WO2021070230A1 - Positive electrode plate, lead storage battery, and method for manufacturing same - Google Patents

Positive electrode plate, lead storage battery, and method for manufacturing same Download PDF

Info

Publication number
WO2021070230A1
WO2021070230A1 PCT/JP2019/039529 JP2019039529W WO2021070230A1 WO 2021070230 A1 WO2021070230 A1 WO 2021070230A1 JP 2019039529 W JP2019039529 W JP 2019039529W WO 2021070230 A1 WO2021070230 A1 WO 2021070230A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode plate
fiber
electrode active
Prior art date
Application number
PCT/JP2019/039529
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 利光
隆之 木村
素子 原田
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2021550961A priority Critical patent/JP7223870B2/en
Priority to PCT/JP2019/039529 priority patent/WO2021070230A1/en
Publication of WO2021070230A1 publication Critical patent/WO2021070230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode plate, a lead storage battery, and a method for manufacturing them.
  • Lead-acid batteries are widely used for industrial purposes, for example, as a battery for automobiles, a backup power source, and a main power source for electric vehicles.
  • the positive electrode in a lead storage battery is required to improve the utilization rate of the positive electrode active material held in the current collector.
  • a positive electrode having an excellent utilization rate of the positive electrode active material is used, for example, the amount of the positive electrode active material used to obtain a predetermined discharge capacity can be reduced, and as a result, the weight of the lead storage battery can be reduced.
  • Patent Document 1 in order to increase the utilization rate of the positive electrode active material, basic lead sulfate and graphite are added to the positive electrode active material, and phosphoric acid is 1% by mass or less in the electrolytic solution.
  • the contained lead-acid battery is disclosed.
  • an object of the present invention is to provide a positive electrode plate for a lead storage battery having an excellent utilization rate of a positive electrode active material, and a lead storage battery provided with the positive electrode plate.
  • One aspect of the present invention includes a positive electrode current collector and a positive electrode active material held by the positive electrode current collector, and the positive electrode active material shrinks irregularly and is represented by the following formula (1).
  • a positive electrode plate for a lead storage battery containing fibers having a ratio of 45% or more hereinafter, also referred to as “shrinkage fibers”).
  • Shrinkage rate (%) (yx) / yx100 ... (1) (In the formula, x represents the shortest distance from one end to the other end of the fiber, and y represents the length along the longitudinal direction of the fiber.)
  • Another aspect of the present invention includes a step of holding the positive electrode active material in the positive electrode current collector, and the positive electrode active material shrinks irregularly, and the shrinkage rate represented by the above formula (1) is 45%.
  • This is a method for manufacturing a positive electrode plate for a lead storage battery, which contains the above fibers.
  • the shrinkage rate may be 80% or less, and the fibers may contain polymer fibers.
  • Another aspect of the present invention is a lead-acid battery provided with the above-mentioned positive electrode plate.
  • Another aspect of the present invention is a lead-acid battery manufacturing method including a step of manufacturing a positive electrode plate by the above-mentioned manufacturing method and a step of assembling a lead-acid battery including the positive electrode plate.
  • a positive electrode plate for a lead storage battery having an excellent utilization rate of a positive electrode active material, and a lead storage battery provided with the positive electrode plate.
  • FIG. 1 It is a perspective view which shows the overall structure and the internal structure of the lead storage battery which concerns on one Embodiment. It is a perspective view which shows the electrode group of the lead storage battery shown in FIG. It is a schematic diagram which shows one Embodiment of a shrink fiber.
  • FIG. 1 is a perspective view showing the overall configuration and internal structure of the lead storage battery according to the embodiment.
  • the lead-acid battery 1 includes an electric tank 2 having an open upper surface and a lid 3 that closes the opening of the electric tank 2.
  • the battery case 2 and the lid 3 are made of polypropylene, for example.
  • the lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 for closing the liquid injection port provided in the lid 3.
  • FIG. 2 is a perspective view showing the electrode group 7.
  • the electrode group 7 includes a negative electrode plate 9, a positive electrode plate 10, and a separator 11 arranged between the negative electrode plate 9 and the positive electrode plate 10.
  • the negative electrode plate 9 includes a negative electrode current collector (negative electrode lattice body) 12 and a negative electrode active material 13 held by the negative electrode current collector 12.
  • the positive electrode plate 10 includes a positive electrode current collector (positive electrode lattice body) 14 and a positive electrode active material 15 held by the positive electrode current collector 14.
  • negative electrode active material negative electrode active material
  • positive electrode plate after chemical conversion from which the positive electrode current collector is removed is referred to as "positive electrode active material”.
  • positive electrode active material the positive electrode plate after chemical conversion from which the positive electrode current collector is removed
  • the electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately laminated in a direction substantially parallel to the opening surface of the battery case 2 via a separator 11. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged so that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2.
  • the ears 12a of each of the negative electrode current collectors 12 in the plurality of negative electrode plates 9 are collectively welded by the negative electrode side strap 16.
  • the ears 14a of each of the positive electrode current collectors 14 of the plurality of positive electrode plates 10 are collectively welded by the positive electrode side strap 17.
  • the negative electrode side strap 16 and the positive electrode side strap 17 are connected to the negative electrode terminal 4 and the positive electrode terminal 5 via the negative electrode column 8 and the positive electrode column, respectively.
  • the separator 11 is formed in a bag shape, for example, and houses the negative electrode plate 9.
  • the separator 11 is made of, for example, polyethylene (PE), polypropylene (PP), or the like.
  • the separator 11 may have inorganic particles such as SiO 2 and Al 2 O 3 adhered to a woven fabric, a non-woven fabric, a porous film, or the like formed of these materials.
  • the negative electrode current collector 12 and the positive electrode current collector 14 are each made of a lead alloy.
  • the lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead. Specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn). -Ca-based alloy) may be used.
  • the negative electrode active material 13 contains at least Pb as a Pb component, and further contains a Pb component other than Pb (for example, PbSO 4) and an additive, if necessary.
  • the negative electrode active material 13 preferably contains porous spongy lead.
  • the content of the Pb component may be 90% by mass or more or 95% by mass or more, and may be 99% by mass or less or 98% by mass or less, based on the total mass of the negative electrode active material.
  • the total mass of the negative electrode active material is, for example, the mass of the negative electrode measured after the negative electrode (negative electrode current collector and negative electrode active material) is taken out from the lead storage battery, washed with water, and the negative electrode is sufficiently dried, and the negative electrode current collection. It can be calculated from the difference from the mass of the body. Drying is carried out, for example, at 50 ° C. for 24 hours.
  • additives include resins having a sulfo group and / or a sulfonic acid base, barium sulfate, carbon materials (excluding carbon fibers) and fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.). Can be mentioned.
  • Resins having a sulfo group and / or a sulfonic acid base include lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and formaldehyde). It may be at least one selected from the group consisting of condensates).
  • the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
  • the positive electrode active material 15 contains PbO 2 which is a Pb component and shrink fibers.
  • the positive electrode active material 15 may further contain a Pb component (for example, PbSO 4 ) other than PbO 2 and an additive, if necessary.
  • the positive electrode active material 15 preferably contains ⁇ -PbO 2 as a Pb component.
  • the positive electrode active material 15 may further contain ⁇ -PbO 2 as a Pb component. That is, the positive electrode active material 15 may contain only ⁇ -PbO 2 as a Pb component in one embodiment, and contains ⁇ -PbO 2 and ⁇ -PbO 2 as Pb components in another embodiment. Good.
  • the content of the Pb component is preferably 90% by mass or more, more preferably 95% by mass or more, based on the total mass of the positive electrode active material, from the viewpoint of further improving the low temperature and high rate discharge performance and the cycle performance.
  • the content of the Pb component is preferably 99.9% by mass or less, more preferably 98% by mass or less, based on the total mass of the positive electrode active material, from the viewpoint of reducing the production cost and weight.
  • the total mass of the positive electrode active material is, for example, the mass of the positive electrode measured after taking out the positive electrode (positive electrode current collector and positive electrode active material) from the lead storage battery, washing the positive electrode with water, and sufficiently drying the positive electrode, and the positive electrode current collection. It can be calculated from the difference from the mass of the body. Drying is carried out, for example, at 50 ° C. for 24 hours.
  • FIG. 3 is a schematic diagram showing an embodiment of shrink fibers.
  • the shrink fiber 18 is irregularly shrunk.
  • the shrinking fibers 18 are different from the fibers that are regularly shrinking (for example, coiled (spiral) fibers).
  • the shape (shrinking method) of the shrinking fiber 18 is arbitrary as long as it satisfies the shrinkage rate described later.
  • the shrink fiber has a shrinkage rate of 45% or more.
  • the shrinkage ratio is expressed by the following formula (1).
  • Shrinkage rate (%) (yx) / yx100 ...
  • x represents the shortest distance from one end 18a of the shrinking fiber 18 to the other end 18b (the distance of a straight line connecting one end 18a and the other end 18b of the shrinking fiber 18).
  • y represents the length of the shrink fiber 18 along the longitudinal direction (the length of the shrink fiber 18 itself).
  • x and y can be calculated from the SEM image of the shrink fiber 18. For example, y can be calculated as the sum of the lengths of the plurality of straight lines by dividing the longitudinal direction of the shrinking fiber 18 and approximating it to a plurality of straight lines (for example, 10 straight lines).
  • the shrinkage rate of the shrink fiber 18 may be 50% or more, 55% or more, 60% or more, 65% or more, or 70% or more, and 80% or less, 75% or less, 70% or less, or 65% or less. It may be.
  • the shrinkage ratio of the shrinkage fiber 18 can be adjusted, for example, by applying a predetermined stress in the longitudinal direction of the fiber for a certain period of time. The greater the stress applied and the longer the stress is applied, the greater the shrinkage rate tends to be.
  • the shrinkage fiber 18 may contain, for example, a polymer fiber, a carbon fiber, or the like.
  • the polymer fiber include polyolefin fiber (fiber containing polyethylene, polypropylene, etc.), polyester fiber (fiber containing polyethylene terephthalate, etc.), and acrylic fiber (fiber containing polyacrylate, polymethacrylate, etc.).
  • the shrinkage fiber 18 preferably contains a polymer fiber, more preferably an acrylic fiber, from the viewpoint of obtaining excellent charge / discharge performance (charge acceptance performance, low temperature high rate discharge performance, etc.).
  • the content of the shrinkage fiber 18 is preferably 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 1% by mass or more, based on the total mass of the positive electrode active material, from the viewpoint of further improving the utilization rate of the positive electrode active material. Is 2% by mass or more.
  • the content of the shrinkage fiber 18 is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass, based on the total mass of the positive electrode active material from the viewpoint of reducing the electrical resistance of the positive electrode plate. It is as follows.
  • Examples of the additive include carbon materials (excluding shrink fibers (carbon fibers)).
  • Examples of the carbon material include carbon black and graphite.
  • Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
  • the positive electrode active material 15 contains shrinkage fibers 18, an excellent utilization rate of the positive electrode active material can be obtained.
  • the reason for this is that the shrinkage fibers 18 adhere more strongly to the positive electrode current collector during aging and drying of the positive electrode plate than fibers having a small shrinkage rate (fibers that do not shrink relatively).
  • the present inventors speculate that this is because the electron conduction and the transfer of the electrolytic solution are preferably maintained by making the growth direction of PbSO 4 more uniform.
  • the lead-acid battery 1 described above includes, for example, a negative electrode plate manufacturing step for manufacturing a negative electrode plate, a positive electrode plate manufacturing step for manufacturing a positive electrode plate, and an assembly step for assembling the lead-acid battery 1 including the negative electrode plate and the positive electrode plate.
  • a negative electrode plate manufacturing step for manufacturing a negative electrode plate for manufacturing a negative electrode plate
  • a positive electrode plate manufacturing step for manufacturing a positive electrode plate for manufacturing a positive electrode plate
  • an assembly step for assembling the lead-acid battery 1 including the negative electrode plate and the positive electrode plate.
  • Manufactured by a manufacturing method The order of the negative electrode plate manufacturing process and the positive electrode plate manufacturing process is arbitrary.
  • the negative electrode current collector 12 holds the negative electrode active material 13. Specifically, first, the negative electrode current collector 12 holds the negative electrode active material paste, and the negative electrode active material paste is aged and dried to obtain an unchemicald negative electrode active material, and then the unchemicald negative electrode active material is obtained. To be formed.
  • the negative electrode active material paste contains, for example, lead powder, additives, solvent (for example, water or organic solvent) and sulfuric acid (for example, dilute sulfuric acid).
  • solvent for example, water or organic solvent
  • sulfuric acid for example, dilute sulfuric acid.
  • the negative electrode active material paste is obtained, for example, by mixing a lead powder and an additive to obtain a mixture, and then adding a solvent and sulfuric acid to the mixture and kneading the mixture.
  • the lead powder includes, for example, lead powder produced by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in a ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scaly metal lead). ).
  • Aging may be carried out for 15 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%. Drying may be carried out at a temperature of 45 to 80 ° C. for 15 to 30 hours.
  • the positive electrode current collector 14 holds the positive electrode active material 15. Specifically, first, the positive electrode current collector 14 holds the positive electrode active material paste, and the positive electrode active material paste is aged and dried under the same conditions as in the negative electrode plate manufacturing process to obtain an unchemicald positive electrode active material. After obtaining, a non-chemical positive electrode active material is formed.
  • the positive electrode active material paste is, for example, the same lead powder as that used for the negative electrode active material paste, the above-mentioned shrink fibers, additives added as necessary, a solvent (for example, water or an organic solvent), and sulfuric acid (for example, rare). Sulfuric acid) is contained.
  • the positive electrode active material paste may further contain lead tan (Pb 3 O 4 ) from the viewpoint of shortening the chemical conversion time.
  • the negative electrode plate obtained in the negative electrode plate manufacturing process and the positive electrode plate obtained in the positive electrode plate manufacturing process are laminated via the separator 11, and the current collector of the electrode plates having the same polarity. Is welded with a strap to obtain a group of electrodes. This group of electrodes is arranged in an electric tank to produce an unchemical lead-acid battery. Next, dilute sulfuric acid is put into a non-chemical lead-acid battery, and a direct current is applied to form an electric tank. Subsequently, the lead storage battery 1 is obtained by adjusting the specific gravity (20 ° C.) of the sulfuric acid after chemical conversion to an appropriate specific gravity of the electrolytic solution.
  • the specific gravity (20 ° C.) of sulfuric acid used for chemical conversion may be 1.15 to 1.25.
  • the specific gravity (20 ° C.) of sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30.
  • the chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode plate.
  • the chemical conversion treatment may be carried out in the assembly process, or may be carried out in each of the negative electrode plate manufacturing process and the positive electrode plate manufacturing process (tank chemical conversion).
  • Example 1> Manufacturing of positive electrode plate
  • To 100 parts by mass of lead powder 2.2 parts by mass of acrylic fiber (shrinking fiber) having a shrinkage rate of 45% was added and mixed by a dry method.
  • 3 parts by mass of water was added to 100 parts by mass of the mixture composed of lead powder and shrink fibers, and 9 parts by mass of dilute sulfuric acid (specific gravity 1.28) was added stepwise and kneaded for 1 hour to activate the positive electrode.
  • a material paste was prepared.
  • An expanded positive electrode current collector produced by expanding a rolled sheet made of a lead alloy was filled with a positive electrode active material paste and then aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it was dried at a temperature of 50 degreeC for 16 hours to obtain an unchemical positive electrode plate.
  • the expanded negative electrode current collector produced by expanding a rolled sheet made of a lead alloy was filled with this negative electrode active material paste and then aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it was dried at a temperature of 50 degreeC for 16 hours to obtain an unchemical negative electrode plate.
  • Examples 2 to 5 and Comparative Example 1 In the production of the positive electrode plate, the positive electrode plate and the negative electrode plate were obtained in the same manner as in Example 1 except that the acrylic fibers having the shrinkage rate shown in Table 1 were used instead of the acrylic fibers (shrinkage fibers) having a shrinkage rate of 45%. And assembled the lead storage battery.
  • the theoretical capacity of the positive electrode active material is determined by "weight of lead oxide in the positive electrode (g) x 0.22 (Ah / g)".
  • 1 lead-acid battery, 9 ... negative electrode plate, 10 ... positive electrode plate, 11 ... separator, 12 ... negative electrode current collector, 13 ... negative electrode active material, 14 ... positive electrode current collector, 15 ... positive electrode active material.

Abstract

An aspect of the present invention is a positive electrode plate for a lead storage battery. The positive electrode plate is provided with a positive electrode collector and a positive electrode active material held by the positive electrode collector. The positive electrode active material contains a fiber that is shrunk irregularly, the shrink ratio represented by formula (1) being 45% or above. (1): Shrink ratio (%) = (y − x)/y × 100 (where x represents the smallest distance from one end to the other end of a fiber, and y represents the length of the fiber along the longitudinal direction).

Description

正極板、鉛蓄電池及びそれらの製造方法Positive electrode plate, lead-acid battery and their manufacturing method
 本発明は、正極板、鉛蓄電池及びそれらの製造方法に関する。 The present invention relates to a positive electrode plate, a lead storage battery, and a method for manufacturing them.
 鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。鉛蓄電池における正極には、集電体に保持された正極活物質の利用率を向上させることが求められる。正極活物質の利用率に優れる正極を用いると、例えば、所定の放電容量を得るための正極活物質の使用量を減らすことができ、その結果、鉛蓄電池の軽量化を図ることができる。 Lead-acid batteries are widely used for industrial purposes, for example, as a battery for automobiles, a backup power source, and a main power source for electric vehicles. The positive electrode in a lead storage battery is required to improve the utilization rate of the positive electrode active material held in the current collector. When a positive electrode having an excellent utilization rate of the positive electrode active material is used, for example, the amount of the positive electrode active material used to obtain a predetermined discharge capacity can be reduced, and as a result, the weight of the lead storage battery can be reduced.
 これに対して、例えば特許文献1には、正極活物質の利用率を高めるために、正極の活物質中に塩基性硫酸鉛及び黒鉛を添加し、電解液中にリン酸を1質量%以下含有した鉛蓄電池が開示されている。 On the other hand, for example, in Patent Document 1, in order to increase the utilization rate of the positive electrode active material, basic lead sulfate and graphite are added to the positive electrode active material, and phosphoric acid is 1% by mass or less in the electrolytic solution. The contained lead-acid battery is disclosed.
特開2011-165378号公報Japanese Unexamined Patent Publication No. 2011-165378
 しかし、正極活物質の利用率には未だ改善の余地がある。そこで、本発明は、正極活物質の利用率に優れる鉛蓄電池用正極板、及び当該正極板を備える鉛蓄電池を提供することを目的とする。 However, there is still room for improvement in the utilization rate of the positive electrode active material. Therefore, an object of the present invention is to provide a positive electrode plate for a lead storage battery having an excellent utilization rate of a positive electrode active material, and a lead storage battery provided with the positive electrode plate.
 本発明の一側面は、正極集電体と、正極集電体に保持された正極活物質とを備え、正極活物質は、不規則に縮んでおり、下記式(1)で表される縮み率が45%以上である繊維(以下「縮み繊維」とも言う。)を含む、鉛蓄電池用正極板である。
 縮み率(%)=(y-x)/y×100 …(1)
(式中、xは繊維の一端から他端までの最短距離、yは繊維の長手方向に沿った長さを表す。)
One aspect of the present invention includes a positive electrode current collector and a positive electrode active material held by the positive electrode current collector, and the positive electrode active material shrinks irregularly and is represented by the following formula (1). A positive electrode plate for a lead storage battery containing fibers having a ratio of 45% or more (hereinafter, also referred to as “shrinkage fibers”).
Shrinkage rate (%) = (yx) / yx100 ... (1)
(In the formula, x represents the shortest distance from one end to the other end of the fiber, and y represents the length along the longitudinal direction of the fiber.)
 本発明の他の一側面は、正極活物質を正極集電体に保持させる工程を備え、正極活物質は、不規則に縮んでおり、上記式(1)で表される縮み率が45%以上である繊維を含む、鉛蓄電池用正極板の製造方法である。 Another aspect of the present invention includes a step of holding the positive electrode active material in the positive electrode current collector, and the positive electrode active material shrinks irregularly, and the shrinkage rate represented by the above formula (1) is 45%. This is a method for manufacturing a positive electrode plate for a lead storage battery, which contains the above fibers.
 上記各側面において、縮み率は80%以下であってよく、上記繊維はポリマ繊維を含んでいてよい。 In each of the above aspects, the shrinkage rate may be 80% or less, and the fibers may contain polymer fibers.
 本発明の他の一側面は、上記の正極板を備える鉛蓄電池である。 Another aspect of the present invention is a lead-acid battery provided with the above-mentioned positive electrode plate.
 本発明の他の一側面は、上記の製造方法により正極板を製造する工程と、正極板を含む鉛蓄電池を組み立てる工程と、を備える、鉛蓄電池の製造方法である。 Another aspect of the present invention is a lead-acid battery manufacturing method including a step of manufacturing a positive electrode plate by the above-mentioned manufacturing method and a step of assembling a lead-acid battery including the positive electrode plate.
 本発明によれば、正極活物質の利用率に優れる鉛蓄電池用正極板、及び当該正極板を備える鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a positive electrode plate for a lead storage battery having an excellent utilization rate of a positive electrode active material, and a lead storage battery provided with the positive electrode plate.
一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。It is a perspective view which shows the overall structure and the internal structure of the lead storage battery which concerns on one Embodiment. 図1に示した鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery shown in FIG. 縮み繊維の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of a shrink fiber.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 FIG. 1 is a perspective view showing the overall configuration and internal structure of the lead storage battery according to the embodiment. As shown in FIG. 1, the lead-acid battery 1 includes an electric tank 2 having an open upper surface and a lid 3 that closes the opening of the electric tank 2. The battery case 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 for closing the liquid injection port provided in the lid 3.
 電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。 Inside the battery case 2, an electrode group 7, a negative electrode column 8 connecting the electrode group 7 to the negative electrode terminal 4, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 5, dilute sulfuric acid, etc. Electrolyte and is stored.
 図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、負極板9と、正極板10と、負極板9と正極板10との間に配置されたセパレータ11と、を備えている。負極板9は、負極集電体(負極格子体)12と、負極集電体12に保持された負極活物質13と、を備えている。正極板10は、正極集電体(正極格子体)14と、正極集電体14に保持された正極活物質15と、を備えている。なお、本明細書では、化成後の負極板から負極集電体を除いたものを「負極活物質」、化成後の正極板から正極集電体を除いたものを「正極活物質」とそれぞれ定義する。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a negative electrode plate 9, a positive electrode plate 10, and a separator 11 arranged between the negative electrode plate 9 and the positive electrode plate 10. The negative electrode plate 9 includes a negative electrode current collector (negative electrode lattice body) 12 and a negative electrode active material 13 held by the negative electrode current collector 12. The positive electrode plate 10 includes a positive electrode current collector (positive electrode lattice body) 14 and a positive electrode active material 15 held by the positive electrode current collector 14. In the present specification, the negative electrode plate after chemical conversion from which the negative electrode current collector is removed is referred to as "negative electrode active material", and the positive electrode plate after chemical conversion from which the positive electrode current collector is removed is referred to as "positive electrode active material". Define.
 電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。電極群7において、複数の負極板9における各負極集電体12が有する耳部12a同士は、負極側ストラップ16で集合溶接されている。同様に、複数の正極板10における各正極集電体14が有する耳部14a同士は、正極側ストラップ17で集合溶接されている。負極側ストラップ16及び正極側ストラップ17は、それぞれ、負極柱8及び正極柱を介して負極端子4及び正極端子5に接続されている。 The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately laminated in a direction substantially parallel to the opening surface of the battery case 2 via a separator 11. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged so that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2. In the electrode group 7, the ears 12a of each of the negative electrode current collectors 12 in the plurality of negative electrode plates 9 are collectively welded by the negative electrode side strap 16. Similarly, the ears 14a of each of the positive electrode current collectors 14 of the plurality of positive electrode plates 10 are collectively welded by the positive electrode side strap 17. The negative electrode side strap 16 and the positive electrode side strap 17 are connected to the negative electrode terminal 4 and the positive electrode terminal 5 via the negative electrode column 8 and the positive electrode column, respectively.
 セパレータ11は、例えば袋状に形成されており、負極板9を収容している。セパレータ11は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等で形成されている。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。 The separator 11 is formed in a bag shape, for example, and houses the negative electrode plate 9. The separator 11 is made of, for example, polyethylene (PE), polypropylene (PP), or the like. The separator 11 may have inorganic particles such as SiO 2 and Al 2 O 3 adhered to a woven fabric, a non-woven fabric, a porous film, or the like formed of these materials.
 負極集電体12及び正極集電体14は、それぞれ、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb-Sn-Ca系合金)であってよい。 The negative electrode current collector 12 and the positive electrode current collector 14 are each made of a lead alloy. The lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead. Specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn). -Ca-based alloy) may be used.
 負極活物質13は、Pb成分として少なくともPbを含み、必要に応じて、Pb以外のPb成分(例えばPbSO)及び添加剤を更に含む。負極活物質13は、好ましくは、多孔質の海綿状鉛(Spongy Lead)を含む。Pb成分の含有量は、負極活物質の全質量を基準として、90質量%以上又は95質量%以上であってよく、99質量%以下又は98質量%以下であってよい。なお、負極活物質の全質量は、例えば、鉛蓄電池から負極(負極集電体及び負極活物質)を取り出して水洗し、負極を十分に乾燥させた後に測定した負極の質量と、負極集電体の質量との差から算出することができる。乾燥は、例えば、50℃で24時間行う。 The negative electrode active material 13 contains at least Pb as a Pb component, and further contains a Pb component other than Pb (for example, PbSO 4) and an additive, if necessary. The negative electrode active material 13 preferably contains porous spongy lead. The content of the Pb component may be 90% by mass or more or 95% by mass or more, and may be 99% by mass or less or 98% by mass or less, based on the total mass of the negative electrode active material. The total mass of the negative electrode active material is, for example, the mass of the negative electrode measured after the negative electrode (negative electrode current collector and negative electrode active material) is taken out from the lead storage battery, washed with water, and the negative electrode is sufficiently dried, and the negative electrode current collection. It can be calculated from the difference from the mass of the body. Drying is carried out, for example, at 50 ° C. for 24 hours.
 添加剤としては、例えば、スルホ基及び/又はスルホン酸塩基を有する樹脂、硫酸バリウム、炭素材料(炭素繊維を除く)及び繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。 Examples of additives include resins having a sulfo group and / or a sulfonic acid base, barium sulfate, carbon materials (excluding carbon fibers) and fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.). Can be mentioned.
 スルホ基及び/又はスルホン酸塩基を有する樹脂は、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種であってよい。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Resins having a sulfo group and / or a sulfonic acid base include lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and formaldehyde). It may be at least one selected from the group consisting of condensates). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
 正極活物質15は、Pb成分であるPbOと、縮み繊維とを含む。正極活物質15は、必要に応じて、PbO以外のPb成分(例えばPbSO)及び添加剤を更に含んでいてよい。 The positive electrode active material 15 contains PbO 2 which is a Pb component and shrink fibers. The positive electrode active material 15 may further contain a Pb component (for example, PbSO 4 ) other than PbO 2 and an additive, if necessary.
 正極活物質15は、好ましくは、Pb成分としてβ-PbOを含む。正極活物質15は、Pb成分として、α-PbOを更に含んでいてもよい。すなわち、正極活物質15は、一実施形態において、Pb成分としてβ-PbOのみを含んでいてよく、他の一実施形態において、Pb成分としてα-PbO及びβ-PbOを含んでいてよい。 The positive electrode active material 15 preferably contains β-PbO 2 as a Pb component. The positive electrode active material 15 may further contain α-PbO 2 as a Pb component. That is, the positive electrode active material 15 may contain only β-PbO 2 as a Pb component in one embodiment, and contains α-PbO 2 and β-PbO 2 as Pb components in another embodiment. Good.
 Pb成分の含有量は、低温高率放電性能及びサイクル性能が更に向上する観点から、正極活物質の全質量を基準として、好ましくは90質量%以上、より好ましくは95質量%以上である。Pb成分の含有量は、製造コストの低減及び軽量化の観点から、正極活物質の全質量を基準として、好ましくは99.9質量%以下、より好ましくは98質量%以下である。なお、正極活物質の全質量は、例えば、鉛蓄電池から正極(正極集電体及び正極活物質)を取り出して水洗し、正極を十分に乾燥させた後に測定した正極の質量と、正極集電体の質量との差から算出することができる。乾燥は、例えば、50℃で24時間行う。 The content of the Pb component is preferably 90% by mass or more, more preferably 95% by mass or more, based on the total mass of the positive electrode active material, from the viewpoint of further improving the low temperature and high rate discharge performance and the cycle performance. The content of the Pb component is preferably 99.9% by mass or less, more preferably 98% by mass or less, based on the total mass of the positive electrode active material, from the viewpoint of reducing the production cost and weight. The total mass of the positive electrode active material is, for example, the mass of the positive electrode measured after taking out the positive electrode (positive electrode current collector and positive electrode active material) from the lead storage battery, washing the positive electrode with water, and sufficiently drying the positive electrode, and the positive electrode current collection. It can be calculated from the difference from the mass of the body. Drying is carried out, for example, at 50 ° C. for 24 hours.
 図3は、縮み繊維の一実施形態を示す模式図である。縮み繊維18は、不規則に縮んでいる。縮み繊維18は、規則的に縮んでいる繊維(例えばコイル状(螺旋状)の繊維)とは異なるものである。縮み繊維18の形状(縮み方)は、後述する縮み率を満たすものであれば任意である。 FIG. 3 is a schematic diagram showing an embodiment of shrink fibers. The shrink fiber 18 is irregularly shrunk. The shrinking fibers 18 are different from the fibers that are regularly shrinking (for example, coiled (spiral) fibers). The shape (shrinking method) of the shrinking fiber 18 is arbitrary as long as it satisfies the shrinkage rate described later.
 縮み繊維は、45%以上の縮み率を有している。縮み率は、下記式(1)で表される。
 縮み率(%)=(y-x)/y×100 …(1)
式中、xは、図3に示されるように、縮み繊維18の一端18aから他端18bまでの最短距離(縮み繊維18の一端18aと他端18bとを結ぶ直線の距離)を表す。yは、図3に示されるように、縮み繊維18の長手方向に沿った長さ(縮み繊維18それ自体の長さ)を表す。x及びyは、縮み繊維18のSEM像から算出することができる。yは、例えば、縮み繊維18の長手方向を分割して複数の直線(例えば10本の直線)に近似し、当該複数の直線の長さの総和として算出することができる。
The shrink fiber has a shrinkage rate of 45% or more. The shrinkage ratio is expressed by the following formula (1).
Shrinkage rate (%) = (yx) / yx100 ... (1)
In the formula, as shown in FIG. 3, x represents the shortest distance from one end 18a of the shrinking fiber 18 to the other end 18b (the distance of a straight line connecting one end 18a and the other end 18b of the shrinking fiber 18). As shown in FIG. 3, y represents the length of the shrink fiber 18 along the longitudinal direction (the length of the shrink fiber 18 itself). x and y can be calculated from the SEM image of the shrink fiber 18. For example, y can be calculated as the sum of the lengths of the plurality of straight lines by dividing the longitudinal direction of the shrinking fiber 18 and approximating it to a plurality of straight lines (for example, 10 straight lines).
 縮み繊維18の縮み率は、50%以上、55%以上、60%以上、65%以上、又は70%以上であってもよく、80%以下、75%以下、70%以下、又は65%以下であってもよい。 The shrinkage rate of the shrink fiber 18 may be 50% or more, 55% or more, 60% or more, 65% or more, or 70% or more, and 80% or less, 75% or less, 70% or less, or 65% or less. It may be.
 縮み繊維18の縮み率は、例えば、所定の応力を繊維の長手方向に対して一定時間加えることにより調整可能である。加える応力が大きいほど、また応力を加える時間が長いほど、縮み率が大きくなる傾向にある。 The shrinkage ratio of the shrinkage fiber 18 can be adjusted, for example, by applying a predetermined stress in the longitudinal direction of the fiber for a certain period of time. The greater the stress applied and the longer the stress is applied, the greater the shrinkage rate tends to be.
 縮み繊維18は、例えば、ポリマ繊維、炭素繊維等を含んでよい。ポリマ繊維としては、例えば、ポリオレフィン繊維(ポリエチレン、ポリプロピレン等を含む繊維)、ポリエステル繊維(ポリエチレンテレフタレート等を含む繊維)、及びアクリル繊維(ポリアクリレート、ポリメタクリレート等を含む繊維)が挙げられる。縮み繊維18は、優れた充放電性能(充電受入性能、低温高率放電性能等)が得られる観点から、好ましくはポリマ繊維、より好ましくはアクリル繊維を含む。 The shrinkage fiber 18 may contain, for example, a polymer fiber, a carbon fiber, or the like. Examples of the polymer fiber include polyolefin fiber (fiber containing polyethylene, polypropylene, etc.), polyester fiber (fiber containing polyethylene terephthalate, etc.), and acrylic fiber (fiber containing polyacrylate, polymethacrylate, etc.). The shrinkage fiber 18 preferably contains a polymer fiber, more preferably an acrylic fiber, from the viewpoint of obtaining excellent charge / discharge performance (charge acceptance performance, low temperature high rate discharge performance, etc.).
 縮み繊維18の含有量は、正極活物質の利用率を更に向上させる観点から、正極活物質の全質量を基準として、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上である。縮み繊維18の含有量は、正極板の電気抵抗を低減させる観点から、正極活物質の全質量を基準として、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。 The content of the shrinkage fiber 18 is preferably 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 1% by mass or more, based on the total mass of the positive electrode active material, from the viewpoint of further improving the utilization rate of the positive electrode active material. Is 2% by mass or more. The content of the shrinkage fiber 18 is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass, based on the total mass of the positive electrode active material from the viewpoint of reducing the electrical resistance of the positive electrode plate. It is as follows.
 添加剤としては、例えば、炭素材料(縮み繊維(炭素繊維)を除く。)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive include carbon materials (excluding shrink fibers (carbon fibers)). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
 鉛蓄電池1では、正極活物質15が縮み繊維18を含んでいることにより、優れた正極活物質の利用率が得られる。その理由として、縮み繊維18は、縮み率が小さい繊維(比較的縮んでいない繊維)に比べて、正極板の熟成時及び乾燥時に、繊維が正極集電体とより強く密着すること、また、PbSOの成長方向がより均一になることによって、電子伝導及び電解液移動が好適に保たれるためである、と本発明者らは推察している。 In the lead storage battery 1, since the positive electrode active material 15 contains shrinkage fibers 18, an excellent utilization rate of the positive electrode active material can be obtained. The reason for this is that the shrinkage fibers 18 adhere more strongly to the positive electrode current collector during aging and drying of the positive electrode plate than fibers having a small shrinkage rate (fibers that do not shrink relatively). The present inventors speculate that this is because the electron conduction and the transfer of the electrolytic solution are preferably maintained by making the growth direction of PbSO 4 more uniform.
 以上説明した鉛蓄電池1は、例えば、負極板を製造する負極板製造工程と、正極板を製造する正極板製造工程と、負極板及び正極板を含む鉛蓄電池1を組み立てる組立工程と、を備える製造方法により製造される。なお、負極板製造工程及び正極板製造工程の順序は任意である。 The lead-acid battery 1 described above includes, for example, a negative electrode plate manufacturing step for manufacturing a negative electrode plate, a positive electrode plate manufacturing step for manufacturing a positive electrode plate, and an assembly step for assembling the lead-acid battery 1 including the negative electrode plate and the positive electrode plate. Manufactured by a manufacturing method. The order of the negative electrode plate manufacturing process and the positive electrode plate manufacturing process is arbitrary.
 負極板製造工程では、負極集電体12に負極活物質13を保持させる。具体的には、まず、負極集電体12に負極活物質ペーストを保持させ、当該負極活物質ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に、未化成の負極活物質を化成する。 In the negative electrode plate manufacturing process, the negative electrode current collector 12 holds the negative electrode active material 13. Specifically, first, the negative electrode current collector 12 holds the negative electrode active material paste, and the negative electrode active material paste is aged and dried to obtain an unchemicald negative electrode active material, and then the unchemicald negative electrode active material is obtained. To be formed.
 負極活物質ペーストは、例えば、鉛粉、添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。負極活物質ペーストは、例えば、鉛粉と添加剤とを混合することにより混合物を得た後に、この混合物に溶媒及び硫酸を加えて混練することにより得られる。 The negative electrode active material paste contains, for example, lead powder, additives, solvent (for example, water or organic solvent) and sulfuric acid (for example, dilute sulfuric acid). The negative electrode active material paste is obtained, for example, by mixing a lead powder and an additive to obtain a mixture, and then adding a solvent and sulfuric acid to the mixture and kneading the mixture.
 鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。 The lead powder includes, for example, lead powder produced by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in a ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scaly metal lead). ).
 熟成は、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間行われてよい。乾燥は、温度45~80℃で15~30時間行われてよい。 Aging may be carried out for 15 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%. Drying may be carried out at a temperature of 45 to 80 ° C. for 15 to 30 hours.
 正極板製造工程では、正極集電体14に正極活物質15を保持させる。具体的には、まず、正極集電体14に正極活物質ペーストを保持させ、当該正極活物質ペーストを、負極板製造工程と同様の条件で熟成及び乾燥することにより未化成の正極活物質を得た後に、未化成の正極活物質を化成する。 In the positive electrode plate manufacturing process, the positive electrode current collector 14 holds the positive electrode active material 15. Specifically, first, the positive electrode current collector 14 holds the positive electrode active material paste, and the positive electrode active material paste is aged and dried under the same conditions as in the negative electrode plate manufacturing process to obtain an unchemicald positive electrode active material. After obtaining, a non-chemical positive electrode active material is formed.
 正極活物質ペーストは、例えば、負極活物質ペーストに用いられるものと同様の鉛粉、上述した縮み繊維、必要に応じて添加される添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。正極活物質ペーストは、化成時間を短縮できる観点から、鉛丹(Pb)を更に含んでいてもよい。 The positive electrode active material paste is, for example, the same lead powder as that used for the negative electrode active material paste, the above-mentioned shrink fibers, additives added as necessary, a solvent (for example, water or an organic solvent), and sulfuric acid (for example, rare). Sulfuric acid) is contained. The positive electrode active material paste may further contain lead tan (Pb 3 O 4 ) from the viewpoint of shortening the chemical conversion time.
 組立工程では、例えば、まず、負極板製造工程で得られた負極板と、正極板製造工程で得られた正極板とを、セパレータ11を介して積層し、同極性の電極板の集電部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の鉛蓄電池を作製する。次に、未化成の鉛蓄電池に希硫酸を入れて、直流電流を通電して電槽化成する。続いて、化成後の硫酸の比重(20℃)を適切な電解液の比重に調整することで、鉛蓄電池1が得られる。 In the assembly process, for example, first, the negative electrode plate obtained in the negative electrode plate manufacturing process and the positive electrode plate obtained in the positive electrode plate manufacturing process are laminated via the separator 11, and the current collector of the electrode plates having the same polarity. Is welded with a strap to obtain a group of electrodes. This group of electrodes is arranged in an electric tank to produce an unchemical lead-acid battery. Next, dilute sulfuric acid is put into a non-chemical lead-acid battery, and a direct current is applied to form an electric tank. Subsequently, the lead storage battery 1 is obtained by adjusting the specific gravity (20 ° C.) of the sulfuric acid after chemical conversion to an appropriate specific gravity of the electrolytic solution.
 化成に用いる硫酸の比重(20℃)は、1.15~1.25であってよい。化成後の硫酸の比重(20℃)は、好ましくは1.25~1.33、より好ましくは1.26~1.30である。化成条件及び硫酸の比重は、電極板のサイズに応じて調整することができる。化成処理は、組立工程において実施されてもよく、負極板製造工程及び正極板製造工程のそれぞれにおいて実施されてもよい(タンク化成)。 The specific gravity (20 ° C.) of sulfuric acid used for chemical conversion may be 1.15 to 1.25. The specific gravity (20 ° C.) of sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30. The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode plate. The chemical conversion treatment may be carried out in the assembly process, or may be carried out in each of the negative electrode plate manufacturing process and the positive electrode plate manufacturing process (tank chemical conversion).
 以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.
<実施例1>
(正極板の作製)
 鉛粉100質量部に対して、縮み率45%のアクリル繊維(縮み繊維)2.2質量部を加えて乾式混合した。次に、鉛粉及び縮み繊維からなる混合物100質量部に対して、水3質量部を加えると共に、希硫酸(比重1.28)9質量部を段階的に加え、1時間混練して正極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式正極集電体に、正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を得た。
<Example 1>
(Manufacturing of positive electrode plate)
To 100 parts by mass of lead powder, 2.2 parts by mass of acrylic fiber (shrinking fiber) having a shrinkage rate of 45% was added and mixed by a dry method. Next, 3 parts by mass of water was added to 100 parts by mass of the mixture composed of lead powder and shrink fibers, and 9 parts by mass of dilute sulfuric acid (specific gravity 1.28) was added stepwise and kneaded for 1 hour to activate the positive electrode. A material paste was prepared. An expanded positive electrode current collector produced by expanding a rolled sheet made of a lead alloy was filled with a positive electrode active material paste and then aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it was dried at a temperature of 50 degreeC for 16 hours to obtain an unchemical positive electrode plate.
(負極板の作製)
 鉛粉100質量部に対して、ビスパーズP215(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、商品名、日本製紙株式会社製)0.2質量部(樹脂固形分)、アクリル繊維0.1質量部、硫酸バリウム1.0質量部、及びファーネスブラック0.2質量部の混合物を添加し、乾式混合した。次に、この混合物に水を加えて混練した後、比重1.280の希硫酸を少量ずつ添加しながら更に混練して、負極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式負極集電体に、この負極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の負極板を得た。
(Manufacturing of negative electrode plate)
Vispers P215 (condensate of bisphenol, aminobenzenesulfonic acid and formaldehyde, trade name, manufactured by Nippon Paper Co., Ltd.) 0.2 parts by mass (resin solid content), acrylic fiber 0.1 with respect to 100 parts by mass of lead powder. A mixture of parts by mass, 1.0 part by mass of barium sulfate, and 0.2 parts by mass of furnace black was added and mixed dry. Next, water was added to this mixture and kneaded, and then the mixture was further kneaded while adding dilute sulfuric acid having a specific gravity of 1.280 little by little to prepare a negative electrode active material paste. The expanded negative electrode current collector produced by expanding a rolled sheet made of a lead alloy was filled with this negative electrode active material paste and then aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it was dried at a temperature of 50 degreeC for 16 hours to obtain an unchemical negative electrode plate.
(鉛蓄電池の組み立て)
 袋状に加工したポリエチレン製のセパレータに、未化成の負極板を挿入した。次に、未化成の正極板7枚と、袋状セパレータに挿入された未化成の負極板8枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極板の耳部同士を溶接して電極群を作製した。電極群を電槽に挿入して2V単セル電池(JIS D 5301規定のD23サイズの単セルに相当)を組み立てた。その後、比重1.240の硫酸を注入し、40℃の水槽に入れて1時間静置した。その後、17Aにて18時間の定電流で化成を行った。なお、化成後の電解液(硫酸溶液)の比重を1.29(20℃)に調整した。
(Assembly of lead-acid battery)
An unchemical negative electrode plate was inserted into a bag-shaped polyethylene separator. Next, seven unchemical positive electrode plates and eight unchemical negative electrode plates inserted into the bag-shaped separator were alternately laminated. Subsequently, the ears of the electrode plates having the same polarity were welded to each other by a cast-on-strap (COS) method to prepare an electrode group. The electrode group was inserted into the battery case to assemble a 2V single cell battery (corresponding to a D23 size single cell specified in JIS D 5301). Then, sulfuric acid having a specific gravity of 1.240 was injected, and the mixture was placed in a water tank at 40 ° C. and allowed to stand for 1 hour. Then, chemical conversion was carried out at 17 A with a constant current for 18 hours. The specific gravity of the electrolytic solution (sulfuric acid solution) after chemical conversion was adjusted to 1.29 (20 ° C.).
<実施例2~5及び比較例1>
 正極板の作製において、縮み率45%のアクリル繊維(縮み繊維)に代えて、表1に示す縮み率を有するアクリル繊維を用いた以外は、実施例1と同様にして、正極板及び負極板の作製、並びに鉛蓄電池の組み立てを行った。
<Examples 2 to 5 and Comparative Example 1>
In the production of the positive electrode plate, the positive electrode plate and the negative electrode plate were obtained in the same manner as in Example 1 except that the acrylic fibers having the shrinkage rate shown in Table 1 were used instead of the acrylic fibers (shrinkage fibers) having a shrinkage rate of 45%. And assembled the lead storage battery.
[正極活物質の利用率の評価]
 各実施例及び比較例の鉛蓄電池における正極活物質の利用率を以下のとおり評価した。結果を表1に示す。
 作製した鉛蓄電池に対して、25℃の環境下において、0.2Cの電流値で終止電圧1.75Vの定電流放電を行い、このときの放電容量(Ah)を測定した。測定された放電容量を用いて、正極活物質の利用率を下記式:
 利用率(%)=[測定された放電容量(Ah)]/[正極活物質の理論容量(Ah)]×100
により算出される利用率に基づいて、以下のとおり評価した。なお、正極活物質の理論容量は、「正極内の酸化鉛重量(g)×0.22(Ah/g)」により求められる。
 A:利用率が60%以上
 B:利用率が50%以上60%未満
 C:利用率が50%未満
[Evaluation of utilization rate of positive electrode active material]
The utilization rates of the positive electrode active material in the lead-acid batteries of each example and comparative example were evaluated as follows. The results are shown in Table 1.
The produced lead-acid battery was subjected to constant current discharge with a final voltage of 1.75 V at a current value of 0.2 C in an environment of 25 ° C., and the discharge capacity (Ah) at this time was measured. Using the measured discharge capacity, the utilization rate of the positive electrode active material is calculated by the following formula:
Utilization rate (%) = [Measured discharge capacity (Ah)] / [Theoretical capacity of positive electrode active material (Ah)] x 100
Based on the utilization rate calculated by, the evaluation was made as follows. The theoretical capacity of the positive electrode active material is determined by "weight of lead oxide in the positive electrode (g) x 0.22 (Ah / g)".
A: Utilization rate is 60% or more B: Utilization rate is 50% or more and less than 60% C: Utilization rate is less than 50%
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1…鉛蓄電池、9…負極板、10…正極板、11…セパレータ、12…負極集電体、13…負極活物質、14…正極集電体、15…正極活物質。 1 ... lead-acid battery, 9 ... negative electrode plate, 10 ... positive electrode plate, 11 ... separator, 12 ... negative electrode current collector, 13 ... negative electrode active material, 14 ... positive electrode current collector, 15 ... positive electrode active material.

Claims (8)

  1.  正極集電体と、前記正極集電体に保持された正極活物質とを備え、
     前記正極活物質は、不規則に縮んでおり、下記式(1)で表される縮み率が45%以上である繊維を含む、鉛蓄電池用正極板。
     縮み率(%)=(y-x)/y×100 …(1)
    (式中、xは前記繊維の一端から他端までの最短距離、yは前記繊維の長手方向に沿った長さを表す。)
    A positive electrode current collector and a positive electrode active material held by the positive electrode current collector are provided.
    The positive electrode active material is a positive electrode plate for a lead storage battery, which is irregularly shrunk and contains fibers having a shrinkage rate of 45% or more represented by the following formula (1).
    Shrinkage rate (%) = (yx) / yx100 ... (1)
    (In the formula, x represents the shortest distance from one end to the other end of the fiber, and y represents the length along the longitudinal direction of the fiber.)
  2.  前記縮み率が80%以下である、請求項1に記載の正極板。 The positive electrode plate according to claim 1, wherein the shrinkage rate is 80% or less.
  3.  前記繊維がポリマ繊維を含む、請求項1又は2に記載の正極板。 The positive electrode plate according to claim 1 or 2, wherein the fiber contains a polymer fiber.
  4.  請求項1~3のいずれか一項に記載の正極板を備える、鉛蓄電池。 A lead-acid battery comprising the positive electrode plate according to any one of claims 1 to 3.
  5.  正極活物質を正極集電体に保持させる工程を備え、
     前記正極活物質は、不規則に縮んでおり、下記式(1)で表される縮み率が45%以上である繊維を含む、鉛蓄電池用正極板の製造方法。
     縮み率(%)=(y-x)/y×100 …(1)
    (式中、xは前記繊維の一端から他端までの最短距離、yは前記繊維の長手方向に沿った長さを表す。)
    It is equipped with a process of holding the positive electrode active material in the positive electrode current collector.
    A method for producing a positive electrode plate for a lead storage battery, wherein the positive electrode active material is irregularly shrunk and contains fibers having a shrinkage rate of 45% or more represented by the following formula (1).
    Shrinkage rate (%) = (yx) / yx100 ... (1)
    (In the formula, x represents the shortest distance from one end to the other end of the fiber, and y represents the length along the longitudinal direction of the fiber.)
  6.  前記縮み率が80%以下である、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the shrinkage rate is 80% or less.
  7.  前記繊維がポリマ繊維を含む、請求項5又は6に記載の製造方法。 The production method according to claim 5 or 6, wherein the fiber contains a polymer fiber.
  8.  請求項5~7のいずれか一項に記載の製造方法により前記正極板を製造する工程と、
     前記正極板を含む鉛蓄電池を組み立てる工程と、を備える、鉛蓄電池の製造方法。
    A step of manufacturing the positive electrode plate by the manufacturing method according to any one of claims 5 to 7.
    A method for manufacturing a lead-acid battery, comprising a step of assembling a lead-acid battery including the positive electrode plate.
PCT/JP2019/039529 2019-10-07 2019-10-07 Positive electrode plate, lead storage battery, and method for manufacturing same WO2021070230A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021550961A JP7223870B2 (en) 2019-10-07 2019-10-07 Positive electrode plate, lead-acid battery and manufacturing method thereof
PCT/JP2019/039529 WO2021070230A1 (en) 2019-10-07 2019-10-07 Positive electrode plate, lead storage battery, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039529 WO2021070230A1 (en) 2019-10-07 2019-10-07 Positive electrode plate, lead storage battery, and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2021070230A1 true WO2021070230A1 (en) 2021-04-15

Family

ID=75437326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039529 WO2021070230A1 (en) 2019-10-07 2019-10-07 Positive electrode plate, lead storage battery, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP7223870B2 (en)
WO (1) WO2021070230A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611223B1 (en) * 1967-10-28 1971-03-22
JPS5253236A (en) * 1975-10-28 1977-04-28 Shin Kobe Electric Machinery Clad battery plate
JP2014049221A (en) * 2012-08-30 2014-03-17 Gs Yuasa Corp Electrode plate for lead acid battery and lead acid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611223B1 (en) * 1967-10-28 1971-03-22
JPS5253236A (en) * 1975-10-28 1977-04-28 Shin Kobe Electric Machinery Clad battery plate
JP2014049221A (en) * 2012-08-30 2014-03-17 Gs Yuasa Corp Electrode plate for lead acid battery and lead acid battery

Also Published As

Publication number Publication date
JPWO2021070230A1 (en) 2021-04-15
JP7223870B2 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
KR101828602B1 (en) Improved energy storage device
CN103413904B (en) A kind of manufacture method of diaphragm for polymer lithium ion battery
Yin et al. Lead-carbon batteries toward future energy storage: from mechanism and materials to applications
CN107845836A (en) A kind of lithium ion cell positive mends lithium additive and its preparation method and application
EP1801902A2 (en) Lead acid battery
JP6977770B2 (en) Liquid lead-acid battery
US20110250500A1 (en) Positive active material for a lead-acid battery
JP3396696B2 (en) Rechargeable battery
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP3368029B2 (en) Rechargeable battery
JP7010556B2 (en) Positive electrode plate and lead acid battery
WO2021070230A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing same
JP5656116B2 (en) Lead acid battery
TWI681587B (en) Method for manufacturing fast charging and long life li-s batteries
JP2011070870A (en) Lead-acid battery
CN114420899B (en) Lithium ion battery
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
KR101783316B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
KR101777399B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery
JP7285206B2 (en) Method for determining electrode performance, lead-acid battery, and method for manufacturing the same
WO2020100213A1 (en) Electrode plate, lattice body, and lead storage cell
JP2020161316A (en) Positive electrode plate and lead acid battery
JP4984786B2 (en) Lead acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948645

Country of ref document: EP

Kind code of ref document: A1