JP2977600B2 - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JP2977600B2
JP2977600B2 JP2301865A JP30186590A JP2977600B2 JP 2977600 B2 JP2977600 B2 JP 2977600B2 JP 2301865 A JP2301865 A JP 2301865A JP 30186590 A JP30186590 A JP 30186590A JP 2977600 B2 JP2977600 B2 JP 2977600B2
Authority
JP
Japan
Prior art keywords
battery
storage battery
lead
lead storage
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2301865A
Other languages
Japanese (ja)
Other versions
JPH042062A (en
Inventor
友 森本
豊 大矢
宗美 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26420972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2977600(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc filed Critical Aisin Seiki Co Ltd
Priority to JP2301865A priority Critical patent/JP2977600B2/en
Publication of JPH042062A publication Critical patent/JPH042062A/en
Application granted granted Critical
Publication of JP2977600B2 publication Critical patent/JP2977600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、使用においてガス発生および電解液の液減
りが少なく、特性が安定している液式鉛蓄電池に関す
る。
Description: BACKGROUND OF THE INVENTION The present invention relates to a liquid lead-acid battery which has a small characteristic of gas generation and electrolyte loss during use and has stable characteristics.

〔従来の技術〕[Conventional technology]

鉛蓄電池の電極格子には、従来鉛−アンチモン合金
(Pb−Sb金)が用いられている。ところが、Pb−Sb合金
を用いた電池は、水素過電圧が小さいSbを用いているた
め負極上で水素ガスが発生しやすく、電解液の液減りが
多い欠点がある。この欠点を改善するため鉛−カルシウ
ム合金(Pb−Ca合金)を用いた2つの電池系が開発され
ている。これらは、正・負両電極ともにPb−Ca合金を用
いたカルシウム電池と、負電極のみにPb−Ca合金を用
い、正電極にPb−Sb合金を用いたハイブリット電池とで
ある。しかし、カルシウム電池の場合、電解液の液減り
の問題は改善されるが、電池が高温で使用されるように
なるに伴い、正極の早期劣化等の問題が生じてしまう。
一方、ハイブリット電池においては、上記のような正極
が早期に劣化するような問題はないが、電池の使用に伴
い正極格子が腐食すると電解液に溶解したSbが電解溶液
を泳動し負極上に析出し、電解液の液減りの問題が生じ
てしまう。
Conventionally, a lead-antimony alloy (Pb-Sb gold) has been used for an electrode grid of a lead storage battery. However, a battery using a Pb-Sb alloy has a drawback that hydrogen gas is easily generated on the negative electrode because Sb having a small hydrogen overvoltage is used, and the amount of electrolyte solution is largely reduced. To remedy this drawback, two battery systems using a lead-calcium alloy (Pb-Ca alloy) have been developed. These are a calcium battery using a Pb-Ca alloy for both the positive and negative electrodes, and a hybrid battery using a Pb-Ca alloy for only the negative electrode and using a Pb-Sb alloy for the positive electrode. However, in the case of a calcium battery, although the problem of electrolyte reduction is improved, problems such as early deterioration of the positive electrode occur as the battery is used at a high temperature.
On the other hand, in a hybrid battery, there is no problem such as the above-mentioned deterioration of the positive electrode at an early stage, but when the positive electrode grid is corroded with the use of the battery, Sb dissolved in the electrolytic solution migrates through the electrolytic solution and precipitates on the negative electrode. However, a problem of a decrease in the amount of the electrolytic solution occurs.

この正極のSbが負極への泳動・析出するのを抑えるた
め、種々の提案がなされている。例えば、正・負極間に
挟むセパレータにSb捕捉剤を混合したものを用いるもの
(特開昭63−110547号)、あるいは、Sbイオンと不活性
な配位化合物を形成する有機物を電解液に添加する(特
開昭64−6379号)がある。しかしながら、特開昭63−11
0547号では、セパレータに混合したSb捕捉剤が電解液に
溶け出し電池性能に悪影響を及ぼす。また、特開昭64−
6379号では、Sbイオンと不活性な配位化合物を形成する
有機物は、活物質である鉛に吸着して電池の容量を減少
させると共に特性が不安定となり長期間効力が発揮でき
ない。
Various proposals have been made to suppress migration and deposition of Sb of the positive electrode on the negative electrode. For example, a separator containing a Sb scavenger mixed with a separator sandwiched between a positive electrode and a negative electrode (JP-A-63-110547), or an organic substance that forms an inactive coordination compound with Sb ions is added to an electrolytic solution. (JP-A-64-6379). However, JP-A-63-11
In No. 0547, the Sb scavenger mixed with the separator dissolves in the electrolyte and adversely affects battery performance. Also, Japanese Unexamined Patent Publication No.
In No. 6379, an organic substance that forms an inactive coordination compound with Sb ions is adsorbed on lead, which is an active material, and reduces the capacity of a battery, and its characteristics become unstable, so that it cannot exert its effect for a long time.

〔第1発明の説明〕 本第1発明(特許請求の範囲に記載の発明)は、上記
従来技術の問題点に鑑みなされたものであり、ガス発生
および電解液の液減りが少なく、特性が安定した液式鉛
蓄電池を提供することを目的とする。
[Description of First Invention] The first invention (the invention described in the claims) has been made in view of the above-described problems of the related art, and has a small gas generation and a small amount of electrolyte solution, and has poor characteristics. An object is to provide a stable liquid lead storage battery.

本第1発明は、正極格子に鉛−アンチモン合金を用い
た液式鉛蓄電池であって、セパレータ内に脂肪族スルホ
ン酸、芳香族スルホン酸、あるいはそれらの塩のうちの
少なくとも1種からなるスルホ基を有する有機化合物を
含有することを特徴とする鉛蓄電池である。
The first invention is a liquid-type lead storage battery using a lead-antimony alloy for a positive electrode grid, wherein a sulfo acid containing at least one of aliphatic sulfonic acid, aromatic sulfonic acid, and a salt thereof is provided in a separator. A lead-acid battery containing an organic compound having a group.

本第1発明の鉛蓄電池は、使用においてガス発生およ
び電解液の液減りが少なく、特性が安定したものであ
る。
The lead storage battery according to the first aspect of the invention has a small characteristic of gas generation and a decrease in electrolyte solution during use, and has stable characteristics.

本第1発明の鉛蓄電池が上記効果を奏するのは以下の
理由によると考えられる。
It is considered that the lead storage battery of the first invention exhibits the above-described effects for the following reasons.

上記スルホ基を有する有機化合物は、電極上の電気化
学的活性点に吸着し、反応を阻害する性質がある。この
ことは、上記有機化合物が種々の金属の電気めっきの
際、添加剤としてめっき浴に加えられ、活性点に吸着す
ることにより樹枝状析出を防止し、結果として平滑なめ
っき面を得るのに役立っていることからも理解される。
本第1発明において、上記有機化合物は、負極における
Sb析出の活性点に吸着し、正極から泳動してきたSbイオ
ンの析出を妨げ、また析出したSb上での水素発生の活性
点に吸着して水素ガスの発生を抑制する。また、上記有
機化合物は、負極の充放電反応の活性点には吸着しにく
い性質を有するため電池の充放電に対する悪影響はな
い。さらに、スルホ基は、酸化に対して安定であり、電
池内で比較的安定に存在する。
The above-mentioned organic compound having a sulfo group has a property of adsorbing at an electrochemically active site on an electrode and inhibiting the reaction. This is because the above organic compound is added to the plating bath as an additive during electroplating of various metals and prevents dendritic deposition by adsorbing to active sites, resulting in obtaining a smooth plated surface. It is understood from what has helped.
In the first invention, the organic compound is used in the negative electrode.
It adsorbs at the active site of Sb deposition and prevents the deposition of Sb ions migrated from the positive electrode, and suppresses the generation of hydrogen gas by adsorbing at the active site of hydrogen generation on the deposited Sb. Further, the organic compound has a property that it is difficult to be adsorbed to the active site of the charge / discharge reaction of the negative electrode, and thus has no adverse effect on the charge / discharge of the battery. In addition, sulfo groups are stable to oxidation and are relatively stable in batteries.

また、本発明の鉛蓄電池は液式であるために蓄電池全
体が密封されたものではない。従って、たとえ水素ガス
が発生しても該水素ガスが蓄電池より放出され、内圧増
加により電池各部に損傷を与えることがない。
Further, since the lead storage battery of the present invention is of a liquid type, the whole storage battery is not sealed. Therefore, even if hydrogen gas is generated, the hydrogen gas is released from the storage battery, and there is no possibility of damaging each part of the battery due to an increase in internal pressure.

〔第1発明のその他の発明の説明〕 以下、本第1発明をより具体的にしたその他の発明を
説明する。
[Description of Other Inventions of First Invention] Hereinafter, other inventions that make the first invention more specific will be described.

本発明の鉛蓄電池は、正極にPb−Sb合金を有する液式
鉛蓄電池であり、セパレータ内に脂肪族スルホン酸、芳
香族スルホン酸、あるいはそれらの塩のうちの少なくと
も1種からなるを有する有機化合物を含有するものであ
る。
The lead storage battery of the present invention is a liquid lead storage battery having a Pb-Sb alloy in the positive electrode, and an organic material having at least one of aliphatic sulfonic acid, aromatic sulfonic acid, and a salt thereof in a separator. It contains a compound.

本発明の鉛蓄電池は、液式とする。リテーナを有する
シール型の鉛蓄電池では、水素ガスが発生すると蓄電池
より水素ガスが放出されないため、内圧が増加すること
によって、電池各部に損傷を与える恐れがある。本発明
では、液式のシール型ではないため、上記の問題はな
い。
The lead storage battery of the present invention is of a liquid type. In a sealed lead-acid storage battery having a retainer, when hydrogen gas is generated, no hydrogen gas is released from the storage battery. Therefore, the internal pressure increases, and there is a risk of damaging various parts of the battery. In the present invention, the above problem does not occur because the liquid type is not a seal type.

本発明において、鉛蓄電池はPb−Sb合金からなる正極
格子を含有するものであればどのようでものでもよい。
例えば、一般的な鉛蓄電池としては、Pb−Sb合金からな
り、二酸化鉛を活物質とする正極、鉛を活物質とする負
極、硫酸水溶液を主成分とする電解液、正・負極の短絡
を防ぐためのセパレータ、およびこれらを収納する電槽
とからなる。
In the present invention, any type of lead storage battery may be used as long as it contains a positive electrode grid made of a Pb-Sb alloy.
For example, a general lead-acid battery is made of a Pb-Sb alloy and has a positive electrode using lead dioxide as an active material, a negative electrode using lead as an active material, an electrolyte mainly containing an aqueous solution of sulfuric acid, and a short circuit between the positive and negative electrodes. And a battery case for accommodating them.

また、本発明では、上記鉛蓄電池の正極格子がPb−Sb
合金からなるものを用いる。この鉛蓄電池は、正・負極
とも電極格子にPb−Sb合金を用いたいわゆるアンチモン
電池、正極格子にのみPb−Sb合金を用い負極格子にはPb
−Ca合金を用いたいわゆるハイブリット電池等がある。
Further, in the present invention, the positive electrode grid of the lead storage battery is Pb-Sb
An alloy is used. This lead-acid battery is a so-called antimony battery using a Pb-Sb alloy for the electrode grid for both the positive and negative electrodes, a Pb-Sb alloy only for the positive grid, and Pb for the negative grid.
There is a so-called hybrid battery using a Ca alloy.

上記スルホ基(−SO3H)を有する有機化合物として
は、脂肪族スルホン酸、芳香族スルホン酸、あるいはそ
れらの塩が挙げられる。上記有機化合物は、それらのう
ちの少なくとも1種を用いる。
Examples of the organic compound having a sulfo group (—SO 3 H) include aliphatic sulfonic acids, aromatic sulfonic acids, and salts thereof. As the organic compound, at least one of them is used.

スルホ基を有する有機化合物は、鉛蓄電池のセパレー
タ内に含ませる。例えば、セパレータ内に含ませる際、
ポリオレフィン系のセパレータ等に酸化防止等の目的で
含浸させてある鉱油類に上記有機化合物を混合して用い
ることができる。また、スルホ基を有する有機化合物を
直接セパレータ内に含ませてもよく、あるいはスルホ基
を有さない有機化合物をセパレータ内に含ませた後、該
有機化合物をスルホン化してもよい。
The organic compound having a sulfo group is contained in the separator of the lead storage battery. For example, when including in the separator,
The above organic compounds can be mixed with mineral oils impregnated in a polyolefin separator or the like for the purpose of preventing oxidation or the like. Further, an organic compound having a sulfo group may be directly contained in the separator, or an organic compound having no sulfo group may be contained in the separator, and then the organic compound may be sulfonated.

スルホ基を有する有機化合物の含有割合は、鉛蓄電池
の容量、内部抵抗等に影響を与えない範囲が望ましい。
The content ratio of the organic compound having a sulfo group is preferably in a range that does not affect the capacity, internal resistance, and the like of the lead storage battery.

なお、スルホ基を有する有機化合物は、電解液と接触
するような形で含有されるようにする。
The organic compound having a sulfo group is contained in such a form as to be in contact with the electrolytic solution.

また、スルホ基を有する有機化合物と電解液に不溶な
鉱油類とを混合してセパレータ内に含浸させれば、上記
有機化物が上記鉱油類の作用により長期間にわたって徐
々に電解液に放出され、効果を持続させることができ
る。
Also, if an organic compound having a sulfo group and a mineral oil insoluble in the electrolyte are mixed and impregnated in the separator, the organic compound is gradually released into the electrolyte over a long period of time by the action of the mineral oil, The effect can be maintained.

本発明の鉛蓄電池は、自動車用SLI(スタート・ライ
ト・イグニション)電池、据置電源、移動電源等、特定
の用途に限らずあらゆる用途に用いることができる。
The lead storage battery of the present invention can be used not only for a specific application but also for any other application, such as an SLI (start light ignition) battery for an automobile, a stationary power supply, and a mobile power supply.

〔実施例〕〔Example〕

以下、本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.

参考例 第1図に本実施例における液式鉛蓄電池の一部切欠斜
視図を示す。本実施例の鉛蓄電池は、Pb−Sb合金からな
る格子を有する正極1(見掛け表面積48cm2)2枚と、P
b−Ca合金からなる格子を有する負極2(見掛け表面積4
8cm2)1枚、SO3ガスによりスルホン化(スルホ基7.8重
量%)したナフテン系鉱油を含浸させたポリオレフィン
系多孔質膜セパレータ3(上記鉱油の含浸量は該セパレ
ータに対して15重量%)2枚、比重1.26の希硫酸からな
る電解液4、および電槽5とからなる。電槽5の内部に
2枚の正極1が配置され、その間に2枚のセパレータが
配置され、更にその間に負極2が配置され、電槽5内部
全体にわたって上記正・負極およびセパレータが浸漬す
るように電解液4が含まれている(これを電池Aとす
る)。
Reference Example FIG. 1 shows a partially cutaway perspective view of a liquid lead-acid battery according to the present embodiment. The lead-acid battery of the present embodiment has two positive electrodes 1 (apparent surface area: 48 cm 2 ) having a lattice made of a Pb-Sb alloy,
Negative electrode 2 having lattice consisting of b-Ca alloy (apparent surface area 4
8 cm 2 ) 1 sheet, polyolefin porous membrane separator 3 impregnated with naphthenic mineral oil sulfonated (sulfo group 7.8% by weight) with SO 3 gas (impregnation amount of the above mineral oil is 15% by weight with respect to the separator) It comprises two sheets, an electrolytic solution 4 made of dilute sulfuric acid having a specific gravity of 1.26, and a battery case 5. Two positive electrodes 1 are disposed inside a battery case 5, two separators are disposed therebetween, and a negative electrode 2 is further disposed therebetween, so that the positive and negative electrodes and the separator are immersed throughout the inside of the battery case 5. Contains an electrolytic solution 4 (this is referred to as a battery A).

また、比較のため、鉱油をスルホン化させなかった以
外は、上記と同様な比較用鉛蓄電池(これを電池Bとす
る)も作成した。
For comparison, a lead storage battery for comparison (hereinafter referred to as battery B) was also prepared, except that the mineral oil was not sulfonated.

上記2種類の鉛蓄電池について、60℃で定電圧充電
(750mA制限電流付定電圧2.47V、10分間)と定電流放電
(750mA、4分間)との充放電サイクルを行い、電解液
の液減りを測定した。その結果を第2図に示す。
For the above two types of lead-acid batteries, the charge and discharge cycle of constant voltage charging (750mA limited current, constant voltage 2.47V with limiting current 2.47V, 10 minutes) and constant current discharging (750mA, 4 minutes) at 60 ° C reduces the amount of electrolyte. Was measured. The result is shown in FIG.

第2図より明らかなように、本参考例の鉛蓄電池は、
比較例のものに比べて、電解液の液減りが非常に抑制さ
れており、しかもその効果が長期間持続することが分か
る。
As is clear from FIG. 2, the lead storage battery of this reference example
It can be seen that the decrease in the amount of the electrolytic solution is significantly suppressed as compared with that of the comparative example, and that the effect lasts for a long time.

実施例 ポリオレフィン系多孔質膜セパレータに含浸させるも
のとしてスルホン化したナフテン系鉱油に代えてドデシ
ルベンゼンスルホン酸(含浸量はセパレータに対して1.
0重量%)とした以外は、参考例の電池Aと同様な構成
の鉛蓄電池(これを電池Cとする)を作成した。これに
参考例1と同様の充放電サイクルを施し、電解液の液減
り量を測定した。その結果を第2図に示す。この実施例
は電解液の液減りが非常に抑制されていることが分か
る。
Example As a polyolefin-based porous membrane separator, dodecylbenzenesulfonic acid was used instead of sulfonated naphthenic mineral oil to impregnate the separator (impregnation amount was 1.
A lead storage battery (hereinafter referred to as a battery C) having the same configuration as the battery A of the reference example except that the content was 0% by weight. This was subjected to the same charge / discharge cycle as in Reference Example 1, and the amount of reduction of the electrolytic solution was measured. The result is shown in FIG. In this example, it can be seen that the decrease in the amount of the electrolytic solution is extremely suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本実施例にかかる鉛蓄電池の一部切欠斜視図、
第2図は本実施例にかかる鉛蓄電池の充放電サイクルと
電解液の液減り量との関係を示す線図である。 1……正極、 2……負極、 3……セパレータ、 4……電解液、 5……電槽
FIG. 1 is a partially cutaway perspective view of a lead storage battery according to the present embodiment,
FIG. 2 is a diagram showing the relationship between the charge / discharge cycle of the lead storage battery according to the present embodiment and the amount of decrease in the amount of electrolyte. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Electrolyte, 5 ... Electric container

───────────────────────────────────────────────────── フロントページの続き 審査官 酒井 美知子 (56)参考文献 特開 平2−94252(JP,A) 特開 平2−234352(JP,A) 特開 平2−162649(JP,A) 特開 昭56−30258(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/06 - 10/18 H01M 10/34 H01M 2/14 - 2/18 H01M 4/14 - 4/23 ────────────────────────────────────────────────── ─── Continuation of the front page Examiner Michiko Sakai (56) References JP-A-2-94252 (JP, A) JP-A-2-234352 (JP, A) JP-A-2-162649 (JP, A) Kaisho 56-30258 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/06-10/18 H01M 10/34 H01M 2/14-2/18 H01M 4/14 -4/23

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極格子に鉛−アンチモン合金を用いた液
式鉛畜電池であって、セパレータ内に脂肪族スルホン
酸、芳香族スルホン酸、あるいはそれらの塩のうち少な
くとも1種からなるスルホ基を有する有機化合物を含有
することを特徴とする鉛蓄電池。
1. A liquid lead-acid battery using a lead-antimony alloy for a positive electrode grid, wherein a sulfo group comprising at least one of aliphatic sulfonic acid, aromatic sulfonic acid and a salt thereof is provided in a separator. A lead-acid battery comprising an organic compound having the formula:
JP2301865A 1990-03-28 1990-11-06 Lead storage battery Expired - Lifetime JP2977600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2301865A JP2977600B2 (en) 1990-03-28 1990-11-06 Lead storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-79990 1990-03-28
JP7999090 1990-03-28
JP2301865A JP2977600B2 (en) 1990-03-28 1990-11-06 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH042062A JPH042062A (en) 1992-01-07
JP2977600B2 true JP2977600B2 (en) 1999-11-15

Family

ID=26420972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301865A Expired - Lifetime JP2977600B2 (en) 1990-03-28 1990-11-06 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2977600B2 (en)

Also Published As

Publication number Publication date
JPH042062A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
US4064324A (en) Metal-Halogenelectrochemical cell
US6099989A (en) Polymer secondary batteries
US4068046A (en) Metal halogen electrochemical cell
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
JP2977600B2 (en) Lead storage battery
CN114824278A (en) SEI film reaction liquid, modification method of zinc negative electrode and modified zinc negative electrode
JP2004014283A (en) Valve regulated lead battery
US4592971A (en) Metal halogen electrochemical cell
JP2005294142A (en) Lead storage battery
JPH0677449B2 (en) Lead acid battery
KR950004457B1 (en) Lead battery
JP4411860B2 (en) Storage battery
JP2819201B2 (en) Lithium secondary battery
JP4041999B2 (en) Lead acid battery
JP2755634B2 (en) Alkaline zinc storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JP2021144798A (en) Lead acid battery
JP2879236B2 (en) Manufacturing method of electrolytic manganese dioxide for alkaline manganese battery
JPS61198574A (en) Lead storage battery
KR860000820B1 (en) Storage battery
JPH0665065B2 (en) Sealed lead acid battery
JP2553858B2 (en) Lead acid battery
JPH03167761A (en) Lithium secondary battery
JPH01117279A (en) Lead-acid battery