JP2011171035A - Negative electrode plate for lead storage battery, and lead storage battery - Google Patents

Negative electrode plate for lead storage battery, and lead storage battery Download PDF

Info

Publication number
JP2011171035A
JP2011171035A JP2010032092A JP2010032092A JP2011171035A JP 2011171035 A JP2011171035 A JP 2011171035A JP 2010032092 A JP2010032092 A JP 2010032092A JP 2010032092 A JP2010032092 A JP 2010032092A JP 2011171035 A JP2011171035 A JP 2011171035A
Authority
JP
Japan
Prior art keywords
negative electrode
storage battery
lead storage
electrode plate
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010032092A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Daisuke Monma
大輔 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2010032092A priority Critical patent/JP2011171035A/en
Publication of JP2011171035A publication Critical patent/JP2011171035A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode plate for lead storage battery which is equipped inside a secondary battery used for a hybrid electric vehicle (HEV) and other industrial uses to demand high-rate discharge, and attains superior high-rate discharge characteristics and improvement of cycle lifetime, without fail. <P>SOLUTION: In the negative electrode plate for the lead storage battery, a material formed by adding and mixing conductive carbon and active carbon to a negative electrode active material is supported by a substrate for current collection, and as the active carbon, the active carbon of 44.5° or less of a gravity point angle of 10 faces by X-ray diffraction is used. The lead storage battery equipped with such a negative electrode plate makes improvement of cycle lifetime, without fail. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、PSOCで急速充放電を繰り返すハイブリッド自動車などの電気自動車や風力発電や太陽光発電などの産業に用いる鉛蓄電池用負極板及び鉛蓄電池に関する。   The present invention relates to a negative electrode plate for a lead storage battery and a lead storage battery used in an electric vehicle such as a hybrid vehicle that repeats rapid charge and discharge with PSOC, and in industries such as wind power generation and solar power generation.

先に、出願人は、特開2003-51306号公報において、鉛蓄電池用負極板とこれを具備した鉛蓄電池を開示した。該負極板は、負極活物質を主体とし、これに導電性を確保するカーボンとキャパシタ容量を確保する活性炭から成る2種類のカーボン材料を所定量添加、混合して調製した活物質合剤ペーストを集電用鉛合金基板に充填し、化成して成るものである。
該負極板を鉛蓄電池に用いるときは、負極活物質に導電性カーボンと活性炭が混在するので、その導電性カーボンによりPSOC状態で硫酸鉛が多く存在する負極の分極を減少させると同時に、活性炭の導電性を補うことができる。一方、活性炭により、導電性カーボンと共にその電気二重層容量を増大し、放電直後の電池電圧を高く維持することができる。かくして、この負極板を具備した鉛蓄電池は、PSOC状態での放電特性を大幅に改善でき、ハイブリッド車などの電気自動車、その他の高率放電を要求する各種の産業用途に適する。
Previously, the applicant disclosed in Japanese Patent Application Laid-Open No. 2003-51306 a negative electrode plate for a lead storage battery and a lead storage battery including the same. The negative electrode plate is made of an active material mixture paste prepared by adding and mixing a predetermined amount of two kinds of carbon materials mainly composed of a negative electrode active material, carbon for ensuring conductivity and activated carbon for ensuring capacitor capacity. A lead alloy substrate for current collection is filled and formed.
When the negative electrode plate is used for a lead storage battery, conductive carbon and activated carbon coexist in the negative electrode active material, so that the conductive carbon reduces the polarization of the negative electrode in which a large amount of lead sulfate exists in the PSOC state, and at the same time, The conductivity can be supplemented. On the other hand, the activated carbon can increase the electric double layer capacity together with the conductive carbon, and can maintain the battery voltage immediately after discharge. Thus, the lead-acid battery equipped with this negative electrode plate can greatly improve the discharge characteristics in the PSOC state, and is suitable for various electric uses such as electric vehicles such as hybrid vehicles and other high-rate discharges.

特開2003-51306号公報JP 2003-51306 JP

従来、上記のように電気二重層に用いられるキャパシタ容量を有する活性炭については、より大きな電気二重層容量と急速充放電性能を獲得するため、各種の活性炭を選択して使用したり、比表面積と細孔体積の増大と吸着イオン種に合わせた細孔径の最適化を検討したりして来たが、これらの選択した活性炭を用いた負極板を具備せしめた鉛蓄電池では、電解液に由来する硫酸イオンとプロトンの他に、負極活物質に由来する鉛イオンが活性炭との吸脱着と酸化還元反応に関与するため、最適な活性炭の選択はより複雑なものとなった。
そこで発明者らは、試行錯誤し乍ら、鋭意検討を重ねた結果、蓄電池の優れた性能を確実に発揮する特定の活性炭を見出し、これにより、本発明の目的は、上記従来の課題を解決し、従来の活性炭の選択の迷いを解決し、これを用いた鉛蓄電池用負極板とこれを用いてサイクル寿命を確実に向上し得る鉛蓄電池を提供することに在る。
Conventionally, as for the activated carbon having the capacitor capacity used in the electric double layer as described above, various activated carbons can be selected and used to obtain a larger electric double layer capacity and rapid charge / discharge performance, We have studied the optimization of the pore volume increase and the pore diameter according to the adsorbed ion species, but the lead storage battery equipped with the negative electrode plate using these selected activated carbons is derived from the electrolyte In addition to sulfate ions and protons, lead ions derived from the negative electrode active material are involved in adsorption / desorption and redox reactions with activated carbon, making the selection of optimum activated carbon more complicated.
Accordingly, as a result of repeated trial and error, the inventors have found a specific activated carbon that reliably exhibits the excellent performance of the storage battery, and the object of the present invention is to solve the above-described conventional problems. Then, there exists in providing the lead storage battery which solves the question of selection of the conventional activated carbon, and can improve a cycle life reliably using the negative electrode plate for lead storage batteries using this.

本発明は、請求項1に記載の通り、負極活物質に導電性カーボンと活性炭を添加混合して成るものを集電用基板に支持せしめた鉛蓄電池用負極板において、該活性炭として、X線回折による10面の重心点角度が44.5°以下である活性炭を用いることを特徴とする鉛蓄電池用負極板に存する。
更に本発明は、請求項2に記載の通り、請求項1に記載の負極板を具備した鉛蓄電池に存する。
The present invention provides a negative electrode plate for a lead storage battery in which a negative electrode active material added and mixed with conductive carbon and activated carbon is supported on a current collecting substrate as described in claim 1, wherein the activated carbon is an X-ray. The negative electrode plate for a lead storage battery is characterized by using activated carbon whose centroid point angle of 10 planes by diffraction is 44.5 ° or less.
Furthermore, the present invention resides in a lead storage battery including the negative electrode plate according to claim 1 as described in claim 2.

請求項1に係る上記特定の活性炭を含有する鉛蓄電池用負極板により、これを具備した鉛蓄電池のPSOC状態での放電特性を改善すると共に、サイクル寿命の向上を確実にもたらし、ハイブリッド自動車、電気自動車、その他の高率放電を要求する各種の産業用途に適用できる。   The negative electrode plate for a lead storage battery containing the specific activated carbon according to claim 1 improves the discharge characteristics in the PSOC state of the lead storage battery equipped with the same, and also reliably improves the cycle life, so that the hybrid vehicle, the electric It can be applied to various industrial uses that require high rate discharge such as automobiles.

活性炭の10回折線の重心点角度とサイクル寿命との関係を示すグラフである。It is a graph which shows the relationship between the gravity center point angle of 10 diffraction lines of activated carbon, and cycle life.

本発明の実施形態例を以下に説明する。
本発明の鉛蓄電池用負極板は、例えば、前記の特許文献1に記載のように、負極活物質100重量部に対し導電性を確保する導電性カーボン1〜5重量部と活性炭1〜5重量部を配合し、且つ該導電性カーボンと該活性炭との2種のカーボン合剤を負極活物質100重量部に対し2〜8重量部を添加、混合して成るものが好ましいが、これに限定されない。但し、活性炭としては、下記に詳述する特定の活性炭でなければならない。
導電性カーボンとしては、従来公知のファーネスブラックなどのカーボンブラック、ケッチェンブラック、黒鉛などの導電性を確保するカーボン種から選んだ少なくとも1種の導電性カーボンを添加する。
このようにして得られた負極活物質と上記2種のカーボン合剤の混合物に水などによりペースト状としたものを鉛又は鉛合金から成る格子基板などの集電用基板に充填し、乾燥して未化成の負極板を製造し、次いで、これを化成し、本発明の鉛蓄電池用負極板を製造する。更に、これを負極板とした鉛蓄電池を製造する。
Embodiment examples of the present invention will be described below.
The negative electrode plate for a lead storage battery of the present invention, for example, as described in Patent Document 1 above, 1 to 5 parts by weight of conductive carbon and 1 to 5 parts by weight of activated carbon ensuring conductivity with respect to 100 parts by weight of the negative electrode active material. 2 parts by weight of the carbon mixture of the conductive carbon and the activated carbon is preferably added and mixed with 100 parts by weight of the negative electrode active material. Not. However, the activated carbon must be a specific activated carbon described in detail below.
As the conductive carbon, at least one type of conductive carbon selected from carbon types such as carbon black such as conventionally known furnace black, ketjen black, graphite, etc., which ensures conductivity is added.
A mixture of the negative electrode active material thus obtained and the above-mentioned two types of carbon mixture in a paste form with water or the like is filled into a current collecting substrate such as a lattice substrate made of lead or a lead alloy and dried. Then, an unchemically formed negative electrode plate is manufactured, and then, this is converted into a negative electrode plate for a lead storage battery of the present invention. Furthermore, the lead storage battery which uses this as a negative electrode plate is manufactured.

本発明の活性炭の特定は、下記する工程を順次行い知見した。
1)X線回折による種々の活性炭の測定:
サンプルとして、例えば、9種類の活性炭を選択し、その各活性炭を粉砕機で平均粒径30ミクロン以下になるように粉砕し、その各活性炭粉末をサンプルとして用意した。一方、X線回折装置として理学電気工業株式会社製のRINT2200Ultimaを用い、各サンプルをそのガラス製サンプルホルダーにセットし、X線源としてCu Kα線を用い、2θ=10-90°の測定を行った。得られた回折線はX線回折総合解析ソフトJADE+を用いてラインブロードニングとバックグラウンドの処理を行い、40-50°付近に現れる10回折線の重心点角度を算出した。その結果、サンプルである9種類の活性炭の重心点角度は、図1の図表の縦軸に示す通りであった。
The identification of the activated carbon of the present invention was found by sequentially performing the following steps.
1) Measurement of various activated carbons by X-ray diffraction:
For example, nine kinds of activated carbons were selected as samples, and each of the activated carbons was pulverized with a pulverizer to an average particle size of 30 microns or less, and each activated carbon powder was prepared as a sample. On the other hand, RINT2200Ultima manufactured by Rigaku Denki Kogyo Co., Ltd. was used as the X-ray diffractometer, each sample was set in its glass sample holder, Cu Kα ray was used as the X-ray source, and 2θ = 10-90 ° was measured. It was. The obtained diffraction lines were subjected to line broadening and background processing using the X-ray diffraction comprehensive analysis software JADE +, and the barycentric angle of 10 diffraction lines appearing around 40-50 ° was calculated. As a result, the center-of-gravity point angles of the nine types of activated carbon samples were as shown on the vertical axis of the chart in FIG.

2)未化成の鉛蓄電池用負極板の製法:
ボールミル法で製造した酸化鉛から成る負極活物質粉末に、導電カーボン粉末として比表面積70m2/gのカーボンブラックと上記の9種類の各活性炭粉末を添加し、更に、硫酸バリウム粉末を添加して乾式混合した。この場合、該酸化鉛100重量部に対し該カーボンブラックを0.5重量部、該活性炭粉末を2重量部、硫酸バリウム粉末を 重量部添加した。このようにして9種類の混合物を調製し、各混合物に、リグニンの水溶液を加え、続いてイオン交換水を加え乍ら混練して水性ペーストを調製し、更に希硫酸を加え乍ら混練して活物質ペーストを調製した。次いでこのペーストを鉛-カルシウム合金から成る集電用鋳造基板に充填し、加圧圧着させた後、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の9種類の鉛蓄電池用負極板を多数枚製造した。
2) Production method of unformed lead-acid battery negative electrode plate:
To the negative electrode active material powder made of lead oxide produced by the ball mill method, carbon black with a specific surface area of 70 m 2 / g and each of the above nine types of activated carbon powder are added as conductive carbon powder, and further, barium sulfate powder is added. Dry mixed. In this case, 0.5 parts by weight of the carbon black, 2 parts by weight of the activated carbon powder, and parts by weight of barium sulfate powder were added to 100 parts by weight of the lead oxide. In this way, nine kinds of mixtures were prepared, and an aqueous solution of lignin was added to each mixture, followed by kneading with addition of ion exchange water to prepare an aqueous paste, and further adding dilute sulfuric acid and kneading with addition of dilute sulfuric acid. An active material paste was prepared. Next, this paste is filled into a current-collecting cast substrate made of lead-calcium alloy, pressed and pressure-bonded, aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to form 9 types of unformed chemicals. A number of negative plates for lead-acid batteries were manufactured.

3)未化成の正極板の製造:
酸化鉛から成る正極活物質100重量部にイオン交換水10重量部を添加し、次いで比重1.27の希硫酸10重量部を加え乍ら混練して正極用活物質ペーストを調製した。このペーストを鉛−カルシウム合金から成る集電用鋳造基板に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の正極板を多数枚製造した。
3) Production of unformed positive plate:
10 parts by weight of ion-exchanged water was added to 100 parts by weight of the positive electrode active material comprising lead oxide, and then 10 parts by weight of dilute sulfuric acid having a specific gravity of 1.27 was added and kneaded to prepare a positive electrode active material paste. This paste was filled in a current collecting cast substrate made of a lead-calcium alloy, aged in an atmosphere of 40 ° C. and 95% humidity for 24 hours, and then dried to produce a large number of unformed positive plates.

4)鉛蓄電池の製造:
前記の各未化成の鉛蓄電池用負極板と前記の未化成の正極板とを微細ガラスマットセパレータを介して交互に積層した後、その積層体をCOS方式で同極性同士の極板の耳列を溶接して極板群とした。これをポリプロピレン製の電槽に入れ、ヒートシールによって蓋をした。このときの群の圧迫度は50kPaになるようにスペーサーを入れて調整した。次いで、Alイオンを硫酸塩で0.1mol/l添加した電解液を注入して電槽化成を行い、12V、40Ah相当の制御弁式鉛蓄電池を製造した。この電池の電解液比重は1.32であった。このようにして、結局、活性炭が異なる上記の9種類の鉛蓄電池用負極板を具備した9種類の鉛蓄電池を製造した。
4) Manufacture of lead acid battery:
After each of the unformed lead-acid battery negative plates and the unformed positive plates are alternately laminated via a fine glass mat separator, the laminate is an ear row of pole plates of the same polarity in the COS method. Were electrode plates. This was put into a battery case made of polypropylene and covered by heat sealing. At this time, the pressure of the group was adjusted by inserting a spacer so as to be 50 kPa. Subsequently, an electrolytic solution in which 0.1 mol / l of Al ions were added with sulfate was injected to form a battery case, and a control valve type lead storage battery equivalent to 12 V and 40 Ah was manufactured. The electrolyte had a specific gravity of 1.32. In this way, 9 types of lead storage batteries having the above 9 types of negative electrode plates for lead storage batteries with different activated carbons were produced.

5)上記9種類の鉛蓄電池の寿命試験:
上記の9種類の鉛蓄電池の夫々について、風力発電による蓄電を模擬してPSOCで急速充放電を繰り返すことによる寿命試験を行った。その試験は、該蓄電池を8Aで1時間放電してSOC 80%とした後、25℃の雰囲気中で400A・1秒放電と80A・1秒充電を500回繰り返した後、120A・1秒充電と1秒の休止を510回繰り返し、これを1サイクルとした。そして、放電時のセル電圧が0Vに達した時点を寿命として、寿命に至るまでのサイクル数を測定した。その結果を図1に示した。図1から明らかな通り、10回折線の角度が44.5°以下の活性炭は、サイクル寿命が500サイクルを超え、優れていることが判明した。かくして、本発明の製造には、活性炭は、10回折線の角度が44.5°以下の活性炭を用いることにより、サイクル寿命の延長した蓄電池が確実に得られる効果をもたらす。
5) Life test of the above 9 types of lead-acid batteries:
For each of the nine types of lead-acid batteries, a life test was conducted by simulating power storage by wind power generation and repeating rapid charge and discharge with PSOC. In this test, the storage battery was discharged at 8A for 1 hour to make SOC 80%, followed by repeating 400A, 1 second discharge and 80A, 1 second charge 500 times in an atmosphere of 25 ° C, then charging 120A, 1 second. And a one-second pause were repeated 510 times, and this was taken as one cycle. Then, the time when the cell voltage at the time of discharge reached 0 V was defined as the lifetime, and the number of cycles until the lifetime was reached was measured. The results are shown in FIG. As is clear from FIG. 1, it was found that the activated carbon having an angle of 10 diffraction lines of 44.5 ° or less has an excellent cycle life exceeding 500 cycles. Thus, in the production of the present invention, the activated carbon uses an activated carbon having an angle of 10 diffraction lines of 44.5 ° or less, thereby bringing about an effect of reliably obtaining a storage battery having an extended cycle life.

活性炭は六角網面が積層したグラファイトの結晶構造が大きく乱れたものと言われ、六角網面は維持されるが、c軸方向が乱層構造を取るためX線回折を行ってもピークが不鮮明になることが知られ、00l回折線とhkl回折線はブロードになり、hkl回折線は認められなくなる。即ち、2θ=20-30°に002回折線、40-50°に10回折線(グラファイトの100,101,102回折線に対応)、75-85°に11回折線(グラファイトの110,112回折線に対応)が現れる。一般に002回折線が低角度側に移動するとc軸方向の面間隔が拡がり、イオンが層間に侵入し易くなることが知られている。
本発明の上記に特定した活性炭の作用は明らかではないが、X線回折による10面の重心点角度が44.4°未満の活性炭は、c軸方向の乱れに加えて、a軸方向の面間隔がある値よりも拡大することで、更にイオンの吸脱着を容易にし、また酸化還元反応に対する活性の向上にも影響したと考えられる。
Activated carbon is said to have greatly disturbed the crystal structure of graphite with hexagonal mesh layers laminated, and the hexagonal mesh surface is maintained, but the c-axis direction takes a disordered layer structure, so the peak is unclear even if X-ray diffraction is performed. The 00l diffraction line and the hkl diffraction line become broad, and the hkl diffraction line is not recognized. That is, 002 diffraction lines appear at 2θ = 20-30 °, 10 diffraction lines appear at 40-50 ° (corresponding to 100, 101, 102 diffraction lines of graphite), and 11 diffraction lines (corresponding to 110, 112 diffraction lines of graphite) appear at 75-85 °. . In general, it is known that when the 002 diffraction line moves to the low angle side, the surface interval in the c-axis direction increases, and ions easily enter between layers.
Although the action of the above-specified activated carbon of the present invention is not clear, activated carbon having a centroid point angle of 10 planes by X-ray diffraction of less than 44.4 ° has a surface spacing in the a-axis direction in addition to disturbance in the c-axis direction. It is thought that by expanding beyond a certain value, the adsorption and desorption of ions was further facilitated, and the improvement in the activity for the redox reaction was also affected.

更に、本発明の上記特定の活性炭のうち、例えば、10面の重心点角度が44.2°である活性炭の負極活物質100重量部に対する添加量を4重量部添加して製造した鉛蓄電池用負極板を具備した鉛蓄電池のサイクル寿命は、1500サイクルであった。これに対し、10回折線の角度が44.9°の活性炭を負極活物質100重量部に対し4重量部添加して製造したキャパシタ複合負極板を具備した鉛蓄電池の寿命は、200サイクルに留まった。   Furthermore, among the specific activated carbons of the present invention, for example, a negative electrode plate for a lead-acid battery manufactured by adding 4 parts by weight of an activated carbon having a 10-plane gravity point angle of 44.2 ° to 100 parts by weight of the negative electrode active material. The cycle life of the lead-acid battery equipped with was 1500 cycles. On the other hand, the life of the lead storage battery including the capacitor composite negative electrode plate produced by adding 4 parts by weight of activated carbon having an angle of 10 diffraction lines of 44.9 ° to 100 parts by weight of the negative electrode active material was only 200 cycles.

上記から明らかなように、本発明の鉛蓄電池用負極板を用いた鉛蓄電池は、PSOCの状態で急速充放電を繰り返すハイブリッド電気自動車、その他の電気自動車、或いは風車、太陽電池(PV)などの電源により充電される産業用などに利用できる。   As is clear from the above, the lead storage battery using the negative electrode plate for the lead storage battery of the present invention is a hybrid electric vehicle that repeats rapid charge and discharge in the state of PSOC, other electric vehicles, windmills, solar cells (PV), etc. It can be used for industrial purposes that are charged by a power source.

Claims (2)

負極活物質に導電性カーボンと活性炭を添加混合して成るものを集電用基板に支持せしめた鉛蓄電池用負極板において、該活性炭として、X線回折による10面の重心点角度が44.5°以下である活性炭を用いることを特徴とする鉛蓄電池用負極板。   In a negative electrode plate for a lead storage battery in which a negative electrode active material is added and mixed with conductive carbon and activated carbon, and the current collector substrate is supported, the activated carbon has an angle of gravity of the center of gravity of 10 faces by X-ray diffraction of 44.5 ° or less. The negative electrode plate for lead acid batteries characterized by using activated carbon. 請求項1に記載の負極板を具備した鉛蓄電池。   A lead-acid battery comprising the negative electrode plate according to claim 1.
JP2010032092A 2010-02-17 2010-02-17 Negative electrode plate for lead storage battery, and lead storage battery Pending JP2011171035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032092A JP2011171035A (en) 2010-02-17 2010-02-17 Negative electrode plate for lead storage battery, and lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032092A JP2011171035A (en) 2010-02-17 2010-02-17 Negative electrode plate for lead storage battery, and lead storage battery

Publications (1)

Publication Number Publication Date
JP2011171035A true JP2011171035A (en) 2011-09-01

Family

ID=44684965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032092A Pending JP2011171035A (en) 2010-02-17 2010-02-17 Negative electrode plate for lead storage battery, and lead storage battery

Country Status (1)

Country Link
JP (1) JP2011171035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537345A (en) * 2012-10-31 2015-12-24 エクシデ テクノロギーズ ゲーエムベーハー Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte
CN110546797A (en) * 2017-04-28 2019-12-06 株式会社杰士汤浅国际 Lead-acid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051306A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Negative electrode for lead-acid battery
JP2006236942A (en) * 2005-02-28 2006-09-07 Kitami Institute Of Technology Carbon electrode and its manufacturing method
WO2008123606A1 (en) * 2007-04-04 2008-10-16 Sony Corporation Porous carbon material, process for producing the same, adsorbent, mask, adsorbent sheet and supporting member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051306A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Negative electrode for lead-acid battery
JP2006236942A (en) * 2005-02-28 2006-09-07 Kitami Institute Of Technology Carbon electrode and its manufacturing method
WO2008123606A1 (en) * 2007-04-04 2008-10-16 Sony Corporation Porous carbon material, process for producing the same, adsorbent, mask, adsorbent sheet and supporting member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537345A (en) * 2012-10-31 2015-12-24 エクシデ テクノロギーズ ゲーエムベーハー Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte
CN110546797A (en) * 2017-04-28 2019-12-06 株式会社杰士汤浅国际 Lead-acid battery

Similar Documents

Publication Publication Date Title
Qin et al. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries
RU2672675C2 (en) Tungsten-based material, super battery and supercapacitor
JP5797384B2 (en) Composite capacitor negative electrode plate for lead acid battery and lead acid battery
Yin et al. Lead-carbon batteries toward future energy storage: from mechanism and materials to applications
US9812703B2 (en) Electrode and electrical storage device for lead-acid system
Wu et al. A rough endoplasmic reticulum-like VSe 2/rGO anode for superior sodium-ion capacitors
JP5454426B2 (en) Aqueous secondary battery
AU2014336895A1 (en) Tungsten-based material super battery and supercapacitor
CN109301209B (en) Preparation method of titanium dioxide modified phosphorus/carbon composite negative electrode material
Liu et al. Porous CuCo2O4/CuO microspheres and nanosheets as cathode materials for advanced hybrid supercapacitors
Peng et al. Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors
CN104300133A (en) Carbon nanotube coated lithium titanate material and its preparation method
CN103000879A (en) Preparation method of spinel type lithium-nickel-manganese oxide with one-dimensional porous structure
Luo et al. Few-layer δ-MnO2 nanosheets grown on three-dimensional N-doped hierarchically porous carbon networks for long-life aqueous zinc ion batteries
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
CN103187554A (en) Manganese-based composite electrode, lithium-ion battery containing manganese-based composite electrode, and preparation method
JP2012133958A (en) Composite capacitor negative electrode plate and lead storage battery
CN111146007A (en) Zinc ion hybrid supercapacitor and preparation method thereof
CN115995351A (en) Preparation method of transition metal nickel doped manganese dioxide electrode material
CN102593425A (en) Method for assembling high-performance lithium ion battery based on hollow carbon nanocage cathode material
JP2011171035A (en) Negative electrode plate for lead storage battery, and lead storage battery
JP2019091598A (en) Positive electrode plate and lead storage battery
WO2010122874A1 (en) Lead storage battery
CN103332735A (en) Preparation method of hydrogenated lithium titanate nano-material
KR102432004B1 (en) Star shaped electrode for supercapacitor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527