JPH1064530A - Manufacture of electrode plate for lead-acid battery - Google Patents

Manufacture of electrode plate for lead-acid battery

Info

Publication number
JPH1064530A
JPH1064530A JP8219588A JP21958896A JPH1064530A JP H1064530 A JPH1064530 A JP H1064530A JP 8219588 A JP8219588 A JP 8219588A JP 21958896 A JP21958896 A JP 21958896A JP H1064530 A JPH1064530 A JP H1064530A
Authority
JP
Japan
Prior art keywords
lead
electrode plates
charge
electrode plate
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8219588A
Other languages
Japanese (ja)
Inventor
Takehiro Sasaki
健浩 佐々木
Masayuki Ide
雅之 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8219588A priority Critical patent/JPH1064530A/en
Publication of JPH1064530A publication Critical patent/JPH1064530A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an electrode plate for a lead-acid battery with high capacity recovery capability and high quick charge performance by filling a pasty active material in a grid, aging, drying, and forming a non-formed positive plate and a non-formed negative plate at the same time by interposing the suspension between charge and discharge. SOLUTION: A pasty active material comprising lead oxide, dilute sulfuric acid, water, and an additive is filled in a grid made of a lead alloy, aged, and dried. A non-formed electrode plates for a positive electrode and a negative electrode obtained are placed in an electrolyte, and a constant current is applied to the electrode plates to form the electrode plates at the same time. Suspension is interposed between charge and discharge. As suspension, it is preferable to stop discharge until voltage reaches 2.1V/cell after charge across the positive and negative electrode plates formed at the same time is finished. The conversion of lower lead oxide into lead sulfate is retarded, and formation of the electrode plates is uniformly advanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池用極板の製
造方法、特に化成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode plate for a lead-acid battery, and more particularly to a chemical conversion method.

【0002】[0002]

【従来の技術】鉛蓄電池の未化成極板は、従来から鉛合
金からなる格子体に酸化鉛、希硫酸、水、さらには各種
添加剤を混合したペースト状活物質を充填し、熟成乾燥
することによって製造されていた。このようにして得ら
れた正極および負極用未化成極板は、電解液中において
配置され、一定電流による連続通電により化成が行われ
ていたが、従来の方法では極板の化成の進行が十分では
なかった。
2. Description of the Related Art An unformed electrode plate of a lead-acid battery is conventionally filled with a grid-like body made of a lead alloy and filled with a paste-like active material in which lead oxide, dilute sulfuric acid, water and various additives are mixed, and then aged and dried. Was manufactured by that. The unformed electrode plates for the positive electrode and the negative electrode obtained in this manner were arranged in an electrolytic solution and were formed by continuous energization with a constant current. Was not.

【0003】そこで極板の化成の進行を向上させるた
め、特開昭59−139563号に記載されたように、
化成の初期の段階で定電流によるオン−オフのパルス電
流通電を行うという方法が取られてきた。
[0003] In order to improve the progress of the formation of the electrode plate, as described in JP-A-59-139563,
A method has been adopted in which an on-off pulse current is supplied by a constant current at an early stage of formation.

【0004】[0004]

【発明が解決しようとする課題】正極板は所定の一定電
流を通電することによって、電解酸化が起こり、活物質
の鉛酸化物が二酸化鉛(PbO2)になる。したがっ
て、未化成活物質が二酸化鉛になったとき化成充電が終
了することになる。しかしながら、極板内での化成反応
は均一に進行せず、部分差が生じる。すなわち、化成終
了部分からは水の電気分解が起こり、酸素ガスが発生
し、未化成部分への電解液の拡散を妨げ、電解酸化の効
率を悪化させる。結局、未化成極板の活物質中の鉛酸化
物が、二酸化鉛まで酸化されず、PbOやPbO・Pb
SO4等の電気化学的に不安定な低級鉛酸化物のままで
化成工程が終了してしまい、その後に放電を行うと、こ
れらの低級鉛酸化物が容易に硫酸鉛を生成してしまうた
め、充電されにくい不働態を生じることになる。この状
態で、放電容量を回復させるために、次の充電を行って
も、回復は困難であり、急速放電が要求される用途には
使用できなくなるという問題があった。
When a predetermined current is applied to the positive electrode plate, electrolytic oxidation occurs, and the lead oxide of the active material becomes lead dioxide (PbO 2 ). Therefore, when the unformed active material becomes lead dioxide, the formation charge ends. However, the formation reaction in the electrode plate does not proceed uniformly, and a partial difference occurs. In other words, electrolysis of water occurs from the chemical conversion end portion, and oxygen gas is generated, which prevents diffusion of the electrolytic solution into the non-chemical conversion portion, thereby deteriorating the efficiency of electrolytic oxidation. As a result, the lead oxide in the active material of the unpolarized electrode plate is not oxidized to lead dioxide, but becomes PbO or PbO.Pb.
Since the chemical conversion process ends with the electrochemically unstable lower lead oxide such as SO 4 , and then discharge is performed, these lower lead oxides easily generate lead sulfate. , Resulting in a passive state that is difficult to be charged. In this state, even if the next charge is performed in order to recover the discharge capacity, the recovery is difficult, and there is a problem that it cannot be used for applications requiring rapid discharge.

【0005】本発明は上記従来の問題点を解決するもの
で、極板の化成の進行を均一に向上させ、容量回復性お
よび急速放電に優れた電池を提供することを目的とす
る。
An object of the present invention is to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a battery which uniformly improves the progress of formation of an electrode plate and has excellent capacity recovery and rapid discharge.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明では、化成工程における充電終了後の正負極板
間の電圧が2.1V/セル以下に到達するまで、充電と
放電の間に休止を行うことを特徴とする。これにより低
級鉛酸化物が硫酸鉛化するのを抑制し、極板の化成の進
行が均一に向上することにより、結果として容量回復性
に優れた電池を得ることが出来る。
According to the present invention, in order to solve the above-mentioned problems, the charging and discharging are performed until the voltage between the positive and negative electrodes after the charging in the chemical conversion step reaches 2.1 V / cell or less. It is characterized by performing a pause. This suppresses the conversion of the lower lead oxide into lead sulfate, and the progress of the formation of the electrode plate is uniformly improved. As a result, a battery with excellent capacity recovery can be obtained.

【0007】[0007]

【発明の実施の形態】本発明は、化成工程における充電
と放電の間に休止を行うことにより、未化成極板の化成
を均一に進行させた鉛蓄電池用極板の製造方法である。
図1に、本発明の化成方法による充放電パターンの一例
を示す。このとき、休止条件としては、同時化成を行っ
た正負極板間の充電終了後電圧が、2.1V/セル以下
に到達するまでとすると、極板における未化成部分、す
なわち不安定かつ不均一な状態で存在する活物質が、電
気化学的に均一な状態に安定するため、化成の進行が改
善され、放電によって活物質が簡単に硫酸鉛化するのを
抑制するのに効果的である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for producing a lead storage battery electrode plate in which the formation of an unformed electrode plate is made to proceed uniformly by suspending the charging and discharging in the formation step.
FIG. 1 shows an example of a charge / discharge pattern according to the chemical conversion method of the present invention. At this time, assuming that the post-charging voltage between the positive and negative electrodes that have undergone simultaneous formation reaches a voltage of 2.1 V / cell or less, the non-forming portion of the electrode plate, that is, unstable and uneven Since the active material existing in a stable state is stabilized in an electrochemically uniform state, the progress of chemical formation is improved, and it is effective to suppress the active material from easily becoming lead sulfate by discharge.

【0008】すなわち、2.1V/セル以上の電圧で放
電ステップを開始すると、次の充電受入れが不十分であ
る。また、それ以上休止が長いと全体の化成工程に時間
がかかり、効率的でない。
That is, if the discharge step is started at a voltage of 2.1 V / cell or more, the next charge acceptance is insufficient. On the other hand, if the pause is longer than that, it takes a long time for the entire chemical conversion process, which is not efficient.

【0009】[0009]

【実施例】以下に本発明の実施例を、公称6V、3.2
AHのシ−ル形鉛蓄電池の場合を例に図面を参照しなが
ら説明する。この試験電池用の正極用未化成極板11枚
を、同じく負極用未化成極板22枚の間に配置して、比
重1.100(20℃)の希硫酸槽内で化成を行った。
図1に示すように、1.3A/dm2(10時間、充電
1)、0.9A/dm2(10時間、充電2)の電流密
度の一定電流で連続化成を行い、充電2終了後、同時化
成を行った正負極板間の電圧が2.1V/セル以下に到
達するまで、休止を行い、その後0.9A/dm2の一
定電流にて1時間放電を行った。化成終了後、水洗乾燥
の工程を経て、本発明の製造方法による正負極板を得
た。また、図2に示すようなパターンで、前記実施例と
同様な配置および電流密度にて充電と放電の間に休止を
しないで化成を行い、従来の製造方法による正負極板を
得た。それぞれ前記正負極板をセパレ−タ等と組み合わ
せて電槽に収納し、電解液を注入して、充電を行い、シ
ール型鉛蓄電池として組み立てた。これらの従来例と本
発明のシール型鉛蓄電池について、25℃でそれぞれ2
0時間率、10時間率、3時間率、30分間率で定電流
放電し、その放電持続時間を測定した初期容量試験の結
果を(表1)に示す。
EXAMPLE An example of the present invention will now be described with reference to a nominal 6 V, 3.2 V
An AH sealed lead-acid battery will be described with reference to the drawings. Eleven unformed electrode plates for the positive electrode for the test battery were similarly disposed between 22 unformed electrode plates for the negative electrode, and formed in a dilute sulfuric acid tank having a specific gravity of 1.100 (20 ° C.).
As shown in FIG. 1, continuous formation was performed at a constant current of 1.3 A / dm 2 (10 hours, charge 1) and a current density of 0.9 A / dm 2 (10 hours, charge 2). A pause was performed until the voltage between the positive and negative electrodes subjected to simultaneous formation reached 2.1 V / cell or less, and then discharge was performed at a constant current of 0.9 A / dm 2 for 1 hour. After the formation, a positive electrode plate according to the production method of the present invention was obtained through a washing and drying process. Further, formation was carried out in the pattern shown in FIG. 2 with the same arrangement and current density as in the above-mentioned embodiment without pausing between charging and discharging, to obtain a positive / negative electrode plate by a conventional manufacturing method. Each of the positive and negative electrode plates was housed in a battery case in combination with a separator, etc., charged with an electrolytic solution, charged, and assembled as a sealed lead storage battery. Each of these conventional examples and the sealed lead-acid batteries of the present invention was 2
Table 1 shows the results of the initial capacity test in which constant current discharge was performed at 0 hour rate, 10 hour rate, 3 hour rate, and 30 minute rate, and the discharge duration was measured.

【0010】[0010]

【表1】 [Table 1]

【0011】(表1)より、本発明の場合は従来例と比
較して初期容量が向上していることがわかる。これは、
本発明の場合には、極板活物質の化成の進行が改善さ
れ、放電時において電池反応に必要な二酸化鉛が均一に
存在したためであると考えられる。
From Table 1, it can be seen that in the case of the present invention, the initial capacity is improved as compared with the conventional example. this is,
In the case of the present invention, it is considered that the progress of the formation of the electrode plate active material was improved, and the lead dioxide required for the battery reaction was uniformly present during the discharge.

【0012】さらに、従来例と本発明のシール型鉛蓄電
池について、25℃でそれぞれ90日放置後、3時間率
で定電流放電し、その放電持続時間を測定した残存容量
試験の結果および、上記3時間率放電後、25℃で1
4.7V、8時間の条件による定電圧充電後の回復容量
試験の結果を(表2)に示す。
Further, with respect to the conventional lead-acid battery and the sealed lead-acid battery of the present invention, each was left at 25 ° C. for 90 days, discharged at a constant current at a rate of 3 hours, and the results of the remaining capacity test were measured. After discharging for 3 hours, 1
Table 2 shows the results of the recovery capacity test after constant voltage charging under the conditions of 4.7 V and 8 hours.

【0013】[0013]

【表2】 [Table 2]

【0014】(表2)より、本発明の場合は従来例と比
較して容量残存率が高く、かつ容量回復性に優れている
ことがわかる。これは、本発明の場合には活物質の化成
反応が向上し、極板活物質中の低級鉛酸化物が硫酸鉛化
しにくくなったためであると考えられる。
From Table 2, it can be seen that in the case of the present invention, the capacity remaining ratio is higher and the capacity recovery is excellent as compared with the conventional example. This is considered to be because in the case of the present invention, the chemical conversion reaction of the active material was improved, and the lower lead oxide in the electrode plate active material was less likely to be converted to lead sulfate.

【0015】[0015]

【発明の効果】上記のように、本発明では化成工程にお
ける充電と放電の間に休止を行うことにより、正極板の
化成の進行を改善し、極板活物質中の低級鉛酸化物の残
存量を少なくすることができた。したがって、本発明に
より初期容量を向上させるとともに、市場における長期
間の保存において充電回復性の悪い点を改善することが
できる。
As described above, according to the present invention, the progress of the formation of the positive electrode plate is improved by suspending between the charge and discharge in the chemical conversion step, and the lower lead oxide in the electrode plate active material remains. The amount could be reduced. Therefore, according to the present invention, not only the initial capacity can be improved, but also the problem of poor charge recovery in long-term storage in the market can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の化成方法による充放電パターンを示す
FIG. 1 is a diagram showing a charge / discharge pattern according to a chemical conversion method of the present invention.

【図2】従来の化成方法による充放電パターンを示す図FIG. 2 is a diagram showing a charge / discharge pattern according to a conventional chemical conversion method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 格子にペ−スト状活物質を充填後、熟成
乾燥工程を経た未化成の正負極板を同時に化成する工程
において、充電と放電の間に休止を行うことを特徴とす
る鉛蓄電池用極板の製造方法。
1. A lead characterized in that, after filling a paste-like active material into a lattice and simultaneously forming unformed positive and negative electrode plates through an aging and drying step, a pause is performed between charging and discharging. A method for manufacturing an electrode plate for a storage battery.
【請求項2】 同時に化成した正負極板間の充電終了後
電圧が2.1V/セル以下に到達するまで、放電を休止
することを特徴とする請求項1記載の鉛蓄電池用極板の
製造方法。
2. The production of an electrode plate for a lead-acid battery according to claim 1, wherein the discharge is stopped until the voltage between the positive and negative electrode plates simultaneously formed reaches 2.1 V / cell or less after charging. Method.
JP8219588A 1996-08-21 1996-08-21 Manufacture of electrode plate for lead-acid battery Pending JPH1064530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8219588A JPH1064530A (en) 1996-08-21 1996-08-21 Manufacture of electrode plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8219588A JPH1064530A (en) 1996-08-21 1996-08-21 Manufacture of electrode plate for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH1064530A true JPH1064530A (en) 1998-03-06

Family

ID=16737895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8219588A Pending JPH1064530A (en) 1996-08-21 1996-08-21 Manufacture of electrode plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH1064530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396490B1 (en) * 2000-11-22 2003-09-02 삼성에스디아이 주식회사 A method for recharging lithium-sulfur batteries
JP2011181312A (en) * 2010-03-01 2011-09-15 Shin Kobe Electric Mach Co Ltd Method of chemical conversion in battery container for lead-acid battery
CN102437380A (en) * 2011-12-06 2012-05-02 河南超威电源有限公司 Method for internal chemical reaction in battery via charging five times and discharging four times
CN110649228A (en) * 2019-11-26 2020-01-03 湖南丰日电源电气股份有限公司 Storage battery polar plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396490B1 (en) * 2000-11-22 2003-09-02 삼성에스디아이 주식회사 A method for recharging lithium-sulfur batteries
JP2011181312A (en) * 2010-03-01 2011-09-15 Shin Kobe Electric Mach Co Ltd Method of chemical conversion in battery container for lead-acid battery
CN102437380A (en) * 2011-12-06 2012-05-02 河南超威电源有限公司 Method for internal chemical reaction in battery via charging five times and discharging four times
CN110649228A (en) * 2019-11-26 2020-01-03 湖南丰日电源电气股份有限公司 Storage battery polar plate
CN110649228B (en) * 2019-11-26 2020-03-10 湖南丰日电源电气股份有限公司 Storage battery polar plate

Similar Documents

Publication Publication Date Title
EP2263276B1 (en) Flooded lead-acid battery
JP2009187776A (en) Control valve type lead-acid storage battery
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JP5659484B2 (en) Battery case formation method for lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP5196732B2 (en) Method for producing lead-acid battery
JP2003338310A (en) Lead storage battery
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP2002075379A (en) Lead-acid battery
JP3637603B2 (en) Lead acid battery
JPH11329420A (en) Manufacture of lead-acid battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JPH05135761A (en) Lead-acid battery
JPS58115775A (en) Lead-acid battery
JPH10134810A (en) Manufacture of lead-acid battery
JPH10308215A (en) Manufacture of sealed lead-acid battery
JPH0410181B2 (en)
JPH07288128A (en) Activation method for sealed lead-acid battery
JPH08115718A (en) Manufacture of lead-acid battery
JPH11120998A (en) Manufacture of lead-acid battery
JPH06310130A (en) Manufacture of sealed lead-acid battery
JPH05151987A (en) Manufacture of sealed type lead acid battery
JPH05325950A (en) Manufacture of lead-acid battery of negative electrode absorbing sealed type
JPH07320728A (en) Positive electrode plate for lead-acid battery and manufacture thereof