JP7223870B2 - Positive electrode plate, lead-acid battery and manufacturing method thereof - Google Patents

Positive electrode plate, lead-acid battery and manufacturing method thereof Download PDF

Info

Publication number
JP7223870B2
JP7223870B2 JP2021550961A JP2021550961A JP7223870B2 JP 7223870 B2 JP7223870 B2 JP 7223870B2 JP 2021550961 A JP2021550961 A JP 2021550961A JP 2021550961 A JP2021550961 A JP 2021550961A JP 7223870 B2 JP7223870 B2 JP 7223870B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lead
electrode plate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021550961A
Other languages
Japanese (ja)
Other versions
JPWO2021070230A1 (en
Inventor
祐一 利光
隆之 木村
素子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENERGYWITH CO., LTD.
Original Assignee
ENERGYWITH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENERGYWITH CO., LTD. filed Critical ENERGYWITH CO., LTD.
Publication of JPWO2021070230A1 publication Critical patent/JPWO2021070230A1/ja
Application granted granted Critical
Publication of JP7223870B2 publication Critical patent/JP7223870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極板、鉛蓄電池及びそれらの製造方法に関する。 The present invention relates to positive plates, lead-acid batteries, and methods of manufacturing them.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。鉛蓄電池における正極には、集電体に保持された正極活物質の利用率を向上させることが求められる。正極活物質の利用率に優れる正極を用いると、例えば、所定の放電容量を得るための正極活物質の使用量を減らすことができ、その結果、鉛蓄電池の軽量化を図ることができる。 Lead-acid batteries are widely used in industry, for example, as batteries in automobiles, backup power sources, and main power sources in electric vehicles. A positive electrode in a lead-acid battery is required to improve the utilization rate of a positive electrode active material held in a current collector. The use of a positive electrode with an excellent utilization rate of the positive electrode active material can, for example, reduce the amount of the positive electrode active material used to obtain a predetermined discharge capacity, and as a result, the weight of the lead-acid battery can be reduced.

これに対して、例えば特許文献1には、正極活物質の利用率を高めるために、正極の活物質中に塩基性硫酸鉛及び黒鉛を添加し、電解液中にリン酸を1質量%以下含有した鉛蓄電池が開示されている。 On the other hand, for example, in Patent Document 1, in order to increase the utilization rate of the positive electrode active material, basic lead sulfate and graphite are added to the active material of the positive electrode, and phosphoric acid is added to the electrolyte solution in an amount of 1% by mass or less. A containing lead-acid battery is disclosed.

特開2011-165378号公報JP 2011-165378 A

しかし、正極活物質の利用率には未だ改善の余地がある。そこで、本発明は、正極活物質の利用率に優れる鉛蓄電池用正極板、及び当該正極板を備える鉛蓄電池を提供することを目的とする。 However, there is still room for improvement in the utilization rate of the positive electrode active material. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a positive electrode plate for a lead-acid battery and a lead-acid battery including the positive electrode plate, which has an excellent utilization rate of the positive electrode active material.

本発明の一側面は、正極集電体と、正極集電体に保持された正極活物質とを備え、正極活物質は、不規則に縮んでおり、下記式(1)で表される縮み率が45%以上である繊維(以下「縮み繊維」とも言う。)を含む、鉛蓄電池用正極板である。
縮み率(%)=(y-x)/y×100 …(1)
(式中、xは繊維の一端から他端までの最短距離、yは繊維の長手方向に沿った長さを表す。)
One aspect of the present invention includes a positive electrode current collector and a positive electrode active material held by the positive electrode current collector, the positive electrode active material shrinks irregularly, and the shrinkage represented by the following formula (1) A positive electrode plate for a lead-acid battery containing fibers having a shrinkage ratio of 45% or more (hereinafter also referred to as "shrinkage fibers").
Shrinkage rate (%)=(y−x)/y×100 (1)
(In the formula, x is the shortest distance from one end of the fiber to the other, and y is the length along the longitudinal direction of the fiber.)

本発明の他の一側面は、正極活物質を正極集電体に保持させる工程を備え、正極活物質は、不規則に縮んでおり、上記式(1)で表される縮み率が45%以上である繊維を含む、鉛蓄電池用正極板の製造方法である。 Another aspect of the present invention includes a step of holding a positive electrode active material on a positive electrode current collector, the positive electrode active material shrinks irregularly, and the shrinkage rate represented by the above formula (1) is 45%. It is a manufacturing method of the positive electrode plate for lead storage batteries containing the fiber which is the above.

上記各側面において、縮み率は80%以下であってよく、上記繊維はポリマ繊維を含んでいてよい。 In each of the above aspects, the shrinkage may be 80% or less, and the fibers may comprise polymer fibers.

本発明の他の一側面は、上記の正極板を備える鉛蓄電池である。 Another aspect of the present invention is a lead-acid battery comprising the positive electrode plate described above.

本発明の他の一側面は、上記の製造方法により正極板を製造する工程と、正極板を含む鉛蓄電池を組み立てる工程と、を備える、鉛蓄電池の製造方法である。 Another aspect of the present invention is a method of manufacturing a lead-acid battery, comprising the steps of manufacturing a positive electrode plate by the manufacturing method described above and assembling a lead-acid battery including the positive electrode plate.

本発明によれば、正極活物質の利用率に優れる鉛蓄電池用正極板、及び当該正極板を備える鉛蓄電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode plate for lead storage batteries which is excellent in the utilization factor of a positive electrode active material, and a lead storage battery provided with the said positive electrode plate can be provided.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。1 is a perspective view showing the overall configuration and internal structure of a lead-acid battery according to one embodiment; FIG. 図1に示した鉛蓄電池の電極群を示す斜視図である。FIG. 2 is a perspective view showing an electrode group of the lead-acid battery shown in FIG. 1; 縮み繊維の一実施形態を示す模式図である。1 is a schematic diagram showing one embodiment of a crimped fiber; FIG.

以下、本発明の実施形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 FIG. 1 is a perspective view showing the overall configuration and internal structure of a lead-acid battery according to one embodiment. As shown in FIG. 1 , a lead-acid battery 1 includes a container 2 with an open top and a lid 3 that closes the opening of the container 2 . The container 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a negative electrode terminal 4 , a positive electrode terminal 5 , and a liquid port plug 6 for closing the liquid inlet provided in the lid 3 .

電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。 Inside the container 2 are an electrode group 7, a negative electrode column 8 connecting the electrode group 7 to the negative electrode terminal 4, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 5, dilute sulfuric acid and the like. of electrolyte are contained.

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、負極板9と、正極板10と、負極板9と正極板10との間に配置されたセパレータ11と、を備えている。負極板9は、負極集電体(負極格子体)12と、負極集電体12に保持された負極活物質13と、を備えている。正極板10は、正極集電体(正極格子体)14と、正極集電体14に保持された正極活物質15と、を備えている。なお、本明細書では、化成後の負極板から負極集電体を除いたものを「負極活物質」、化成後の正極板から正極集電体を除いたものを「正極活物質」とそれぞれ定義する。 FIG. 2 is a perspective view showing the electrode group 7. FIG. As shown in FIG. 2 , the electrode group 7 includes a negative plate 9 , a positive plate 10 , and a separator 11 interposed between the negative plate 9 and the positive plate 10 . The negative plate 9 includes a negative current collector (negative grid) 12 and a negative active material 13 held on the negative current collector 12 . The positive electrode plate 10 includes a positive electrode current collector (positive grid) 14 and a positive electrode active material 15 held on the positive electrode current collector 14 . In the present specification, the negative electrode plate after chemical forming from which the negative electrode collector is removed is referred to as "negative electrode active material", and the positive electrode plate after chemical conversion from which the positive electrode current collector is removed is referred to as "positive electrode active material". Define.

電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。電極群7において、複数の負極板9における各負極集電体12が有する耳部12a同士は、負極側ストラップ16で集合溶接されている。同様に、複数の正極板10における各正極集電体14が有する耳部14a同士は、正極側ストラップ17で集合溶接されている。負極側ストラップ16及び正極側ストラップ17は、それぞれ、負極柱8及び正極柱を介して負極端子4及び正極端子5に接続されている。 The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately laminated in a direction substantially parallel to the opening surface of the container 2 with separators 11 interposed therebetween. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged so that their main surfaces extend in the direction perpendicular to the opening surface of the container 2 . In the electrode group 7 , the tabs 12 a of the negative electrode current collectors 12 of the plurality of negative electrode plates 9 are collectively welded together with a negative strap 16 . Similarly, the tabs 14 a of the positive current collectors 14 of the plurality of positive plates 10 are collectively welded together with a positive strap 17 . The negative strap 16 and the positive strap 17 are connected to the negative terminal 4 and the positive terminal 5 through the negative pole 8 and the positive pole, respectively.

セパレータ11は、例えば袋状に形成されており、負極板9を収容している。セパレータ11は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等で形成されている。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。The separator 11 is formed in a bag shape, for example, and accommodates the negative electrode plate 9 . The separator 11 is made of, for example, polyethylene (PE), polypropylene (PP), or the like. The separator 11 may be a woven fabric, a non-woven fabric, a porous film, or the like made of these materials to which inorganic particles such as SiO 2 and Al 2 O 3 are adhered.

負極集電体12及び正極集電体14は、それぞれ、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb-Sn-Ca系合金)であってよい。 The negative electrode current collector 12 and the positive electrode current collector 14 are each made of a lead alloy. The lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth, etc. in addition to lead. Specifically, for example, an alloy containing lead, tin and calcium (Pb—Sn -Ca-based alloy).

負極活物質13は、Pb成分として少なくともPbを含み、必要に応じて、Pb以外のPb成分(例えばPbSO)及び添加剤を更に含む。負極活物質13は、好ましくは、多孔質の海綿状鉛(Spongy Lead)を含む。Pb成分の含有量は、負極活物質の全質量を基準として、90質量%以上又は95質量%以上であってよく、99質量%以下又は98質量%以下であってよい。なお、負極活物質の全質量は、例えば、鉛蓄電池から負極(負極集電体及び負極活物質)を取り出して水洗し、負極を十分に乾燥させた後に測定した負極の質量と、負極集電体の質量との差から算出することができる。乾燥は、例えば、50℃で24時間行う。The negative electrode active material 13 contains at least Pb as a Pb component, and if necessary, further contains a Pb component other than Pb (for example, PbSO 4 ) and an additive. The negative electrode active material 13 preferably includes porous spongy lead. The content of the Pb component may be 90% by mass or more or 95% by mass or more and may be 99% by mass or less or 98% by mass or less based on the total mass of the negative electrode active material. The total mass of the negative electrode active material is, for example, the mass of the negative electrode (negative electrode current collector and negative electrode active material), which is measured after the negative electrode (negative electrode current collector and negative electrode active material) is removed from the lead-acid battery, washed with water, and sufficiently dried. It can be calculated from the difference with the mass of the body. Drying is performed, for example, at 50° C. for 24 hours.

添加剤としては、例えば、スルホ基及び/又はスルホン酸塩基を有する樹脂、硫酸バリウム、炭素材料(炭素繊維を除く)及び繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。 Examples of additives include resins having sulfo groups and/or sulfonate groups, barium sulfate, carbon materials (excluding carbon fibers) and fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.). are mentioned.

スルホ基及び/又はスルホン酸塩基を有する樹脂は、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種であってよい。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Resins having sulfo groups and/or sulfonic acid groups include ligninsulfonic acid, ligninsulfonate, and condensates of phenols, aminoarylsulfonic acid, and formaldehyde (for example, bisphenol, aminobenzenesulfonic acid, and formaldehyde). may be at least one selected from the group consisting of condensates). Examples of carbon materials include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.

正極活物質15は、Pb成分であるPbOと、縮み繊維とを含む。正極活物質15は、必要に応じて、PbO以外のPb成分(例えばPbSO)及び添加剤を更に含んでいてよい。The positive electrode active material 15 includes PbO 2 as a Pb component and shrinkage fibers. The positive electrode active material 15 may further contain a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive, if necessary.

正極活物質15は、好ましくは、Pb成分としてβ-PbOを含む。正極活物質15は、Pb成分として、α-PbOを更に含んでいてもよい。すなわち、正極活物質15は、一実施形態において、Pb成分としてβ-PbOのみを含んでいてよく、他の一実施形態において、Pb成分としてα-PbO及びβ-PbOを含んでいてよい。The positive electrode active material 15 preferably contains β-PbO 2 as the Pb component. The positive electrode active material 15 may further contain α-PbO 2 as a Pb component. That is, the positive electrode active material 15 may contain only β-PbO 2 as the Pb component in one embodiment, and may contain α-PbO 2 and β-PbO 2 as the Pb component in another embodiment. good.

Pb成分の含有量は、低温高率放電性能及びサイクル性能が更に向上する観点から、正極活物質の全質量を基準として、好ましくは90質量%以上、より好ましくは95質量%以上である。Pb成分の含有量は、製造コストの低減及び軽量化の観点から、正極活物質の全質量を基準として、好ましくは99.9質量%以下、より好ましくは98質量%以下である。なお、正極活物質の全質量は、例えば、鉛蓄電池から正極(正極集電体及び正極活物質)を取り出して水洗し、正極を十分に乾燥させた後に測定した正極の質量と、正極集電体の質量との差から算出することができる。乾燥は、例えば、50℃で24時間行う。 The content of the Pb component is preferably 90% by mass or more, more preferably 95% by mass or more, based on the total mass of the positive electrode active material, from the viewpoint of further improving low-temperature high-rate discharge performance and cycle performance. The content of the Pb component is preferably 99.9% by mass or less, more preferably 98% by mass or less, based on the total mass of the positive electrode active material, from the viewpoint of manufacturing cost reduction and weight reduction. The total mass of the positive electrode active material is, for example, the mass of the positive electrode (positive electrode current collector and positive electrode active material) taken out from the lead storage battery, washed with water, and measured after the positive electrode is sufficiently dried. It can be calculated from the difference with the mass of the body. Drying is performed, for example, at 50° C. for 24 hours.

図3は、縮み繊維の一実施形態を示す模式図である。縮み繊維18は、不規則に縮んでいる。縮み繊維18は、規則的に縮んでいる繊維(例えばコイル状(螺旋状)の繊維)とは異なるものである。縮み繊維18の形状(縮み方)は、後述する縮み率を満たすものであれば任意である。 FIG. 3 is a schematic diagram showing one embodiment of a crimped fiber. The crimped fibers 18 are irregularly crimped. Crimped fibers 18 are different from regularly crimped fibers (eg, coiled (helical) fibers). The shape (how it shrinks) of the shrinkable fibers 18 is arbitrary as long as it satisfies the shrinkage rate described later.

縮み繊維は、45%以上の縮み率を有している。縮み率は、下記式(1)で表される。
縮み率(%)=(y-x)/y×100 …(1)
式中、xは、図3に示されるように、縮み繊維18の一端18aから他端18bまでの最短距離(縮み繊維18の一端18aと他端18bとを結ぶ直線の距離)を表す。yは、図3に示されるように、縮み繊維18の長手方向に沿った長さ(縮み繊維18それ自体の長さ)を表す。x及びyは、縮み繊維18のSEM像から算出することができる。yは、例えば、縮み繊維18の長手方向を分割して複数の直線(例えば10本の直線)に近似し、当該複数の直線の長さの総和として算出することができる。
The crimped fibers have a shrinkage of 45% or greater. The shrinkage ratio is represented by the following formula (1).
Shrinkage rate (%)=(y−x)/y×100 (1)
In the formula, x represents the shortest distance from one end 18a to the other end 18b of the crimped fiber 18 (distance of a straight line connecting the one end 18a and the other end 18b of the crimped fiber 18), as shown in FIG. y represents the length along the longitudinal direction of the crimped fiber 18 (the length of the crimped fiber 18 itself), as shown in FIG. x and y can be calculated from the SEM image of the crimped fiber 18 . For example, y can be calculated by dividing the longitudinal direction of the crimped fiber 18 and approximating a plurality of straight lines (for example, 10 straight lines) and calculating the sum of the lengths of the plurality of straight lines.

縮み繊維18の縮み率は、50%以上、55%以上、60%以上、65%以上、又は70%以上であってもよく、80%以下、75%以下、70%以下、又は65%以下であってもよい。 The shrinkage of the shrinkage fibers 18 may be 50% or more, 55% or more, 60% or more, 65% or more, or 70% or more, and 80% or less, 75% or less, 70% or less, or 65% or less. may be

縮み繊維18の縮み率は、例えば、所定の応力を繊維の長手方向に対して一定時間加えることにより調整可能である。加える応力が大きいほど、また応力を加える時間が長いほど、縮み率が大きくなる傾向にある。 The shrinkage rate of the shrinkable fibers 18 can be adjusted, for example, by applying a predetermined stress to the longitudinal direction of the fibers for a certain period of time. The shrinkage tends to increase as the applied stress increases and as the stress is applied for a longer period of time.

縮み繊維18は、例えば、ポリマ繊維、炭素繊維等を含んでよい。ポリマ繊維としては、例えば、ポリオレフィン繊維(ポリエチレン、ポリプロピレン等を含む繊維)、ポリエステル繊維(ポリエチレンテレフタレート等を含む繊維)、及びアクリル繊維(ポリアクリレート、ポリメタクリレート等を含む繊維)が挙げられる。縮み繊維18は、優れた充放電性能(充電受入性能、低温高率放電性能等)が得られる観点から、好ましくはポリマ繊維、より好ましくはアクリル繊維を含む。 Crimp fibers 18 may include, for example, polymer fibers, carbon fibers, and the like. Examples of polymer fibers include polyolefin fibers (fibers containing polyethylene, polypropylene, etc.), polyester fibers (fibers containing polyethylene terephthalate, etc.), and acrylic fibers (fibers containing polyacrylate, polymethacrylate, etc.). From the viewpoint of obtaining excellent charge-discharge performance (charge acceptance performance, low-temperature high-rate discharge performance, etc.), the shrunken fibers 18 preferably contain polymer fibers, more preferably acrylic fibers.

縮み繊維18の含有量は、正極活物質の利用率を更に向上させる観点から、正極活物質の全質量を基準として、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上である。縮み繊維18の含有量は、正極板の電気抵抗を低減させる観点から、正極活物質の全質量を基準として、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。 From the viewpoint of further improving the utilization rate of the positive electrode active material, the content of the crimped fiber 18 is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably, based on the total mass of the positive electrode active material. is 2% by mass or more. From the viewpoint of reducing the electrical resistance of the positive electrode plate, the content of the crimped fiber 18 is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass, based on the total mass of the positive electrode active material. It is below.

添加剤としては、例えば、炭素材料(縮み繊維(炭素繊維)を除く。)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of additives include carbon materials (excluding shrinkage fibers (carbon fibers)). Examples of carbon materials include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.

鉛蓄電池1では、正極活物質15が縮み繊維18を含んでいることにより、優れた正極活物質の利用率が得られる。その理由として、縮み繊維18は、縮み率が小さい繊維(比較的縮んでいない繊維)に比べて、正極板の熟成時及び乾燥時に、繊維が正極集電体とより強く密着すること、また、PbSOの成長方向がより均一になることによって、電子伝導及び電解液移動が好適に保たれるためである、と本発明者らは推察している。In the lead-acid battery 1, since the positive electrode active material 15 contains the shrinkable fibers 18, an excellent utilization rate of the positive electrode active material can be obtained. The reason for this is that the shrunken fibers 18 adhere more strongly to the positive electrode current collector during aging and drying of the positive electrode plate than fibers with a small shrinkage rate (relatively non-shrunk fibers). The present inventors speculate that this is because the more uniform growth direction of PbSO 4 keeps the electron conduction and the electrolyte migration favorable.

以上説明した鉛蓄電池1は、例えば、負極板を製造する負極板製造工程と、正極板を製造する正極板製造工程と、負極板及び正極板を含む鉛蓄電池1を組み立てる組立工程と、を備える製造方法により製造される。なお、負極板製造工程及び正極板製造工程の順序は任意である。 The lead-acid battery 1 described above includes, for example, a negative electrode plate manufacturing process for manufacturing a negative electrode plate, a positive electrode plate manufacturing process for manufacturing a positive electrode plate, and an assembly process for assembling the lead-acid battery 1 including the negative electrode plate and the positive electrode plate. Manufactured by the manufacturing method. The order of the negative electrode plate manufacturing process and the positive electrode plate manufacturing process is arbitrary.

負極板製造工程では、負極集電体12に負極活物質13を保持させる。具体的には、まず、負極集電体12に負極活物質ペーストを保持させ、当該負極活物質ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に、未化成の負極活物質を化成する。 In the negative electrode plate manufacturing process, the negative electrode current collector 12 is caused to hold the negative electrode active material 13 . Specifically, first, a negative electrode active material paste is held on the negative electrode current collector 12, and the negative electrode active material paste is aged and dried to obtain an unformed negative electrode active material. chemically.

負極活物質ペーストは、例えば、鉛粉、添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。負極活物質ペーストは、例えば、鉛粉と添加剤とを混合することにより混合物を得た後に、この混合物に溶媒及び硫酸を加えて混練することにより得られる。 The negative electrode active material paste contains, for example, lead powder, additives, a solvent (such as water or an organic solvent) and sulfuric acid (such as dilute sulfuric acid). The negative electrode active material paste is obtained, for example, by mixing lead powder and an additive to obtain a mixture, and then adding a solvent and sulfuric acid to the mixture and kneading the mixture.

鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。 As the lead powder, for example, lead powder produced by a ball mill type lead powder manufacturing machine or a Barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of main component PbO powder and scaly metal lead) ).

熟成は、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間行われてよい。乾燥は、温度45~80℃で15~30時間行われてよい。 Aging may be carried out for 15 to 60 hours in an atmosphere with a temperature of 35 to 85° C. and a humidity of 50 to 98 RH%. Drying may be carried out at a temperature of 45-80° C. for 15-30 hours.

正極板製造工程では、正極集電体14に正極活物質15を保持させる。具体的には、まず、正極集電体14に正極活物質ペーストを保持させ、当該正極活物質ペーストを、負極板製造工程と同様の条件で熟成及び乾燥することにより未化成の正極活物質を得た後に、未化成の正極活物質を化成する。 In the positive electrode plate manufacturing process, the positive electrode current collector 14 holds the positive electrode active material 15 . Specifically, first, the positive electrode current collector 14 is caused to hold the positive electrode active material paste, and the positive electrode active material paste is aged and dried under the same conditions as in the negative electrode plate manufacturing process to remove the unformed positive electrode active material. After obtaining, the unformed positive electrode active material is formed.

正極活物質ペーストは、例えば、負極活物質ペーストに用いられるものと同様の鉛粉、上述した縮み繊維、必要に応じて添加される添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。正極活物質ペーストは、化成時間を短縮できる観点から、鉛丹(Pb)を更に含んでいてもよい。The positive electrode active material paste includes, for example, the same lead powder as that used in the negative electrode active material paste, the above-described shrunken fibers, additives added as necessary, a solvent (such as water or an organic solvent) and sulfuric acid (such as dilute sulfuric acid). The positive electrode active material paste may further contain red lead (Pb 3 O 4 ) from the viewpoint of shortening the formation time.

組立工程では、例えば、まず、負極板製造工程で得られた負極板と、正極板製造工程で得られた正極板とを、セパレータ11を介して積層し、同極性の電極板の集電部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の鉛蓄電池を作製する。次に、未化成の鉛蓄電池に希硫酸を入れて、直流電流を通電して電槽化成する。続いて、化成後の硫酸の比重(20℃)を適切な電解液の比重に調整することで、鉛蓄電池1が得られる。 In the assembly process, for example, first, the negative electrode plate obtained in the negative electrode plate manufacturing process and the positive electrode plate obtained in the positive electrode plate manufacturing process are laminated with the separator 11 interposed therebetween, and the current collectors of the electrode plates of the same polarity are formed. are welded with a strap to obtain an electrode group. This electrode group is arranged in a container to produce an unformed lead-acid battery. Next, dilute sulfuric acid is added to the unformed lead-acid battery, and direct current is applied to form the container. Subsequently, the lead-acid battery 1 is obtained by adjusting the specific gravity (20° C.) of the sulfuric acid after chemical conversion to an appropriate specific gravity of the electrolytic solution.

化成に用いる硫酸の比重(20℃)は、1.15~1.25であってよい。化成後の硫酸の比重(20℃)は、好ましくは1.25~1.33、より好ましくは1.26~1.30である。化成条件及び硫酸の比重は、電極板のサイズに応じて調整することができる。化成処理は、組立工程において実施されてもよく、負極板製造工程及び正極板製造工程のそれぞれにおいて実施されてもよい(タンク化成)。 The specific gravity (20° C.) of sulfuric acid used for chemical conversion may be 1.15 to 1.25. The specific gravity (20° C.) of sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30. The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode plate. The chemical conversion treatment may be performed in the assembly process, or may be performed in each of the negative electrode plate manufacturing process and the positive electrode plate manufacturing process (tank chemical conversion).

以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the following examples.

<実施例1>
(正極板の作製)
鉛粉100質量部に対して、縮み率45%のアクリル繊維(縮み繊維)2.2質量部を加えて乾式混合した。次に、鉛粉及び縮み繊維からなる混合物100質量部に対して、水3質量部を加えると共に、希硫酸(比重1.28)9質量部を段階的に加え、1時間混練して正極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式正極集電体に、正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を得た。
<Example 1>
(Preparation of positive electrode plate)
2.2 parts by mass of acrylic fiber (shrinked fiber) having a shrinkage rate of 45% was added to 100 parts by mass of lead powder and dry mixed. Next, to 100 parts by mass of a mixture of lead powder and shrunken fibers, 3 parts by mass of water are added, and 9 parts by mass of dilute sulfuric acid (specific gravity: 1.28) are added stepwise, followed by kneading for 1 hour to activate the positive electrode. A substance paste was made. An expanded positive electrode current collector prepared by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with a positive electrode active material paste, and then aged for 24 hours in an atmosphere at a temperature of 50° C. and a humidity of 98%. After that, it was dried at a temperature of 50° C. for 16 hours to obtain an unformed positive electrode plate.

(負極板の作製)
鉛粉100質量部に対して、ビスパーズP215(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、商品名、日本製紙株式会社製)0.2質量部(樹脂固形分)、アクリル繊維0.1質量部、硫酸バリウム1.0質量部、及びファーネスブラック0.2質量部の混合物を添加し、乾式混合した。次に、この混合物に水を加えて混練した後、比重1.280の希硫酸を少量ずつ添加しながら更に混練して、負極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式負極集電体に、この負極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の負極板を得た。
(Preparation of negative electrode plate)
Per 100 parts by mass of lead powder, Bisperz P215 (condensate of bisphenol, aminobenzenesulfonic acid and formaldehyde, trade name, manufactured by Nippon Paper Industries Co., Ltd.) 0.2 parts by mass (resin solid content), acrylic fiber 0.1 A mixture of parts by weight, 1.0 parts by weight of barium sulfate, and 0.2 parts by weight of furnace black was added and dry mixed. Next, after adding water to this mixture and kneading, the mixture was further kneaded while adding little by little dilute sulfuric acid having a specific gravity of 1.280 to prepare a negative electrode active material paste. An expanded negative electrode current collector prepared by subjecting a rolled sheet made of a lead alloy to expansion processing was filled with this negative electrode active material paste, and then aged for 24 hours in an atmosphere at a temperature of 50° C. and a humidity of 98%. Then, it was dried at a temperature of 50° C. for 16 hours to obtain an unformed negative electrode plate.

(鉛蓄電池の組み立て)
袋状に加工したポリエチレン製のセパレータに、未化成の負極板を挿入した。次に、未化成の正極板7枚と、袋状セパレータに挿入された未化成の負極板8枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極板の耳部同士を溶接して電極群を作製した。電極群を電槽に挿入して2V単セル電池(JIS D 5301規定のD23サイズの単セルに相当)を組み立てた。その後、比重1.240の硫酸を注入し、40℃の水槽に入れて1時間静置した。その後、17Aにて18時間の定電流で化成を行った。なお、化成後の電解液(硫酸溶液)の比重を1.29(20℃)に調整した。
(Assembly of lead-acid battery)
An unformed negative electrode plate was inserted into a bag-shaped separator made of polyethylene. Next, seven sheets of the positive electrode plate which had not been chemically formed and eight sheets of the negative electrode plate which had not been chemically formed which was inserted into the bag-shaped separator were alternately laminated. Subsequently, by a cast-on-strap (COS) method, the tabs of electrode plates of the same polarity were welded together to produce an electrode group. A 2V single cell battery (equivalent to a D23 size single cell defined in JIS D 5301) was assembled by inserting the electrode group into a battery case. After that, sulfuric acid having a specific gravity of 1.240 was injected, and the mixture was placed in a water bath at 40° C. and allowed to stand for 1 hour. After that, formation was carried out at a constant current of 17 A for 18 hours. The specific gravity of the electrolytic solution (sulfuric acid solution) after chemical conversion was adjusted to 1.29 (20° C.).

<実施例2~5及び比較例1>
正極板の作製において、縮み率45%のアクリル繊維(縮み繊維)に代えて、表1に示す縮み率を有するアクリル繊維を用いた以外は、実施例1と同様にして、正極板及び負極板の作製、並びに鉛蓄電池の組み立てを行った。
<Examples 2 to 5 and Comparative Example 1>
A positive electrode plate and a negative electrode plate were produced in the same manner as in Example 1, except that acrylic fibers having a shrinkage rate shown in Table 1 were used instead of acrylic fibers having a shrinkage rate of 45% (shrinkage fibers) in the production of the positive electrode plate. and assembled a lead-acid battery.

[正極活物質の利用率の評価]
各実施例及び比較例の鉛蓄電池における正極活物質の利用率を以下のとおり評価した。結果を表1に示す。
作製した鉛蓄電池に対して、25℃の環境下において、0.2Cの電流値で終止電圧1.75Vの定電流放電を行い、このときの放電容量(Ah)を測定した。測定された放電容量を用いて、正極活物質の利用率を下記式:
利用率(%)=[測定された放電容量(Ah)]/[正極活物質の理論容量(Ah)]×100
により算出される利用率に基づいて、以下のとおり評価した。なお、正極活物質の理論容量は、「正極内の酸化鉛重量(g)×0.22(Ah/g)」により求められる。
A:利用率が60%以上
B:利用率が50%以上60%未満
C:利用率が50%未満
[Evaluation of utilization rate of positive electrode active material]
The utilization rate of the positive electrode active material in the lead-acid battery of each example and comparative example was evaluated as follows. Table 1 shows the results.
The produced lead-acid battery was subjected to constant current discharge at a current value of 0.2 C and a final voltage of 1.75 V in an environment of 25° C., and the discharge capacity (Ah) at this time was measured. Using the measured discharge capacity, the utilization rate of the positive electrode active material is calculated by the following formula:
Utilization rate (%) = [measured discharge capacity (Ah)] / [theoretical capacity of positive electrode active material (Ah)] x 100
Based on the utilization rate calculated by the following evaluation. In addition, the theoretical capacity of the positive electrode active material is obtained by "the lead oxide weight (g) in the positive electrode×0.22 (Ah/g)".
A: Utilization rate of 60% or more B: Utilization rate of 50% or more and less than 60% C: Utilization rate of less than 50%

Figure 0007223870000001
Figure 0007223870000001

1…鉛蓄電池、9…負極板、10…正極板、11…セパレータ、12…負極集電体、13…負極活物質、14…正極集電体、15…正極活物質。 DESCRIPTION OF SYMBOLS 1... Lead-acid battery, 9... Negative electrode plate, 10... Positive electrode plate, 11... Separator, 12... Negative electrode collector, 13... Negative electrode active material, 14... Positive electrode collector, 15... Positive electrode active material.

Claims (8)

正極集電体と、前記正極集電体に保持された正極活物質とを備え、
前記正極活物質は、不規則に縮んでおり、下記式(1)で表される縮み率が45%以上である繊維を含み、
前記繊維の含有量が、前記正極活物質の全質量を基準として、0.5質量%以上10質量%以下である、鉛蓄電池用正極板。
縮み率(%)=(y-x)/y×100 …(1)
(式中、xは前記繊維の一端から他端までの最短距離、yは前記繊維の長手方向に沿った長さを表す。)
A positive electrode current collector and a positive electrode active material held by the positive electrode current collector,
The positive electrode active material includes fibers that are irregularly shrunk and have a shrinkage rate represented by the following formula (1) of 45% or more,
A positive electrode plate for a lead-acid battery, wherein the fiber content is 0.5% by mass or more and 10% by mass or less based on the total mass of the positive electrode active material .
Shrinkage rate (%)=(y−x)/y×100 (1)
(In the formula, x represents the shortest distance from one end of the fiber to the other, and y represents the length along the longitudinal direction of the fiber.)
前記縮み率が80%以下である、請求項1に記載の正極板。 2. The positive electrode plate according to claim 1, wherein said shrinkage rate is 80% or less. 前記繊維がポリマ繊維を含む、請求項1又は2に記載の正極板。 3. The positive electrode plate of claim 1 or 2, wherein said fibers comprise polymer fibers. 請求項1~3のいずれか一項に記載の正極板を備える、鉛蓄電池。 A lead-acid battery comprising the positive electrode plate according to any one of claims 1 to 3. 正極活物質を正極集電体に保持させる工程を備え、
前記正極活物質は、不規則に縮んでおり、下記式(1)で表される縮み率が45%以上である繊維を含み、
前記繊維の含有量が、前記正極活物質の全質量を基準として、0.5質量%以上10質量%以下である、鉛蓄電池用正極板の製造方法。
縮み率(%)=(y-x)/y×100 …(1)
(式中、xは前記繊維の一端から他端までの最短距離、yは前記繊維の長手方向に沿った長さを表す。)
A step of holding the positive electrode active material on the positive electrode current collector,
The positive electrode active material includes fibers that are irregularly shrunk and have a shrinkage rate represented by the following formula (1) of 45% or more,
A method for producing a positive electrode plate for a lead-acid battery, wherein the fiber content is 0.5% by mass or more and 10% by mass or less based on the total mass of the positive electrode active material .
Shrinkage rate (%)=(y−x)/y×100 (1)
(In the formula, x represents the shortest distance from one end of the fiber to the other, and y represents the length along the longitudinal direction of the fiber.)
前記縮み率が80%以下である、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the shrinkage rate is 80% or less. 前記繊維がポリマ繊維を含む、請求項5又は6に記載の製造方法。 7. The manufacturing method according to claim 5 or 6, wherein said fibers comprise polymer fibers. 請求項5~7のいずれか一項に記載の製造方法により前記正極板を製造する工程と、
前記正極板を含む鉛蓄電池を組み立てる工程と、を備える、鉛蓄電池の製造方法。
a step of manufacturing the positive electrode plate by the manufacturing method according to any one of claims 5 to 7;
and a step of assembling a lead-acid battery including the positive electrode plate.
JP2021550961A 2019-10-07 2019-10-07 Positive electrode plate, lead-acid battery and manufacturing method thereof Active JP7223870B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039529 WO2021070230A1 (en) 2019-10-07 2019-10-07 Positive electrode plate, lead storage battery, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2021070230A1 JPWO2021070230A1 (en) 2021-04-15
JP7223870B2 true JP7223870B2 (en) 2023-02-16

Family

ID=75437326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021550961A Active JP7223870B2 (en) 2019-10-07 2019-10-07 Positive electrode plate, lead-acid battery and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7223870B2 (en)
WO (1) WO2021070230A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049221A (en) 2012-08-30 2014-03-17 Gs Yuasa Corp Electrode plate for lead acid battery and lead acid battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611223B1 (en) * 1967-10-28 1971-03-22
JPS5253236A (en) * 1975-10-28 1977-04-28 Shin Kobe Electric Machinery Clad battery plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049221A (en) 2012-08-30 2014-03-17 Gs Yuasa Corp Electrode plate for lead acid battery and lead acid battery

Also Published As

Publication number Publication date
JPWO2021070230A1 (en) 2021-04-15
WO2021070230A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
EP0352115B1 (en) Lead-acid battery
US20110027653A1 (en) Negative plate for lead acid battery
US20110250500A1 (en) Positive active material for a lead-acid battery
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP6388094B1 (en) Lead acid battery
Bača et al. Negative lead-acid battery electrodes doped with glass fibres
JP7223870B2 (en) Positive electrode plate, lead-acid battery and manufacturing method thereof
JP7010556B2 (en) Positive electrode plate and lead acid battery
JP5656116B2 (en) Lead acid battery
TWI681587B (en) Method for manufacturing fast charging and long life li-s batteries
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
JP7220371B2 (en) Electrode plates, grids and lead-acid batteries
JP7493329B2 (en) Lead-acid battery
JP7285206B2 (en) Method for determining electrode performance, lead-acid battery, and method for manufacturing the same
JP4984786B2 (en) Lead acid battery
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JP2020161316A (en) Positive electrode plate and lead acid battery
JPH0793135B2 (en) Lead acid battery and manufacturing method thereof
JP2000149932A (en) Lead-acid battery and its manufacture
JPH10223211A (en) Lead-acid battery and manufacture therefor
JP2913482B2 (en) Lead storage battery
CN117352826A (en) Multipolar ear fast-charging sodium ion power battery and preparation method thereof
JP2002343359A (en) Sealed type lead storage battery
CN115207275A (en) Bipolar electrode based on VA group simple substance or composite material cathode thereof and bipolar lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R150 Certificate of patent or registration of utility model

Ref document number: 7223870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150