The plurality of ribs 22 are arranged substantially parallel to each other on one surface 20a of the sheet-like object 20. One end of the rib 22 in the height direction is integrated with the base portion 21, and the other end of the rib 22 in the height direction is in contact with the positive electrode plate 9 (see FIG. 5). The base portion 21 faces the positive electrode plate 9 in the height direction of the rib 22. No rib is arranged on the other surface 20b of the sheet-like material 20, and the other surface 20b of the sheet-like material 20 is in contact with the negative electrode plate 10 (see FIG. 5).

次に、正極板9及び負極板10の詳細について説明する。 Next, the details of the positive electrode plate 9 and the negative electrode plate 10 will be described.

正極活物質は、Pb成分としてPbOを含み、必要に応じて、PbO以外のPb成分(例えばPbSO)及び後述する添加剤を更に含む。正極活物質は、後述するように、正極活物質の原料を含む正極活物質ペーストを熟成及び乾燥することにより未化成の正極活物質を得た後に未化成の正極活物質を化成することで得ることができる。正極活物質の原料としては、特に制限はなく、例えば、鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。正極活物質の原料として鉛丹(Pb)を加えてもよい。 The positive electrode active material contains PbO 2 as a Pb component, and further contains a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive described later, if necessary. As will be described later, the positive electrode active material is obtained by aging and drying a positive electrode active material paste containing a raw material for the positive electrode active material to obtain an unchemical positive electrode active material, and then forming an unchemicald positive electrode active material. be able to. The raw material of the positive electrode active material is not particularly limited, and examples thereof include lead powder. The lead powder is, for example, lead powder produced by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in a ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scaly metal lead). ). Lead tan (Pb 3 O 4 ) may be added as a raw material for the positive electrode active material.

正極活物質におけるPb成分の含有量は、正極活物質の全質量を基準として90~100質量%であってよい。正極活物質は、Pb成分として、少なくともβ-PbOを含む。正極活物質は、α-PbOを含んでいてよく、α-PbOを含んでいなくてもよい。正極活物質の含有量は、正極板の全質量を基準として40~60質量%であってよい。 The content of the Pb component in the positive electrode active material may be 90 to 100% by mass based on the total mass of the positive electrode active material. The positive electrode active material contains at least β-PbO 2 as a Pb component. The positive electrode active material may contain α-PbO 2 and may not contain α-PbO 2 . The content of the positive electrode active material may be 40 to 60% by mass based on the total mass of the positive electrode plate.

正極集電体は、正極活物質からの電流の導電路となり、且つ、正極活物質を保持するものである。正極集電体は、例えば格子状を呈している。正極集電体の組成としては、例えば、鉛-カルシウム-錫系合金、鉛-アンチモン-ヒ素系合金等の鉛合金が挙げられる。用途に応じて適宜セレン、銀、ビスマス等を正極集電体に添加してもよい。これらの鉛合金を重力鋳造法、エキスパンド法、打ち抜き法等で格子状に形成することにより正極集電体を得ることができる。 The positive electrode current collector serves as a conductive path for the current from the positive electrode active material and holds the positive electrode active material. The positive electrode current collector has, for example, a grid pattern. Examples of the composition of the positive electrode current collector include lead alloys such as lead-calcium-tin alloys and lead-antimony-arsenic alloys. Selenium, silver, bismuth and the like may be appropriately added to the positive electrode current collector depending on the intended use. A positive electrode current collector can be obtained by forming these lead alloys in a grid pattern by a gravity casting method, an expanding method, a punching method, or the like.

正極板の製造工程では、例えば、正極活物質ペーストを正極集電体に充填した後に熟成及び乾燥を行うことにより、未化成の正極活物質を有する正極板を得る。未化成の正極活物質は、主成分として三塩基性硫酸鉛を含んでいてよい。前記正極活物質ペーストは、例えば、正極活物質の原料を含んでおり、その他の所定の添加剤等を更に含んでいてもよい。 In the process of manufacturing the positive electrode plate, for example, the positive electrode active material paste is filled in the positive electrode current collector and then aged and dried to obtain a positive electrode plate having an unchemicald positive electrode active material. The unchemical positive electrode active material may contain tribasic lead sulfate as a main component. The positive electrode active material paste contains, for example, a raw material for the positive electrode active material, and may further contain other predetermined additives and the like.

正極活物質ペーストが含む添加剤としては、例えば、炭素材料(炭素繊維を除く)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive contained in the positive electrode active material paste include carbon materials (excluding carbon fibers) and reinforcing short fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.

正極活物質ペーストを作製するに際しては、正極活物質の原料として鉛粉を用いることができる。また、化成時間を短縮できる観点から、正極活物質の原料として鉛丹(Pb)を加えてもよい。この正極活物質ペーストを正極集電体(例えば正極集電体格子)に充填した後に熟成及び乾燥を行うことにより、未化成の正極活物質を有する正極板が得られる。正極活物質ペーストにおいて、補強用短繊維の配合量は、正極活物質の原料の全質量を基準として0.005~0.3質量%であってよい。 When producing the positive electrode active material paste, lead powder can be used as a raw material for the positive electrode active material. Further, from the viewpoint of shortening the chemical conversion time, lead tan (Pb 3 O 4 ) may be added as a raw material for the positive electrode active material. By filling the positive electrode active material paste in a positive electrode current collector (for example, a positive electrode current collector lattice) and then aging and drying, a positive electrode plate having an unchemical positive electrode active material can be obtained. In the positive electrode active material paste, the blending amount of the reinforcing short fibers may be 0.005 to 0.3% by mass based on the total mass of the raw materials of the positive electrode active material.

正極活物質は、例えば、次の方法により得ることができる。まず、鉛粉に対して、補強用短繊維等の添加剤を加えて乾式混合する。次に、前記鉛粉を含む混合物に対して、水4~10質量%及び希硫酸(比重1.28)5~10質量%を加えて混練して正極活物質ペーストを作製する。希硫酸(比重1.28)は、発熱を低減するために、数回に分けて徐々に添加してよい。正極活物質ペーストの作製において、急激な発熱は疎な構造の正極活物質を形成し、寿命での活物質同士の結合力が低下するため、なるべく発熱を抑えることが望ましい。 The positive electrode active material can be obtained, for example, by the following method. First, additives such as reinforcing staple fibers are added to the lead powder and mixed in a dry manner. Next, 4 to 10% by mass of water and 5 to 10% by mass of dilute sulfuric acid (specific gravity 1.28) are added to the mixture containing the lead powder and kneaded to prepare a positive electrode active material paste. Dilute sulfuric acid (specific gravity 1.28) may be added gradually in several portions in order to reduce heat generation. In the preparation of the positive electrode active material paste, sudden heat generation forms a positive electrode active material having a sparse structure, and the bonding force between the active materials during the life is reduced. Therefore, it is desirable to suppress heat generation as much as possible.

正極活物質は、正極活物質の原料を含む正極活物質ペーストを熟成及び乾燥することにより未化成の正極活物質を得た後に未化成の正極活物質を化成することで得ることができる。正極活物質は、例えばα-PbO及びβ-PbOを含む。 The positive electrode active material can be obtained by aging and drying a positive electrode active material paste containing a raw material for the positive electrode active material to obtain an unchemicald positive electrode active material, and then chemicalizing the unchemicald positive electrode active material. The positive electrode active material contains, for example, α-PbO 2 and β-PbO 2 .

前記正極活物質ペーストを正極集電体(鋳造格子体、エキスパンド格子体等)に充填した後に熟成及び乾燥を行うことにより、未化成の正極活物質を有する正極板を得ることができる。正極活物質ペーストにおいて、補強用短繊維の配合量は、鉛粉の全質量(鉛丹を含む場合は鉛粉及び鉛丹の合計質量)を基準として0.05~0.3質量%であってよい。 By filling the positive electrode current collector (casted lattice body, expanded lattice body, etc.) with the positive electrode active material paste and then aging and drying, a positive electrode plate having an unchemical positive electrode active material can be obtained. In the positive electrode active material paste, the blending amount of the reinforcing short fibers is 0.05 to 0.3% by mass based on the total mass of lead powder (the total mass of lead powder and lead tan when lead tan is contained). It's okay.

熟成条件は、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間としてよい。乾燥条件は、温度45~80℃で15~30時間としてよい。 The aging conditions may be 15 to 60 hours in an atmosphere with a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%. The drying conditions may be 15 to 30 hours at a temperature of 45 to 80 ° C.

負極活物質は、Pb成分として少なくともPbを含み、必要に応じて、Pb以外のPb成分(例えばPbSO)及び後述する添加剤を更に含む。負極活物質は、多孔質の海綿状鉛(Spongy Lead)を含んでいてよい。負極活物質は、後述するように、負極活物質の原料を含む負極活物質ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に未化成の負極活物質を化成することで得ることができる。負極活物質の原料としては、特に制限はなく、例えば、鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。 The negative electrode active material contains at least Pb as a Pb component, and if necessary, further contains a Pb component other than Pb (for example, PbSO 4 ) and an additive described later. The negative electrode active material may contain porous spongy lead. As will be described later, the negative electrode active material is obtained by aging and drying a negative electrode active material paste containing a raw material for the negative electrode active material to obtain an unchemicald negative electrode active material, and then forming an unchemicald negative electrode active material. be able to. The raw material for the negative electrode active material is not particularly limited, and examples thereof include lead powder. The lead powder is, for example, lead powder produced by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in a ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scaly metal lead). ).

負極集電体は、負極活物質からの電流の導電路となり、且つ、負極活物質を保持するものである。負極集電体の組成は、上述した正極集電体の組成と同じであってよい。 The negative electrode current collector serves as a conductive path for the current from the negative electrode active material and holds the negative electrode active material. The composition of the negative electrode current collector may be the same as the composition of the positive electrode current collector described above.

負極板の製造工程では、例えば、負極活物質ペーストを負極集電体(例えば負極集電体格子)に充填した後に熟成及び乾燥を行うことにより、未化成の負極活物質を有する負極板を得る。負極集電体としては、正極集電体と同じものを用いることができる。未化成の負極活物質は、主成分として三塩基性硫酸鉛を含んでいてよい。前記負極活物質ペーストは、例えば、負極活物質の原料、及び、スルホ基及び/又はスルホン酸塩基を有する樹脂を含んでおり、その他の所定の添加剤等を更に含んでいてもよい。 In the process of manufacturing a negative electrode plate, for example, a negative electrode active material paste is filled in a negative electrode current collector (for example, a negative electrode current collector lattice) and then aged and dried to obtain a negative electrode plate having an unchemical negative electrode active material. .. As the negative electrode current collector, the same one as the positive electrode current collector can be used. The unchemical negative electrode active material may contain tribasic lead sulfate as a main component. The negative electrode active material paste contains, for example, a raw material for the negative electrode active material and a resin having a sulfo group and / or a sulfonic acid base, and may further contain other predetermined additives and the like.

負極活物質ペーストは、溶媒及び硫酸を更に含んでいてもよい。溶媒としては、例えば、水(例えばイオン交換水)及び有機溶媒が挙げられる。 The negative electrode active material paste may further contain a solvent and sulfuric acid. Examples of the solvent include water (for example, ion-exchanged water) and an organic solvent.

スルホ基及び/又はスルホン酸塩基を有する樹脂としては、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種であってよい。 Resins having a sulfo group and / or a sulfonic acid base include lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and formaldehyde. It may be at least one selected from the group consisting of (condensates of).

負極活物質ペーストが含む添加剤としては、例えば、硫酸バリウム、炭素材料(炭素繊維を除く)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive contained in the negative electrode active material paste include barium sulfate, carbon material (excluding carbon fiber) and short reinforcing fiber (acrylic fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, carbon fiber, etc.). .. Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.

負極活物質ペーストは、例えば、次の方法により得ることができる。まず、鉛粉に、スルホ基及び/又はスルホン酸塩基を有する樹脂と、必要に応じて添加される添加剤とを混合することにより混合物を得る。次に、この混合物に、硫酸(希硫酸等)及び溶媒(水等)を加えて混練することにより負極活物質ペーストが得られる。 The negative electrode active material paste can be obtained, for example, by the following method. First, a mixture is obtained by mixing a resin having a sulfo group and / or a sulfonic acid base with lead powder and an additive added as needed. Next, sulfuric acid (dilute sulfuric acid or the like) and a solvent (water or the like) are added to this mixture and kneaded to obtain a negative electrode active material paste.

負極活物質ペーストにおいて、硫酸バリウムを用いる場合、硫酸バリウムの配合量は、負極活物質の原料の全質量を基準として0.01~1質量%であってよい。炭素材料を用いる場合、炭素材料の配合量は、負極活物質の原料の全質量を基準として0.2~1.4質量%であってよい。スルホ基及び/又はスルホン酸塩基を有する樹脂の配合量は、負極活物質の原料の全質量を基準として、樹脂固形分換算で0.01~2質量%であってよい。 When barium sulfate is used in the negative electrode active material paste, the blending amount of barium sulfate may be 0.01 to 1% by mass based on the total mass of the raw materials of the negative electrode active material. When a carbon material is used, the blending amount of the carbon material may be 0.2 to 1.4% by mass based on the total mass of the raw material of the negative electrode active material. The blending amount of the resin having a sulfo group and / or a sulfonic acid base may be 0.01 to 2% by mass in terms of resin solid content based on the total mass of the raw material of the negative electrode active material.

熟成条件は、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間としてよい。乾燥条件は、温度45~80℃で15~30時間としてよい。 The aging conditions may be 15 to 60 hours in an atmosphere with a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%. The drying conditions may be 15 to 30 hours at a temperature of 45 to 80 ° C.

本実施形態に係る鉛蓄電池は、ISS車、発電制御車等のマイクロハイブリッド車に用いることができる。本実施形態に係るマイクロハイブリッド車(例えば、ISS車及び発電制御車)は、本実施形態に係る鉛蓄電池を備える。 The lead-acid battery according to the present embodiment can be used for a micro-hybrid vehicle such as an ISS vehicle and a power generation control vehicle. The micro-hybrid vehicle according to the present embodiment (for example, an ISS vehicle and a power generation control vehicle) includes a lead storage battery according to the present embodiment.

本実施形態に係る鉛蓄電池は、例えば、過充電状態で定電圧充電される。「過充電状態」とは、満充電状態から更に充電を続けた状態である。満充電状態は、例えば、5時間率電流Iの充電中に15分ごとに測定して得られる端子電圧が3回連続して一定値を示すまで充電を行うことで得ることができる(電池工業会規格SBA S 0101:2014に記載の満充電の定義)。本実施形態に係る鉛蓄電池は、後述するように、酸素発生電流を与える正極電位が特定範囲を満たす正極、及び、水素発生電流を与える負極電位が特定範囲を満たす負極を備える。以下、詳細について説明する。 The lead-acid battery according to the present embodiment is, for example, charged at a constant voltage in an overcharged state. The "overcharged state" is a state in which charging is continued from a fully charged state. The fully charged state can be obtained, for example, by charging the terminal voltage measured every 15 minutes while charging the 5-hour rate current I 5 until the terminal voltage shows a constant value three times in a row (battery). Definition of full charge described in the industry association standard SBA S 0101: 2014). As will be described later, the lead-acid battery according to the present embodiment includes a positive electrode having a positive electrode potential giving an oxygen evolution current satisfying a specific range, and a negative electrode having a negative electrode potential giving a hydrogen generating current satisfying a specific range. The details will be described below.

過充電状態の鉛蓄電池の充電では、下記のガス発生(正極:酸素発生、負極:水素発生)、腐食反応、酸素再結合反応(Oxygen recombination)等が起こる。本発明者の知見によれば、過充電状態における腐食反応の影響が小さいことから、以下では、ガス発生及び酸素再結合反応を考慮する。
(正極)
酸素発生: HO ⇒ 1/2O + 2H + 2e
腐食反応: PbO + 2HO ⇒ Pb + 4H + 4e
(負極)
水素発生: 2H + 2e ⇒ H
酸素再結合反応: 1/2O + 2H + 2e ⇒ H
When charging a lead-acid battery in an overcharged state, the following gas generation (positive electrode: oxygen generation, negative electrode: hydrogen generation), corrosion reaction, oxygen recombination reaction (Oxygen recombination), and the like occur. According to the findings of the present inventor, since the influence of the corrosion reaction in the overcharged state is small, the gas generation and the oxygen recombination reaction will be considered below.
(Positive electrode)
Oxygen evolution: H 2 O ⇒ 1 / 2O 2 + 2H + + 2e-
Corrosion reaction: PbO 2 + 2H 2 O ⇒ Pb 2 + 4H + + 4e-
(Negative electrode)
Hydrogen generation: 2H + + 2e - ⇒ H 2
Oxygen recombination reaction: 1 / 2O 2 + 2H + + 2e - ⇒H 2O

過充電状態の鉛蓄電池の充電では、下記式(a)~(d)が成り立つ(I total:正極における電子移動反応(酸素発生)に由来する電流の和、I total:負極における電子移動反応(水素発生、及び、酸素再結合反応)に由来する電流の和、I O2:正極における酸素発生電流、I H2:負極における水素発生電流、I O2rec:負極における酸素再結合反応に由来する電流)。
(a)I total=I total
(b)I total=I O2
(c)I total=I H2+I O2rec
(d)I O2=I H2+I O2rec
When charging a lead storage battery in an overcharged state, the following equations (a) to (d) hold (I + total : sum of currents derived from the electron transfer reaction (oxygen generation) at the positive electrode, I - total : electron transfer at the negative electrode. Sum of currents derived from reactions (hydrogen generation and oxygen recombination reaction), I + O2 : oxygen generation current at the positive electrode, I - H2 : hydrogen generation current at the negative electrode, I - O2rec : oxygen recombination reaction at the negative electrode Derived current).
(A) I + total = I - total
(B) I + total = I + O2
(C) I - total = I - H2 + I - O2rec
(D) I + O2 = I - H2 + I - O2rec

また、電池外に放出される酸素ガスに関する電流は下記式(e)のように表され、電池外に放出される水素ガスに関する電流は下記式(f)のように表される。式(e)及び式(f)に示されるように、電池外に放出される酸素ガス及び水素ガスに関する電流のそれぞれは、I totalからI O2recが差し引かれた電流として表され、これらの電流は互いに同等である(I O2Оut=I H2Оut)。
(e)I O2Оut=I O2-I O2rec=I total-I O2rec
(f)I H2Оut=I H2=I total-I O2rec=I total-I O2rec
Further, the current related to the oxygen gas released to the outside of the battery is expressed by the following formula (e), and the current related to the hydrogen gas released to the outside of the battery is expressed by the following formula (f). As shown in the formulas (e) and (f), each of the currents related to the oxygen gas and the hydrogen gas released to the outside of the battery is expressed as the current obtained by subtracting I - O2rec from I + total . The currents are equal to each other (I + O2Out = I - H2Out ).
(E) I + O2Out = I + O2 -I - O2rec = I + total -I - O2rec
(F) I - H2Out = I - H2 = I - total -I - O2rec = I + total -I - O2rec

ここで、仮に、酸素再結合反応に起因する影響を考慮しない(I O2rec=0)とすると、下記式(g)が満たされる。この場合、図6(a)に示すように、電池外に放出されるガスの量に相当する減液速度A1(電圧Vのとき)は「I O2」である。図6(a)は、電極電位と電流量との関係を示す図(酸素再結合反応に起因する影響を考慮しない場合)である。
(g)I O2Оut=I H2Оut=I H2=I O2
Here, assuming that the influence caused by the oxygen recombination reaction is not taken into consideration (I O2rec = 0), the following formula (g) is satisfied. In this case, as shown in FIG. 6A, the liquid reduction rate A1 (when the voltage V) corresponds to the amount of gas released to the outside of the battery is “I + O2 ”. FIG. 6A is a diagram showing the relationship between the electrode potential and the amount of current (when the influence caused by the oxygen recombination reaction is not taken into consideration).
(G) I + O2Out = I - H2Out = I - H2 = I + O2

しかしながら、前記式(e)及び式(f)に示されるように、電池外に放出されるガスに関する電流(減液速度)に対して酸素再結合反応が寄与することから、減液速度を低減するためには、酸素再結合反応に起因する影響を考慮する必要がある。ここで、本発明者の知見によれば、発生した酸素ガスのうち約5割が酸素再結合で水に戻る(I O2rec=0.5I O2)傾向があり、前記式(e)及び式(f)に基づき下記式(h)が得られる。この場合、図6(b)に示すように減液速度A2(電圧Vのとき)は、「0.5I O2」であり、酸素再結合反応の影響が寄与するために減液速度A1より少ない。図6(b)は、電極電位と電流量との関係を示す図(酸素再結合反応に起因する影響を考慮した場合)である。
(h)I O2Оut=I H2Оut=0.5I O2
However, as shown in the formulas (e) and (f), the oxygen recombination reaction contributes to the current (liquid reduction rate) related to the gas released to the outside of the battery, so that the liquid reduction rate is reduced. In order to do so, it is necessary to consider the effects caused by the oxygen recombination reaction. Here, according to the knowledge of the present inventor, about 50% of the generated oxygen gas tends to return to water by oxygen recombination (I O2rec = 0.5I + O2 ), and the above formula (e) and The following formula (h) is obtained based on the formula (f). In this case, as shown in FIG. 6B, the liquid reduction rate A2 (when the voltage is V) is "0.5I + O2 ", which is higher than the liquid reduction rate A1 because the influence of the oxygen recombination reaction contributes. Few. FIG. 6B is a diagram showing the relationship between the electrode potential and the amount of current (when the influence caused by the oxygen recombination reaction is taken into consideration).
(H) I + O2Out = I - H2Out = 0.5I + O2

そして、本発明者は、過充電状態の鉛蓄電池に関して、正極における酸素発生電位と、負極における水素発生電位との関係を調整した際において同一電圧を印加した場合の減液速度について検討した。正極における酸素発生電位を正に大きくする(酸素ガスを発生しづらくする)観点から正極活物質(例えばPb成分)の表面積を図6(b)の場合に対して半減させた場合(図7(a))、及び、負極における水素発生電位を負に大きくする(水素ガスを発生しづらくする)観点から負極活物質(例えばPb成分)の表面積を図6(b)の場合に対して半減させた場合(図7(b))、電圧Vにおいて、図6(b)の減液速度A2を1として、図7(a)の減液速度A3は0.6であり、図7(b)の減液速度A4は0.75である。図7(a)は、電極電位と電流量との関係を示す図(正極活物質の表面積を半減させた場合)である。図7(b)は、電極電位と電流量との関係を示す図(負極活物質の表面積を半減させた場合)である。図7の例では、負極活物質の表面積よりも正極活物質の表面積を調整する方が減液速度の低減に有効である。 Then, the present inventor investigated the liquid depletion rate when the same voltage was applied when the relationship between the oxygen evolution potential at the positive electrode and the hydrogen evolution potential at the negative electrode was adjusted for the lead storage battery in the overcharged state. From the viewpoint of increasing the oxygen generation potential at the positive electrode (making it difficult to generate oxygen gas), the surface area of the positive electrode active material (for example, Pb component) is halved compared to the case of FIG. 6 (b) (FIG. 7 (Fig. 7). From the viewpoint of a)) and increasing the hydrogen generation potential in the negative electrode negatively (making it difficult to generate hydrogen gas), the surface area of the negative electrode active material (for example, Pb component) is halved as compared with the case of FIG. 6 (b). In this case (FIG. 7 (b)), at voltage V, the liquid reduction rate A2 in FIG. 6 (b) is 1, and the liquid reduction rate A3 in FIG. 7 (a) is 0.6, which is FIG. 7 (b). The liquid reduction rate A4 is 0.75. FIG. 7A is a diagram showing the relationship between the electrode potential and the amount of current (when the surface area of the positive electrode active material is halved). FIG. 7B is a diagram showing the relationship between the electrode potential and the amount of current (when the surface area of the negative electrode active material is halved). In the example of FIG. 7, adjusting the surface area of the positive electrode active material is more effective in reducing the liquid reduction rate than the surface area of the negative electrode active material.

図7(a)及び図7(b)の上述の算出結果に示されるように、同一電圧における減液速度を低減するためには、正極における酸素発生電位を正に大きくする(酸素ガスを発生しづらくする)ことが有効であり、また、他の諸電池性能(サイクル特性、放電特性、充電受け入れ性等)とのバランスをとる観点から、負極における水素発生電位を負に大きくし過ぎて正極における酸素発生電位を負に大きくし過ぎないことが有効である。そして、本発明者は、減液速度を対比しやすい酸素発生電流及び水素発生電流の値(充分に大きく観測が容易であると共に、鉛蓄電池の実使用時に検出され得る値)として、鉛蓄電池の単セルにおける2.4Vの過充電状態の酸素発生電流及び水素発生電流の一例である5mA/Ahに着目した上で、当該5mA/Ahを与える電位について検討した結果、減液速度を低減するために有効な酸素発生電位(正極)及び水素発生電位(負極)を見出した。すなわち、本実施形態に係る鉛蓄電池では、過充電状態において5mA/Ahの酸素発生電流を与える正極電位が、水銀/硫酸第一水銀電極を参照電極として1.27V以上であり、過充電状態において5mA/Ahの水素発生電流を与える負極電位が、水銀/硫酸第一水銀電極を参照電極として-1.07V以下である。 As shown in the above calculation results of FIGS. 7 (a) and 7 (b), in order to reduce the liquid reduction rate at the same voltage, the oxygen generation potential at the positive electrode is positively increased (oxygen gas is generated). It is effective to make it difficult), and from the viewpoint of balancing with other battery performance (cycle characteristics, discharge characteristics, charge acceptability, etc.), the hydrogen generation potential at the negative electrode is made too large to be negative, and the positive electrode is used. It is effective not to make the oxygen generation potential in the negative too large. Then, the present inventor sets the values of the oxygen generation current and the hydrogen generation current (values that are sufficiently large and easy to observe and can be detected during actual use of the lead storage battery) of the lead storage battery, which makes it easy to compare the liquid reduction rate. Focusing on 5mA / Ah, which is an example of the oxygen generation current and hydrogen generation current in the overcharged state of 2.4V in a single cell, as a result of examining the potential to give the 5mA / Ah, in order to reduce the liquid reduction rate. We have found effective oxygen generation potential (positive electrode) and hydrogen generation potential (negative electrode). That is, in the lead storage battery according to the present embodiment, the positive electrode potential that gives an oxygen generation current of 5 mA / Ah in the overcharged state is 1.27 V or more with the mercury / primary mercury sulfate electrode as a reference electrode, and in the overcharged state. The negative electrode potential that gives a hydrogen generation current of 5 mA / Ah is −1.07 V or less with the mercury / lead-acid sulfate electrode as a reference electrode.

過充電状態において5mA/Ahの酸素発生電流を与える正極電位は、過充電状態における電解液の減液を抑制する観点から、水銀/硫酸第一水銀電極を参照電極として1.27V以上である。前記酸素発生電流を与える正極電位は、過充電状態における電解液の減液を更に抑制する観点から、水銀/硫酸第一水銀電極を参照電極として、1.28V以上が好ましく、1.285V以上がより好ましく、1.29V以上が更に好ましい。前記酸素発生電流を与える正極電位の上限は、例えば1.35Vであってよい。 The positive electrode potential that gives an oxygen evolution current of 5 mA / Ah in the overcharged state is 1.27 V or more with the mercury / primary mercury sulfate electrode as a reference electrode from the viewpoint of suppressing the decrease in the electrolytic solution in the overcharged state. The positive electrode potential that gives the oxygen generation current is preferably 1.28 V or more, preferably 1.285 V or more, with the mercury / mercuric sulfate primary mercury electrode as a reference electrode from the viewpoint of further suppressing the decrease in the electrolytic solution in the overcharged state. More preferably, 1.29V or more is further preferable. The upper limit of the positive electrode potential that gives the oxygen evolution current may be, for example, 1.35V.

過充電状態において5mA/Ahの水素発生電流を与える負極電位は、過充電状態における電解液の減液を抑制する観点から、水銀/硫酸第一水銀電極を参照電極として-1.07V以下である。前記水素発生電流を与える負極電位は、過充電状態における電解液の減液を更に抑制する観点から、水銀/硫酸第一水銀電極を参照電極として、-1.08V以下が好ましく、-1.09V以下がより好ましい。前記水素発生電流を与える負極電位の下限は、例えば-1.15Vであってよい。 The negative electrode potential that gives a hydrogen generation current of 5 mA / Ah in the overcharged state is −1.07 V or less with the mercury / primary mercury sulfate electrode as a reference electrode from the viewpoint of suppressing the decrease in the electrolytic solution in the overcharged state. .. The negative electrode potential that gives the hydrogen generation current is preferably -1.08 V or less, preferably -1.09 V, with the mercury / mercuric sulfate primary mercury electrode as a reference electrode from the viewpoint of further suppressing the decrease in the electrolytic solution in the overcharged state. The following is more preferable. The lower limit of the negative electrode potential that gives the hydrogen generation current may be, for example, -1.15V.

上述の正極電位及び負極電位は、化成後の鉛蓄電池における電位である。鉛蓄電池が複数の単セル(単体セル)を備えている場合、正極電位及び負極電位は、少なくとも一つの単セルの正極電位及び負極電位を意味する。鉛蓄電池が複数の単セルを備えている場合において、上述の正極電位及び負極電位を満たす単セルを鉛蓄電池が少なくとも一つ備えていればよく、単セルの全てが上述の正極電位及び負極電位を満たしていてもよい。 The above-mentioned positive electrode potential and negative electrode potential are potentials in the lead storage battery after chemical conversion. When the lead-acid battery includes a plurality of single cells (single cells), the positive electrode potential and the negative electrode potential mean the positive electrode potential and the negative electrode potential of at least one single cell. When the lead-acid battery has a plurality of single cells, it is sufficient that the lead-acid battery has at least one single cell satisfying the above-mentioned positive electrode potential and negative electrode potential, and all of the single cells have the above-mentioned positive electrode potential and negative electrode potential. May be satisfied.

単セルが複数の正極(例えば正極板)を有している場合、前記酸素発生電流を与える正極電位は、複数の正極電位の平均値(正極群の電位)を意味する。単セルが複数の正極を有している場合、複数の正極から集電する部材(例えば、図1の正極端子4、又は、図2の正極側ストラップ17)の電位を測定することにより正極電位を得ることができる。単セルが複数の負極(例えば負極板)を有している場合、前記水素発生電流を与える負極電位は、複数の負極電位の平均値(負極群の電位)を意味する。単セルが複数の負極を有している場合、複数の負極から集電する部材(例えば、図1の負極端子5、又は、図2の負極側ストラップ18)の電位を測定することにより負極電位を得ることができる。 When a single cell has a plurality of positive electrodes (for example, a positive electrode plate), the positive electrode potential that gives the oxygen evolution current means the average value of the plurality of positive electrode potentials (potential of the positive electrode group). When a single cell has a plurality of positive electrodes, the positive electrode potential is measured by measuring the potential of a member (for example, the positive electrode terminal 4 in FIG. 1 or the positive electrode side strap 17 in FIG. 2) that collects electricity from the plurality of positive electrodes. Can be obtained. When a single cell has a plurality of negative electrodes (for example, a negative electrode plate), the negative electrode potential that gives the hydrogen generation current means an average value of the plurality of negative electrode potentials (potential of the negative electrode group). When a single cell has a plurality of negative electrodes, the negative electrode potential is measured by measuring the potential of a member (for example, the negative electrode terminal 5 in FIG. 1 or the negative electrode side strap 18 in FIG. 2) that collects current from the plurality of negative electrodes. Can be obtained.

前記酸素発生電流を与える正極電位、及び、前記水素発生電流を与える負極電位は、電活物質(正極活物質又は負極活物質)の表面積を調整すること、電極活物質の表面におけるガス発生の反応性を調整すること等により調整することができる。 The positive electrode potential that gives the oxygen generating current and the negative electrode potential that gives the hydrogen generating current adjust the surface area of the electroactive material (positive electrode active material or negative electrode active material), and the reaction of gas generation on the surface of the electrode active material. It can be adjusted by adjusting the sex.

電極活物質の表面積が大きいと、反応面積が大きいことに伴いガス発生電位の絶対値が低減されるため、より小さい絶対値の電位において上述のガス発生電流が得られる。電極活物質の表面積は、電極活物質等の使用量、活物質ペーストを作製する際の硫酸の使用量などによって調整することができる。 When the surface area of the electrode active material is large, the absolute value of the gas generation potential is reduced as the reaction area is large, so that the above-mentioned gas generation current can be obtained at a potential of a smaller absolute value. The surface area of the electrode active material can be adjusted by adjusting the amount of the electrode active material or the like used, the amount of sulfuric acid used when producing the active material paste, and the like.

電極活物質の表面におけるガス発生の反応性は、電極活物質の構成成分(炭素材料、スルホ基及び/又はスルホン酸塩基を有する樹脂等)によって調整できる。例えば、炭素材料の表面では、Pb成分に比べて水素発生が進行しやすい傾向がある。そのため、炭素材料の含有量が多いほど、水素発生電位が低減されるため、より小さい絶対値の負極電位において上述の水素発生電流が得られる。また、炭素材料に加えて、スルホ基及び/又はスルホン酸塩基を有する樹脂を負極活物質が含有していると、スルホ基及び/又はスルホン酸塩基を有する樹脂が炭素材料に吸着して水素の発生を抑制し、水素発生電位が増加する。このような観点から、負極活物質が炭素材料を含有する場合、負極活物質は、炭素材料、及び、スルホ基及び/又はスルホン酸塩基を有する樹脂を含有してよい。 The reactivity of gas generation on the surface of the electrode active material can be adjusted by the constituent components of the electrode active material (carbon material, sulfo group and / or resin having a sulfonic acid base, etc.). For example, on the surface of a carbon material, hydrogen generation tends to proceed more easily than the Pb component. Therefore, as the content of the carbon material increases, the hydrogen generation potential is reduced, so that the above-mentioned hydrogen generation current can be obtained at a negative electrode potential having a smaller absolute value. Further, when the negative electrode active material contains a resin having a sulfo group and / or a sulfonic acid base in addition to the carbon material, the resin having a sulfo group and / or a sulfonic acid base is adsorbed on the carbon material to generate hydrogen. The generation is suppressed and the hydrogen generation potential increases. From this point of view, when the negative electrode active material contains a carbon material, the negative electrode active material may contain a carbon material and a resin having a sulfo group and / or a sulfonic acid base.

正極活物質の量(正極が複数存在する場合には、正極活物質の総量)は、負極活物質の量(負極が複数存在する場合には、負極活物質の総量)に対して、多くても、同等量でも、少なくてもよい。正極活物質の量の下限は、負極活物質100質量部に対して、100質量部以上、110質量部以上、又は、120質量部以上であってよい。正極活物質の量の上限は、負極活物質100質量部に対して、300質量部以下、250質量部以下、200質量部以下、150質量部以下、140質量部以下、又は、130質量部以下であってよい。 The amount of positive electrode active material (total amount of positive electrode active material when there are multiple positive electrodes) is larger than the amount of negative electrode active material (total amount of negative electrode active material when there are multiple negative electrodes). May be the same amount or less. The lower limit of the amount of the positive electrode active material may be 100 parts by mass or more, 110 parts by mass or more, or 120 parts by mass or more with respect to 100 parts by mass of the negative electrode active material. The upper limit of the amount of the positive electrode active material is 300 parts by mass or less, 250 parts by mass or less, 200 parts by mass or less, 150 parts by mass or less, 140 parts by mass or less, or 130 parts by mass or less with respect to 100 parts by mass of the negative electrode active material. May be.

減液速度を評価する際の過充電状態の定電圧充電は、複数の電圧で行われてよい。すなわち、定電圧充電は、互いに異なる電圧の複数の充電工程を備えていてよく、例えば、第1の電圧の第1の充電工程と、第2の電圧の第2の充電工程と、をこの順に備えていてよい。この場合、少なくとも一つの充電工程において上述の正極電位及び負極電位が満たされていればよく、全ての充電工程において上述の正極電位及び負極電位が満たされていてよい。定電圧充電は、上述の第1の充電工程及び第2の充電工程の後に他の充電工程(例えば第3の充電工程)を備えていてよい。例えば、第3の充電工程は、第1の電圧及び第2の電圧とは異なる第3の電圧の充電工程であってよく、第1の電圧と同じ電圧の充電工程であってよい。第3の充電工程の電圧が第1の電圧と同じ場合、少なくとも第1の充電工程において上述の正極電位及び負極電位が満たされていればよい。各充電工程は連続して行われることに限られず、各充電工程の間に他の工程(定電流充電工程、放電工程、休止工程等)が行われてもよい。 The constant voltage charge in the overcharged state when evaluating the liquid reduction rate may be performed at a plurality of voltages. That is, the constant voltage charging may include a plurality of charging steps having different voltages, for example, a first charging step of the first voltage and a second charging step of the second voltage in this order. You may be prepared. In this case, it is sufficient that the above-mentioned positive electrode potential and negative electrode potential are satisfied in at least one charging step, and the above-mentioned positive electrode potential and negative electrode potential may be satisfied in all charging steps. The constant voltage charging may include another charging step (for example, a third charging step) after the first charging step and the second charging step described above. For example, the third charging step may be a charging step of a third voltage different from the first voltage and the second voltage, and may be a charging step of the same voltage as the first voltage. When the voltage of the third charging step is the same as the first voltage, it is sufficient that the positive electrode potential and the negative electrode potential described above are satisfied at least in the first charging step. Each charging step is not limited to being continuously performed, and other steps (constant current charging step, discharging step, resting step, etc.) may be performed between the charging steps.

定電圧充電の条件は、特に限定されない。定電圧充電の電圧(単セルに対する電圧)は、例えば2.15~2.80Vであってよい。定電圧充電時の温度は、例えば5~80℃であってよい。定電圧充電は、例えば、ドイツ自動車工業会(VDA:Verband der Automobilindustrie)が定める14.4V電池の蓄電池規格に基づき、単セルに対して電圧2.40V、60℃で行うことができる。定電圧充電の時間(一の電圧を維持する時間)は、例えば1~42日間であってよい。 The conditions for constant voltage charging are not particularly limited. The voltage for constant voltage charging (voltage for a single cell) may be, for example, 2.15 to 2.80 V. The temperature at the time of constant voltage charging may be, for example, 5 to 80 ° C. Constant voltage charging can be performed, for example, at a voltage of 2.40 V and 60 ° C. for a single cell based on the storage battery standard of a 14.4 V battery established by the German Association of the Automotive Industry (VDA: Verband der Automobilindustrie). The time for constant voltage charging (time for maintaining one voltage) may be, for example, 1 to 42 days.

以下、実施例により本開示を具体的に説明する。但し、本開示は下記の実施例のみに限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples. However, the present disclosure is not limited to the following examples.

<鉛蓄電池の作製>
(実施例1)
[正極集電体の作製]
正極集電体として、板状の鉛-カルシウム-錫合金(鉛含有量:0.05質量%、カルシウム含有量:0.5質量%)に切れ目を入れ、この切れ目を拡開するように引き伸ばして作製したエキスパンド格子体を用意した。正極集電体では、幅が145mmであり、高さが110mmであり、厚さが0.9mmであった。
<Making lead-acid batteries>
(Example 1)
[Preparation of positive electrode current collector]
As a positive electrode current collector, a plate-shaped lead-calcium-tin alloy (lead content: 0.05% by mass, calcium content: 0.5% by mass) is cut and stretched so as to widen the cut. The expanded lattice body prepared in the above was prepared. The positive electrode current collector had a width of 145 mm, a height of 110 mm, and a thickness of 0.9 mm.

[未化成の正極板の作製]
ボールミル法によって作製した鉛粉に、補強用短繊維(アクリル繊維)0.07質量%と、硫酸ナトリウム0.01質量%とを加えた後に乾式混合した。アクリル繊維及び硫酸ナトリウムそれぞれの配合量は、鉛粉の全質量を基準とした配合量である。次に、前記鉛粉を含む混合物に対して、水10質量%と、希硫酸(比重1.28)9質量%とを加えた後に混練して正極活物質ペーストを作製した(水及び希硫酸それぞれの配合量は、鉛粉の全質量を基準とした配合量である)。正極活物質ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸の添加は段階的に行った。続いて、作製した正極活物質ペーストを、上記で得られた正極集電体に充填し、温度50℃、湿度98%の雰囲気で24時間熟成した。これにより、正極集電体に未化成の正極活物質が充填された未化成の正極板を得た。未化成の正極板では、充填部幅が145mmであり、充填部高さが110mmであり、厚さが1.5mmであった。
[Manufacturing of unchemical positive electrode plate]
To the lead powder prepared by the ball mill method, 0.07% by mass of reinforcing short fibers (acrylic fibers) and 0.01% by mass of sodium sulfate were added and then dry-mixed. The blending amount of each of the acrylic fiber and sodium sulfate is based on the total mass of the lead powder. Next, 10% by mass of water and 9% by mass of dilute sulfuric acid (specific gravity 1.28) were added to the mixture containing the lead powder and then kneaded to prepare a positive electrode active material paste (water and dilute sulfuric acid). Each compounding amount is based on the total mass of lead powder). When preparing the positive electrode active material paste, dilute sulfuric acid was added stepwise in order to avoid a rapid temperature rise. Subsequently, the prepared positive electrode active material paste was filled in the positive electrode current collector obtained above, and aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. As a result, an unchemical positive electrode plate in which the positive electrode current collector was filled with the unchemical positive electrode active material was obtained. In the unchemical positive electrode plate, the width of the filled portion was 145 mm, the height of the filled portion was 110 mm, and the thickness was 1.5 mm.

[負極集電体の作製]
負極集電体として、板状の鉛-カルシウム-錫合金(鉛含有量:0.05質量%、カルシウム含有量:0.5質量%)に切れ目を入れ、この切れ目を拡開するように引き伸ばして作製したエキスパンド格子体を用意した。負極集電体では、幅が145mmであり、高さが110mmであり、厚さが0.8mmであった。
[Manufacturing of negative electrode current collector]
As a negative electrode current collector, a plate-shaped lead-calcium-tin alloy (lead content: 0.05% by mass, calcium content: 0.5% by mass) is cut and stretched so as to widen the cut. The expanded lattice body prepared in the above was prepared. The negative electrode current collector had a width of 145 mm, a height of 110 mm, and a thickness of 0.8 mm.

[未化成の負極板の作製]
ボールミル法によって作製した鉛粉に、補強用短繊維(アクリル繊維)0.1質量%と、アセチレンブラック0.2質量%と、硫酸バリウム1.0質量%とを加えた後に乾式混合した。上記配合量は、鉛粉の全質量を基準とした配合量である。次に、リグニンスルホン酸塩(商品名:バニレックスN、日本製紙株式会社製)0.2質量%(樹脂固形分換算、鉛粉の全質量を基準とした配合量である)と、水10質量%(鉛粉の全質量を基準とした配合量である)とを加えた後に混練した。続いて、鉛粉の全質量を基準として希硫酸(比重1.280)9.5質量%を少量ずつ添加しながら混練して、負極活物質ペーストを作製した。続いて、作製した負極活物質ペーストを、上記で得られた負極集電体に充填し、温度50℃、湿度98%の雰囲気で20時間熟成した。これにより、負極集電体に未化成の負極活物質が充填された未化成の負極板を得た。未化成の負極板では、充填部幅が145mmであり、充填部高さが110mmであり、厚さが1.3mmであった。
[Manufacturing of unchemical negative electrode plate]
To the lead powder prepared by the ball mill method, 0.1% by mass of reinforcing short fibers (acrylic fibers), 0.2% by mass of acetylene black, and 1.0% by mass of barium sulfate were added and then dry-mixed. The above-mentioned compounding amount is a compounding amount based on the total mass of lead powder. Next, 0.2% by mass of lignin sulfonate (trade name: Vanillex N, manufactured by Nippon Paper Industries, Ltd.) (in terms of resin solid content, the amount is based on the total mass of lead powder) and 10% by mass of water. % (The blending amount based on the total mass of the lead powder) was added and then kneaded. Subsequently, 9.5% by mass of dilute sulfuric acid (specific gravity 1.280) was added little by little based on the total mass of the lead powder and kneaded to prepare a negative electrode active material paste. Subsequently, the prepared negative electrode active material paste was filled in the negative electrode current collector obtained above, and aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 20 hours. As a result, an unchemical negative electrode plate in which the negative electrode current collector was filled with the unchemical negative electrode active material was obtained. In the unchemical negative electrode plate, the width of the filled portion was 145 mm, the height of the filled portion was 110 mm, and the thickness was 1.3 mm.

[セパレータの準備]
一方面に複数の凸状のリブと、当該リブを支持するベース部と、を有するシート状物を、リブが形成されている面が外側になるように袋状に加工してなるセパレータ(袋状のセパレータ)を用意した(図3及び図4参照)。セパレータでは、総厚さが0.8mm、ベース部の厚さTが0.2mmであり、リブの高さHが0.6mmであり、リブの上底幅Bが0.4mmであり、リブの下底幅Aが0.8mmであった。
[Preparation of separator]
A separator (bag) formed by processing a sheet-like material having a plurality of convex ribs on one surface and a base portion supporting the ribs into a bag shape so that the surface on which the ribs are formed is on the outside. (See FIGS. 3 and 4). In the separator, the total thickness is 0.8 mm, the thickness T of the base portion is 0.2 mm, the height H of the rib is 0.6 mm, the upper bottom width B of the rib is 0.4 mm, and the rib. The bottom width A was 0.8 mm.

[電池の組み立て]
得られた袋状のセパレータに未化成の負極板を収容した。次に、未化成の正極板6枚と、袋状のセパレータに収容された未化成の負極板7枚とを、セパレータのリブが未化成の正極板に接するようにして交互に積層した。上述の電極板の作製では、負極板7枚における負極活物質の総量100質量部に対して正極板6枚における正極活物質の総量を120質量部に調整した。次に、未化成の正極板の集電部及び未化成の負極板の集電部を極性毎に正極側ストラップ及び負極側ストラップに集合溶接して極板群を得た。極板群厚さは3.36cmであった。
[Battery assembly]
An unchemical negative electrode plate was housed in the obtained bag-shaped separator. Next, 6 unchemical positive electrode plates and 7 unchemical negative electrode plates housed in a bag-shaped separator were alternately laminated so that the ribs of the separator were in contact with the unchemical positive electrode plates. In the above-mentioned production of the electrode plates, the total amount of the positive electrode active material in the six positive electrode plates was adjusted to 120 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material in the seven negative electrode plates. Next, the current collecting portion of the unchemical positive electrode plate and the current collecting portion of the unchemical negative electrode plate were collectively welded to the positive electrode side strap and the negative electrode side strap for each polarity to obtain a electrode plate group. The thickness of the electrode plate group was 3.36 cm.

セル室を1つ有する電槽を用意した。電槽のセル室に極板群を挿入した後、電槽に蓋を熱溶着した。その後、液口栓を開栓し、蓋に設けられた注液口からセルに希硫酸(電解液)を注液した。次いで、周囲温度40℃、電流25Aで20時間通電することにより電槽化成を行い、単セルの鉛蓄電池(JISD5301規定のD23サイズの単セルに相当)を作製した。化成後の電解液の比重は1.29に調整した。化成後の正極におけるPb成分の含有量(正極活物質の全質量基準)は99.9質量%であり、化成後の負極におけるPb成分の含有量(負極活物質の全質量基準)は98.4質量%であった。 An electric tank having one cell chamber was prepared. After inserting the electrode plates into the cell chamber of the electric tank, the lid was heat-welded to the electric tank. Then, the liquid spout was opened, and dilute sulfuric acid (electrolyte) was poured into the cell from the liquid pouring port provided on the lid. Next, an electric tank was formed by energizing the battery at an ambient temperature of 40 ° C. and a current of 25 A for 20 hours to produce a single-cell lead-acid battery (corresponding to a D23 size single cell specified in JIS D5301). The specific gravity of the electrolytic solution after chemical conversion was adjusted to 1.29. The content of Pb component in the positive electrode after chemical conversion (based on the total mass of the positive electrode active material) is 99.9% by mass, and the content of the Pb component in the negative electrode after chemical conversion (based on the total mass of the negative electrode active material) is 98. It was 4% by mass.

(比較例1)
正極活物質の総量を増やし、負極板7枚における負極活物質の総量100質量部に対して正極板6枚における正極活物質の総量を140質量部に調整したこと以外は実施例1と同様に鉛蓄電池を作製した。
(Comparative Example 1)
The same as in Example 1 except that the total amount of the positive electrode active material was increased and the total amount of the positive electrode active material in the 6 positive electrode plates was adjusted to 140 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material in the 7 negative electrode plates. A lead storage battery was manufactured.

(比較例2)
負極活物質の総量を減らし、負極板7枚における負極活物質の総量80質量部に対して正極板6枚における正極活物質の総量を140質量部に調整したこと以外は比較例1と同様に鉛蓄電池を作製した。
(Comparative Example 2)
Similar to Comparative Example 1 except that the total amount of the negative electrode active material was reduced and the total amount of the positive electrode active material in the 6 positive electrode plates was adjusted to 140 parts by mass with respect to the total amount of 80 parts by mass of the negative electrode active material in the 7 negative electrode plates. A lead storage battery was manufactured.

(比較例3)
負極活物質の総量を増やし、負極板7枚における負極活物質の総量120質量部に対して正極板6枚における正極活物質の総量を120質量部に調整したこと以外は実施例1と同様に鉛蓄電池を作製した。
(Comparative Example 3)
The same as in Example 1 except that the total amount of the negative electrode active material was increased and the total amount of the positive electrode active material in the 6 positive electrode plates was adjusted to 120 parts by mass with respect to the total amount of 120 parts by mass of the negative electrode active material in the 7 negative electrode plates. A lead storage battery was manufactured.

<酸素発生電位及び水素発生電位の測定>
次の手順で、電池外に放出される酸素ガス及び水素ガスの流量(ガス流量)を測定した。まず、発生したガスが漏れないように電池にチューブを接続した。シリカゲルをチューブに充填することにより、水分及び硫酸のミストをガスから取り除いた。次に、酸素ガス及び水素ガスを捕集し、互いに直列に接続された水素濃度計(HPS-100、AMS社製)、ガス流量計(F-100D、DP-FLOW、Bronkhorst製)及び酸素濃度計(GMH3695/GGO370、Greisinger製)に酸素ガス及び水素ガスを導入して混合ガスの流量、酸素濃度及び水素濃度を測定した。そして、混合ガスの流量に各ガスの濃度(酸素濃度又は水素濃度)を乗じることで酸素ガス及び水素ガスの流量を求めた。
<Measurement of oxygen evolution potential and hydrogen evolution potential>
The flow rate (gas flow rate) of oxygen gas and hydrogen gas released to the outside of the battery was measured by the following procedure. First, a tube was connected to the battery so that the generated gas would not leak. Moisture and sulfuric acid mist were removed from the gas by filling the tube with silica gel. Next, oxygen gas and hydrogen gas are collected, and a hydrogen concentration meter (HPS-100, manufactured by AMS), a gas flow meter (F-100D, DP-FLOW, manufactured by Bronkhorst) and an oxygen concentration connected in series to each other are collected. Oxygen gas and hydrogen gas were introduced into a meter (GMH3695 / GGO370, manufactured by Greisinger), and the flow rate, oxygen concentration and hydrogen concentration of the mixed gas were measured. Then, the flow rates of the oxygen gas and the hydrogen gas were obtained by multiplying the flow rate of the mixed gas by the concentration of each gas (oxygen concentration or hydrogen concentration).

酸素発生電位(正極)及び水素発生電位(負極)は、充放電試験機で観測される電流I total又はI totalと、上記で求めたガス流量とに基づき次の手順で得た。 The oxygen evolution potential (positive electrode) and the hydrogen evolution potential (negative electrode) were obtained by the following procedure based on the current I + total or I - total observed by the charge / discharge tester and the gas flow rate obtained above.

すなわち、式(f)に示されるように「I H2=I H2Оut」であるため、電池外に放出される水素ガスの流量を電流に換算したI H2Оutが水素発生電流である。過充電状態においてこの水素発生電流が安定して5mA/Ahとなる電圧(15分毎に測定した充電中の端子電圧が3回連続して一定値を示す場合の電圧)を印加し、そのときの負極電位を水素発生電位として得た。負極電位は、負極端子と参照電極との電位差を測定することで求めた。参照電極としては水銀/硫酸第一水銀電極を用いた。 That is, since it is "I - H2 = I - H2Out " as shown in the equation (f), I - H2Out obtained by converting the flow rate of the hydrogen gas discharged to the outside of the battery into a current is the hydrogen generation current. In the overcharged state, a voltage at which this hydrogen generation current becomes stable at 5 mA / Ah (voltage when the terminal voltage during charging measured every 15 minutes shows a constant value three times in a row) is applied, and at that time. The negative electrode potential of was obtained as the hydrogen generation potential. The negative electrode potential was determined by measuring the potential difference between the negative electrode terminal and the reference electrode. A mercury / mercuric sulfate primary mercury electrode was used as the reference electrode.

また、式(e)及び式(f)から下記式(i)の関係が成り立つことから、電池外に放出される酸素ガス及び水素ガスの流量を電流に換算したI O2Оut及びI H2Оutと、充放電試験機で観測される電流I total又はI totalとを用いて酸素発生電流を求めることができる。過充電状態においてこの酸素素発生電流が安定して5mA/Ahとなる電圧(15分毎に測定した充電中の端子電圧が3回連続して一定値を示す場合の電圧)を印加し、そのときの正極電位を酸素発生電位として得た。正極電位は、正極端子と参照電極との電位差を測定することで求めた。参照電極としては水銀/硫酸第一水銀電極を用いた。
(i)I O2=I O2Оut+I O2rec=I O2Оut+I total(又はI total)-I H2Оut
Further, since the relationship of the following formula (i) is established from the formula (e) and the formula (f), I + O2Out and I - H2Out obtained by converting the flow rates of oxygen gas and hydrogen gas released to the outside of the battery into currents. , The oxygen evolution current can be determined using the current I + total or I - total observed by the charge / discharge tester. In the overcharged state, a voltage at which this oxygen generation current stably reaches 5 mA / Ah (voltage when the terminal voltage during charging measured every 15 minutes shows a constant value three times in a row) is applied, and the voltage is applied. The positive electrode potential at that time was obtained as the oxygen generation potential. The positive electrode potential was determined by measuring the potential difference between the positive electrode terminal and the reference electrode. A mercury / mercuric sulfate primary mercury electrode was used as the reference electrode.
(I) I + O2 = I + O2Out + I - O2rec = I + O2Out + I + total (or I - total ) -I - H2Out

<減液抑制性能の評価>
雰囲気温度(水槽の温度)60℃において、2.4Vで42日間定電圧の過充電を行った。この充電の前後の電解液の質量を測定し、質量差(過充電による減液の量(減液量))を比較することにより、減液抑制性能を評価した。
<Evaluation of liquid reduction suppression performance>
At the atmospheric temperature (temperature of the water tank) of 60 ° C., constant voltage overcharging was performed at 2.4 V for 42 days. The mass of the electrolytic solution before and after this charging was measured, and the mass difference (the amount of liquid reduction due to overcharging (the amount of liquid reduction)) was compared to evaluate the liquid reduction suppressing performance.

酸素発生電位(正極)、水素発生電位(負極)、及び、減液速度(減液抑制性能)を表1に示す。減液抑制性能は、実施例1における過充電状態の減液量を100とした相対値によって評価した。この値が小さいほど、減液抑制性能に優れる。 Table 1 shows the oxygen evolution potential (positive electrode), the hydrogen evolution potential (negative electrode), and the liquid reduction rate (liquid reduction suppression performance). The liquid reduction suppressing performance was evaluated by a relative value with the liquid reduction amount in the overcharged state as 100 in Example 1. The smaller this value is, the better the liquid reduction suppressing performance is.

Figure 0006996274000001
Figure 0006996274000001

実施例1では、5mA/Ahの酸素発生電流を与える正極電位、及び、5mA/Ahの水素発生電流を与える負極電位の絶対値が大きいことにより、過充電状態における電解液の減液量が少ない。一方、比較例1及び2では、5mA/Ahの酸素発生電流を与える正極電位が小さいことにより、過充電状態における電解液の減液量が多い。比較例3では、5mA/Ahの水素発生電流を与える負極電位の絶対値が小さいことにより、過充電状態における電解液の減液量が多い。 In Example 1, since the absolute values of the positive electrode potential that gives an oxygen evolution current of 5 mA / Ah and the negative electrode potential that gives a hydrogen evolution current of 5 mA / Ah are large, the amount of reduction of the electrolytic solution in the overcharged state is small. .. On the other hand, in Comparative Examples 1 and 2, since the positive electrode potential that gives an oxygen generation current of 5 mA / Ah is small, the amount of the electrolytic solution reduced in the overcharged state is large. In Comparative Example 3, since the absolute value of the negative electrode potential that gives a hydrogen generation current of 5 mA / Ah is small, the amount of reduction of the electrolytic solution in the overcharged state is large.

1…鉛蓄電池、9…正極板(正極)、10…負極板(負極)。 1 ... Lead-acid battery, 9 ... Positive electrode plate (positive electrode), 10 ... Negative electrode plate (negative electrode).

Claims (1)

過充電状態において5mA/Ahの酸素発生電流を与える正極電位が、水銀/硫酸第一水銀電極を参照電極として1.27V以上であり、
過充電状態において5mA/Ahの水素発生電流を与える負極電位が、水銀/硫酸第一水銀電極を参照電極として-1.07V以下である、鉛蓄電池。
The positive electrode potential that gives an oxygen evolution current of 5 mA / Ah in the overcharged state is 1.27 V or more with the mercury / mercuric sulfate primary mercury electrode as a reference electrode.
A lead-acid battery having a negative electrode potential that gives a hydrogen generation current of 5 mA / Ah in an overcharged state of −1.07 V or less with the mercury / primary mercury sulfate electrode as a reference electrode.
JP2017240842A 2017-10-24 2017-12-15 Lead-acid battery Active JP6996274B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017205466 2017-10-24
JP2017205466 2017-10-24

Publications (2)

Publication Number Publication Date
JP2019079778A JP2019079778A (en) 2019-05-23
JP6996274B2 true JP6996274B2 (en) 2022-02-04

Family

ID=66247446

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017240842A Active JP6996274B2 (en) 2017-10-24 2017-12-15 Lead-acid battery
JP2019551052A Active JP7060858B2 (en) 2017-10-24 2018-10-17 Judgment method of liquid reduction performance of lead-acid battery, and lead-acid battery and its charging method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019551052A Active JP7060858B2 (en) 2017-10-24 2018-10-17 Judgment method of liquid reduction performance of lead-acid battery, and lead-acid battery and its charging method

Country Status (2)

Country Link
JP (2) JP6996274B2 (en)
WO (1) WO2019082766A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099262A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Method for estimating charge state of control valve type lead storage battery, reduced liquid quantity of electrolyte or sulfuric acid concentration of electrolyte, and device for monitoring control valve type lead storage battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108056A1 (en) 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
WO2012042917A1 (en) 2010-09-30 2012-04-05 新神戸電機株式会社 Lead storage battery
WO2013031263A1 (en) 2011-09-01 2013-03-07 新神戸電機株式会社 Lead storage cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322350A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH0689738A (en) * 1992-07-23 1994-03-29 Shin Kobe Electric Mach Co Ltd Sealed type lead-acid battery
JP5023482B2 (en) * 2005-12-08 2012-09-12 パナソニック株式会社 Lead acid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108056A1 (en) 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
WO2012042917A1 (en) 2010-09-30 2012-04-05 新神戸電機株式会社 Lead storage battery
WO2013031263A1 (en) 2011-09-01 2013-03-07 新神戸電機株式会社 Lead storage cell

Also Published As

Publication number Publication date
JPWO2019082766A1 (en) 2020-11-12
WO2019082766A1 (en) 2019-05-02
JP2019079778A (en) 2019-05-23
JP7060858B2 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
JP6597842B2 (en) Lead acid battery
US20130099749A1 (en) Lead-acid battery
US20110027653A1 (en) Negative plate for lead acid battery
US20130029210A1 (en) Lead acid storage battery
US11870096B2 (en) Absorbent glass mat battery
US20150140430A1 (en) Lead-acid battery
JP6977770B2 (en) Liquid lead-acid battery
US20140120386A1 (en) Over-Saturated Absorbed Glass Mat Valve Regulated Lead-Acid Battery Comprising Carbon Additives
TWI545831B (en) Control valve type leaded battery
JP2013065443A (en) Lead storage battery
JP6388094B1 (en) Lead acid battery
US11936032B2 (en) Absorbent glass mat battery
JP6996274B2 (en) Lead-acid battery
JP7285206B2 (en) Method for determining electrode performance, lead-acid battery, and method for manufacturing the same
JP6582636B2 (en) Lead acid battery
JP7372914B2 (en) lead acid battery
JP6730406B2 (en) Lead acid battery
JP2021096900A (en) Lead acid battery
WO2019234862A1 (en) Lead storage battery
JP2017183160A (en) Lead storage battery
WO2019234860A1 (en) Lead storage battery
JP2022138753A (en) Lead-acid battery
WO2020100213A1 (en) Electrode plate, lattice body, and lead storage cell
JP2024044869A (en) Lead-acid battery
JP2018170303A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R151 Written notification of patent or utility model registration

Ref document number: 6996274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151