JP5659484B2 - Battery case formation method for lead acid battery - Google Patents

Battery case formation method for lead acid battery Download PDF

Info

Publication number
JP5659484B2
JP5659484B2 JP2009279045A JP2009279045A JP5659484B2 JP 5659484 B2 JP5659484 B2 JP 5659484B2 JP 2009279045 A JP2009279045 A JP 2009279045A JP 2009279045 A JP2009279045 A JP 2009279045A JP 5659484 B2 JP5659484 B2 JP 5659484B2
Authority
JP
Japan
Prior art keywords
formation
battery case
discharge
battery
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009279045A
Other languages
Japanese (ja)
Other versions
JP2011049135A (en
Inventor
隆之 木村
隆之 木村
桂司 星野
桂司 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2009279045A priority Critical patent/JP5659484B2/en
Publication of JP2011049135A publication Critical patent/JP2011049135A/en
Application granted granted Critical
Publication of JP5659484B2 publication Critical patent/JP5659484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、無停電電源装置や自動車のエンジン始動用電源などとして用いられている鉛蓄電池の電槽化成方法に関するものである。   The present invention relates to a battery case forming method for a lead storage battery used as an uninterruptible power supply, a power supply for starting an engine of an automobile, and the like.

鉛蓄電池は安価で信頼性の高い蓄電池として、無停電電源装置や自動車のエンジン始動用電源などとして、さまざまな用途に用いられている。一般的には、これらの用途に用いられている鉛蓄電池は、製造コストが安価であり、大量生産が容易である電槽化成方式によって、極板の化成工程が行なわれている。   Lead acid batteries are used for various purposes as an inexpensive and highly reliable battery, as an uninterruptible power supply, a power source for starting an automobile engine, and the like. In general, lead storage batteries used in these applications are subjected to an electrode plate forming process by a battery case forming method that is inexpensive to manufacture and easy to mass-produce.

最近では、製造時間の短縮化による生産性の向上が要求されている。また、地球環境保護の目的から電槽化成時の充電電気量(Ah)低減による二酸化炭素(CO)排出量の削減も強く要求されている。 Recently, improvement in productivity has been demanded by shortening the manufacturing time. In addition, for the purpose of protecting the global environment, it is also strongly required to reduce carbon dioxide (CO 2 ) emissions by reducing the amount of charged electricity (Ah) during battery case formation.

電槽化成時の充電電気量(Ah)を低減する手法としては、化成中に電池電圧(V)を測定し、転極前に短時間の放電操作を加えることによって、化成効率を向上させて充電電気量(Ah)を低減する方式が検討されている(例えば、特許文献1)。   As a method of reducing the amount of charged electricity (Ah) at the time of battery case formation, the battery voltage (V) is measured during the formation, and a short discharge operation is performed before the reversal to improve the formation efficiency. A method for reducing the amount of charged electricity (Ah) has been studied (for example, Patent Document 1).

また、電槽化成時に充電と放電を所定の電流パターンを繰り返すとともに、化成時の電流値(A)を2段階以上変化させることによって、化成効率を向上させて充電電気量(Ah)を低減する方式も検討されている(例えば、特許文献2)。   In addition, by repeating a predetermined current pattern for charging and discharging during battery case formation, and changing the current value (A) during formation in two or more steps, the formation efficiency is improved and the amount of charged electricity (Ah) is reduced. A method has also been studied (for example, Patent Document 2).

特許3018406号公報Japanese Patent No. 3018406 特開2002−63895号公報JP 2002-63895 A

しかしながら、上述したような特許文献1の方法では、それぞれ性能の異なる鉛蓄電池(例えば、容量(Ah)の異なる鉛蓄電池)ごとに電池電圧(V)を測定して、転極をする前に放電をする必要があり、電槽化成の設備が複雑になるという問題点がある。   However, in the method of Patent Document 1 as described above, the battery voltage (V) is measured for each lead storage battery having different performance (for example, lead storage batteries having different capacities (Ah)), and discharging is performed before switching the polarity. Therefore, there is a problem that facilities for forming the battery case are complicated.

また、上述したような特許文献2の方法を用いた場合でも、化成効率の向上が十分な状況ではなく、その結果、電槽化成直後の放電容量(Ah)が十分でないことがあるという問題点がある。   Further, even when the method of Patent Document 2 as described above is used, the improvement in chemical conversion efficiency is not sufficient, and as a result, the discharge capacity (Ah) immediately after battery case formation may not be sufficient. There is.

本発明の目的は、上記した課題を解決するものであり、電槽化成の工程が容易であるとともに、少ない充電電気量(Ah)で化成効率を向上させることができ、電槽化成直後の放電容量(Ah)を十分に得ることができる電槽化成方法を提供することである。   The object of the present invention is to solve the above-described problems, and the process of forming a battery case is easy, and the formation efficiency can be improved with a small amount of charged electricity (Ah). It is to provide a battery case forming method capable of sufficiently obtaining a capacity (Ah).

上記した課題を解決するために、本発明では、鉛蓄電池の電槽化成時に放電操作を組入れることを特徴としている。すなわち、請求項1の発明は、鉛蓄電池の電槽化成方法において、化成開始から化成終了までの充電の間に2回以上の放電操作を組入れ、前記放電操作による放電電気量を1回目より2回目以降は次第に多くする。加えて、化成開始から最初の放電操作までの間、一つの放電操作終了から次の放電操作開始までの間、最後の放電操作終了から化成終了までの間に行なう各充電において、充電電流を3段階に減少させる操作を1サイクルとして当該サイクルを繰り返すことを特徴とするものである。
化成中に放電操作を組入れることにより、電池内の電解液が移動し、また、電解液濃度が変化して、化成時に発生するガスを電解液から気中に円滑に抜くことができ、電解液濃度の偏りが解消されることになる。充電電流を3段階に減少させる操作を1サイクルとして当該サイクルを繰り返すことにより、特に正極板の活物質に対して充電反応をむらなく進行させることができ、電槽化成直後の鉛蓄電池の放電容量を一層大きくすることができる。
In order to solve the above-described problems, the present invention is characterized in that a discharge operation is incorporated when a lead-acid battery is formed into a battery case. That is, according to the first aspect of the present invention, in the battery case formation method for a lead-acid battery, two or more discharge operations are incorporated during charging from the start of formation to the end of formation, and the amount of discharge electricity by the discharge operation is 2 from the first time. Gradually increase after the first round . In addition, in each charge performed from the start of formation to the first discharge operation, from the end of one discharge operation to the start of the next discharge operation, and from the end of the last discharge operation to the end of formation, the charging current is 3 It is characterized by repeating the cycle by setting the operation to decrease in stages as one cycle .
By incorporating the discharge operation during the formation, the electrolytic solution in the battery moves, and the concentration of the electrolytic solution changes, and the gas generated during the formation can be smoothly extracted from the electrolytic solution into the air. The uneven density is eliminated. By repeating the cycle with the operation of reducing the charging current in three stages as one cycle, the charging reaction can be made to proceed evenly with respect to the active material of the positive electrode plate in particular, and the discharge capacity of the lead storage battery immediately after the formation of the battery case Can be further increased.

請求項2の発明は、請求項1記載の発明において、化成開始から化成終了までの充電の間に3回の放電操作を組入れ、前記放電操作による放電電気量を1回目から3回目になるに従って多くすることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the invention, three discharge operations are incorporated during charging from the start of formation to the end of formation, and the amount of electricity discharged by the discharge operation is changed from the first to the third. It is characterized by an increase.

上記の各発明において、放電操作の放電電流を有効に利用するために、請求項の発明は、放電操作における放電電流を、異なる系統の電槽化成に用いることを特徴とするものである。 In each of the above inventions, in order to effectively use the discharge current of the discharge operation, the invention of claim 3 is characterized in that the discharge current in the discharge operation is used for forming a battery of different systems.

本発明に係る電槽化成方法を用いると、電槽化成の工程が容易であり、化成中に放電操作を組入れ、また、その放電電流を電槽化成に再利用もしているので、少ない充電電気量(Ah)で化成効率を向上させることができるとともに、電槽化成直後の鉛蓄電池の放電容量(Ah)を高くすることができる。電槽化成の各工程において、充電電流を3段階に減少させる操作を1サイクルとして当該サイクルを繰り返すことにより、特に正極板の活物質に対して充電反応をむらなく進行させることができ、電槽化成直後の鉛蓄電池の放電容量を一層大きくすることができる。 When the battery case forming method according to the present invention is used, the battery case forming process is easy, the discharge operation is incorporated during the formation, and the discharge current is also reused in the battery case forming, so that the charging electric power is small. The chemical conversion efficiency can be improved by the amount (Ah), and the discharge capacity (Ah) of the lead storage battery immediately after battery case formation can be increased. In each step of the conductive container formation, by repeating the cycle of operation to reduce the charge current to the three stages as one cycle, it is possible to proceed evenly charging reaction, especially for the active material of the positive plate, the container The discharge capacity of the lead storage battery immediately after formation can be further increased.

参考例1に係る電槽化成の充電と放電の電流パターンの概略図である。It is the schematic of the electric current pattern of battery case formation which concerns on the reference example 1, and the electric current pattern of discharge. 参考例2に係る電槽化成の充電と放電の電流パターンの概略図である。It is the schematic of the electric current pattern of charge and discharge of battery case formation which concerns on the reference example 2. FIG. 実施例に係る電槽化成の充電と放電の電流パターンの概略図である。It is the schematic of the electric current pattern of the battery case chemical formation which concerns on Example 1 , and the electric current pattern of discharge. 実施例に係る電槽化成の充電と放電の電流パターンの概略図である。It is the schematic of the electric current pattern of charge and discharge of the battery case formation which concerns on Example 2. FIG. 比較例1に係る電槽化成の充電と放電の電流パターンの概略図である。It is the schematic of the electric current pattern of charge and discharge of the battery case formation which concerns on the comparative example 1. FIG. 比較例2に係る電槽化成の充電と放電の電流パターンの概略図である。It is the schematic of the electric current pattern of the battery case chemical formation which concerns on the comparative example 2, and the discharge.

本発明にて述べる鉛蓄電池は、特に制限されるものではないが、鉛又は鉛合金製の集電体に活物質を担持させた極板を、電解液に浸漬させたものを用いることができる。そして、極板を電解液に浸漬した後に電槽化成を行うものである。   The lead storage battery described in the present invention is not particularly limited, but a lead plate in which an active material is supported on a current collector made of lead or a lead alloy and immersed in an electrolytic solution can be used. . Then, after the electrode plate is immersed in the electrolytic solution, the battery case is formed.

前記極板は、クラッド式、ペースト式又はチュードル式のもの等を用いることができるが、製造性が良く、容易に極板面積を増やすことができるペースト式のものが好ましい。
電解液は、特に限定されるものでないが、希硫酸を精製水で希釈し、質量パーセント濃度で約30質量%前後に調合したものを、電池容量・寿命等を考慮した適正な濃度に調整(特性に合わせて硫酸マグネシウム、シリカゲル等の添加剤を加える場合もある)して、注液するのが好ましい。
As the electrode plate, a clad type, a paste type or a tuddle type can be used, but a paste type which has good manufacturability and can easily increase the electrode plate area is preferable.
The electrolytic solution is not particularly limited, but diluted sulfuric acid with purified water and adjusted to a concentration of about 30% by mass concentration to an appropriate concentration considering the battery capacity, life, etc. ( In some cases, additives such as magnesium sulfate and silica gel may be added in accordance with the characteristics) and then the liquid is injected.

集電体の材質は、主原料を鉛とするもので、これに合金材質として、スズ、カルシウム、アンチモン等を用いることができ、中でも、スズ及びカルシウムの両方を用いるのが、好ましい。これは、カルシウムを添加すると、自己放電の割合を、減少させることができ、更に、このカルシウムを添加した際の課題である、骨の腐食の起こり易さを、スズの添加により、抑制することができるためである。   The current collector is made of lead as a main raw material, and tin, calcium, antimony, or the like can be used as the alloy material. Among them, it is preferable to use both tin and calcium. This is because when calcium is added, the rate of self-discharge can be reduced, and the addition of tin suppresses the susceptibility to bone corrosion, which is a problem when calcium is added. It is because it can do.

ペースト式の極板では、集電体に対してペースト状の活物質を担持させる必要があるが、この作業は、集電体に対してペースト状の活物質を、圧力をかけて押し出し、その後ローラーを用いて更に押し込むようにして行うことができる。   In the paste-type electrode plate, it is necessary to support a paste-like active material on the current collector, but in this operation, the paste-like active material is pushed out against the current collector under pressure, and then It can be carried out by further pressing using a roller.

活物質は、特に限定されるものでないが、一酸化鉛を含んだ鉛粉、水、硫酸等を混練(正極、負極の特性に合わせてカットファイバ、炭素粉末、リグニン、硫酸バリウム、鉛丹等の添加物を加える場合もある)して作製するのが好ましい。   The active material is not particularly limited, but kneaded lead powder containing lead monoxide, water, sulfuric acid, etc. (cut fiber, carbon powder, lignin, barium sulfate, lead tan etc. according to the characteristics of the positive electrode and negative electrode) The additive may be added in some cases.

このとき、正極活物質は、粒径の大きな塩基性硫酸鉛骨格を形成したり、グラファイトを添加したりすることにより多孔質化することで、極板に多くの硫酸を含有でき、長寿命かつ高利用率な正極活物質とすることができる。   At this time, the positive electrode active material can be made porous by forming a basic lead sulfate skeleton having a large particle size or by adding graphite, so that a large amount of sulfuric acid can be contained in the electrode plate. A positive electrode active material with high utilization can be obtained.

電槽化成前の正極活物質は、一酸化鉛(PbO)、硫酸鉛(PbSO)及び塩基性硫酸鉛から構成されており、電解液である希硫酸を加えると、一酸化鉛と塩基性硫酸鉛の一部が硫酸鉛化し、電槽化成することにより一酸化鉛や硫酸鉛、塩基性硫酸鉛は水(酸素)と反応し二酸化鉛(PbO)となる。 The positive electrode active material before battery case formation is composed of lead monoxide (PbO), lead sulfate (PbSO 4 ), and basic lead sulfate. When dilute sulfuric acid as an electrolyte is added, lead monoxide and basic A part of lead sulfate is converted to lead sulfate, and by forming into a battery case, lead monoxide, lead sulfate, and basic lead sulfate react with water (oxygen) to become lead dioxide (PbO 2 ).

鉛蓄電池の電解液は水溶液系であることから、特に正極の化成反応では、正極電位が上昇するにつれて水の分解反応が促進される。このため、化成の後半では活物質の二酸化鉛化が大幅に抑制されてしまう。加えて、電槽化成の場合、電解液比重が高い状態で化成しなければならない。このため、活物質は硫酸鉛化しやすく、二酸化鉛化の進行が妨げられる。この対策として、過剰な充電電気量を与えることで二酸化鉛化を進行させる必要がある。このとき、電槽化成前の正極活物質に、粒径の大きな塩基性硫酸鉛(例えば、50μm程度)が生成している場合、この塩基性硫酸鉛粒子は、比表面積が小さく、電解液との接触面積が小さい。このため、電槽化成の工程で、塩基性硫酸鉛の結晶内部は十分な水と反応せず、中間酸化物(PbO)を生成しやすい。この対策として、粒径の大きな塩基性硫酸鉛を二酸化鉛化させるためには、さらに過剰な充電電気量が必要となる。 Since the electrolytic solution of the lead storage battery is an aqueous solution system, the decomposition reaction of water is promoted as the positive electrode potential increases, particularly in the positive electrode chemical conversion reaction. For this reason, in the second half of the chemical conversion, conversion of the active material to lead dioxide is greatly suppressed. In addition, in the case of battery case formation, it must be formed with a high electrolyte specific gravity. For this reason, the active material is easily converted to lead sulfate, and the progress of conversion to lead dioxide is hindered. As a countermeasure, it is necessary to promote lead dioxide conversion by giving an excessive amount of charged electricity. At this time, when basic lead sulfate having a large particle size (for example, about 50 μm) is generated in the positive electrode active material before the formation of the battery case, the basic lead sulfate particles have a small specific surface area, The contact area is small. Therefore, in the process of electrodeposition container formation, inside the crystal of a basic lead sulfate does not react with sufficient water, it tends to produce an intermediate oxide (PbO x). As a countermeasure, in order to convert basic lead sulfate having a large particle size into lead dioxide, an excessive amount of charged electricity is required.

本発明に係る電槽化成方法では、鉛蓄電池の電槽化成時に放電操作を組入れることで、塩基性硫酸鉛の結晶表面を硫酸鉛化させた後に、二酸化鉛化することにより、表面が多孔質化することができる。そして、塩基性硫酸鉛の結晶内部への電解液の拡散を促進し、塩基性硫酸鉛の結晶内部の二酸化鉛化を促進することができる。これにより、塩基性硫酸鉛の結晶内部まで水を供給でき、化成効率を向上させることができる。特に、粒径の大きな塩基性硫酸鉛に対して、その効果が顕著に確認できる。   In the battery case forming method according to the present invention, the surface of the lead acid battery is made porous by converting it into lead sulfate after incorporating the discharge operation into the lead acid battery at the time of forming the battery case, thereby converting the crystal surface of the basic lead sulfate to lead sulfate. Can be Then, diffusion of the electrolyte solution into the basic lead sulfate crystal can be promoted, and lead dioxide conversion inside the basic lead sulfate crystal can be promoted. Thereby, water can be supplied to the inside of the crystal | crystallization of basic lead sulfate, and chemical conversion efficiency can be improved. In particular, the effect can be remarkably confirmed for basic lead sulfate having a large particle size.

前記放電操作を2回以上とすることにより、塩基性硫酸鉛の結晶内部の二酸化鉛化を確実なものとすることができる。また、放電操作を3回以上とすることにより、電槽化成直後の放電容量を十分に得ることができる。このとき、電槽化成中は、鉛蓄電池の容量が次第に大きくなるため、そのときに放電できる容量に合わせて、1回目よりも2回目の放電容量を、2回目よりも3回目の放電容量を、次第に多くすることでその効果を充分に得ることができる。   By making the discharge operation twice or more, lead dioxide inside the crystal of basic lead sulfate can be ensured. Moreover, the discharge capacity immediately after battery case formation can fully be obtained by performing discharge operation 3 times or more. At this time, since the capacity of the lead storage battery gradually increases during the formation of the battery case, the discharge capacity at the second time than the first time and the discharge capacity at the third time from the second time are set in accordance with the capacity that can be discharged at that time. The effect can be sufficiently obtained by gradually increasing the amount.

このとき、化成開始から最初の放電操作開始までの間、一つの放電操作終了から次の放電操作開始までの間、最後の放電操作終了から化成終了までの間に行なう各充電において、充電電流を3段階に減少させる操作を1サイクルとして当該サイクルを繰り返すことにより、塩基性硫酸鉛の結晶内部まで多孔質化することができ、化成効率を向上させることができる。 At this time, between the conversion start until the first discharge operation start, during the period from one discharge operation ends until the start of the next discharge operation, in each charging performed until conversion completion from the last discharge operation ends, the charging current By repeating the cycle with the operation of reducing to three steps as one cycle, the inside of the crystal of basic lead sulfate can be made porous, and the chemical conversion efficiency can be improved.

従来行われている充電電流(以下、中電流という)に対して、小さい充電電流(以下、小電流という)による充電では、中電流の場合と比べて、塩基性硫酸鉛の結晶内部まで硫酸鉛化しながら酸化が進行するため、多孔質化することができる。しかし、不導体である硫酸鉛を酸化する力が小さく硫酸鉛が残留する。これらの影響は電流が小さいほど顕著である。   Compared to the conventional charging current (hereinafter referred to as medium current), charging with a small charging current (hereinafter referred to as small current) leads to lead sulfate inside the basic lead sulfate crystal compared to the case of medium current. Since the oxidation proceeds while forming, it can be made porous. However, the ability to oxidize lead sulfate, which is a nonconductor, is small and lead sulfate remains. These effects are more conspicuous as the current is smaller.

一方、中電流に対して、大きい充電電流(以下、大電流という)による充電では、硫酸鉛を酸化する力があり硫酸鉛の残留を抑制する効果がある。しかし、塩基性硫酸鉛の結晶内部が硫酸鉛化する前に酸化し、粒子の表面が緻密な状態となり、内部に中間酸化物(PbO)が残留しやすくなる。これらの影響は電流が大きいほど顕著である。 On the other hand, charging with a large charging current (hereinafter, referred to as a large current) with respect to a medium current has the ability to oxidize lead sulfate and has an effect of suppressing the residual lead sulfate. However, the inside of the crystal of basic lead sulfate is oxidized before being converted to lead sulfate, the surface of the particles becomes dense, and the intermediate oxide (PbO x ) tends to remain inside. These effects become more significant as the current increases.

上記のことから、大電流、中電流と小電流とを組み合わせることにより、二酸化鉛を増加させ、中間酸化物(PbO)と硫酸鉛の残留を抑制することができる。これにより、塩基性硫酸鉛の結晶内部まで多孔質化することができ、化成効率を向上させることができる。特に、粒径の大きな塩基性硫酸鉛に対して、その効果が顕著に確認できる。 From the above, by combining a large current, a medium current, and a small current, lead dioxide can be increased and the residual of intermediate oxide (PbO x ) and lead sulfate can be suppressed. Thereby, the inside of the crystal | crystallization of basic lead sulfate can be made porous, and chemical conversion efficiency can be improved. In particular, the effect can be remarkably confirmed for basic lead sulfate having a large particle size.

大電流と小電流だけを繰り返した場合には、同じ電気量を与えると仮定すると、中電流がない分、大電流と小電流を与える割合が増え、硫酸鉛や中間酸化物(PbO)が残留しやすくなる。上記のことから、充電電流を3段階に減少させる操作を1サイクルとすることが好ましい。 Assuming that the same amount of electricity is given when only a large current and a small current are repeated, the proportion of large current and small current increases because there is no medium current, and lead sulfate and intermediate oxide (PbO x ) It tends to remain. From the above, it is preferable that the operation for reducing the charging current in three stages is one cycle.

前記繰り返しの回数を2回以上とすることにより、塩基性硫酸鉛の結晶内部の二酸化鉛化を確実なものとすることができ、好ましい。   By setting the number of repetitions to 2 times or more, it is possible to ensure lead dioxide conversion inside the crystals of basic lead sulfate, which is preferable.

以下において、本発明を実施するための形態について、制御弁式鉛蓄電池を電槽化成する実施例を用いて詳細な説明をする。
1.制御弁式鉛蓄電池の製造及び試験条件
従来から使用されている製造条件で制御弁式鉛蓄電池を製造した。すなわち、鉛−カルシウム−錫合金製の集電体に、ペースト状活物質を充填した後、熟成・乾燥をして未化成の正極板及び負極板を製造する。これらのペースト式正極板及びペースト式負極板は、縦が125mm、横が110mmであり、略長方形状をした平板状である。
Below, the form for implementing this invention is demonstrated in detail using the Example which forms a battery case in a control valve type lead acid battery.
1. Manufacture and test conditions of a control valve type lead acid battery A control valve type lead acid battery was manufactured under the manufacturing conditions conventionally used. That is, after a lead-calcium-tin alloy current collector is filled with a paste-like active material, aging and drying are performed to produce an unformed positive electrode plate and negative electrode plate. These paste-type positive electrode plate and paste-type negative electrode plate are 125 mm in length and 110 mm in width, and have a substantially rectangular plate shape.

ペースト式正極板
鉛−カルシウム−錫合金を溶融し、重力鋳造方式によって集電体を作製した。この集電体に、一酸化鉛を主成分とする鉛粉の質量に対して、ポリエステル繊維を0.1質量%加えて混合し、水、希硫酸を加えて混練したペースト状活物質を充填した。その充填後は、温度が80℃、相対湿度が96%の雰囲気で6時間の一次放置をした後に、温度が60℃、相対湿度が60%の雰囲気で30時間の二次放置をした熟成・乾燥により、化成効率が悪い、粒径の大きな塩基性硫酸鉛を含む正極板とした。
Paste type positive electrode plate A lead-calcium-tin alloy was melted, and a current collector was prepared by a gravity casting method. This current collector is filled with 0.1% by mass of polyester fiber with respect to the mass of the lead powder containing lead monoxide as a main component, mixed, and then mixed with water and dilute sulfuric acid to knead and paste the active material did. After the filling, aging was performed by first standing for 6 hours in an atmosphere at a temperature of 80 ° C. and a relative humidity of 96%, followed by secondary standing for 30 hours in an atmosphere at a temperature of 60 ° C. and a relative humidity of 60%. By drying, a positive electrode plate containing basic lead sulfate having a large particle size and poor conversion efficiency was obtained.

ペースト式負極板
鉛−カルシウム−錫合金を溶融し、重力鋳造方式によって集電体を作製した。この集電体に、一酸化鉛を主成分とする鉛粉の質量に対して、リグニン0.2質量%、硫酸バリウム0.1質量%、通常の市販されている黒鉛等のカーボン粉末0.2質量%、ポリエステル繊維0.1質量%加えて混合し、水、希硫酸を加えて混練したペースト状活物質を充填した。その充填後は、熟成・乾燥をして負極板とした。
Paste type negative electrode plate A lead-calcium-tin alloy was melted, and a current collector was produced by a gravity casting method. In this current collector, 0.2% by mass of lignin, 0.1% by mass of barium sulfate, and commercially available carbon powder such as graphite, etc. 2% by mass and 0.1% by mass of polyester fiber were added and mixed, and the paste-like active material kneaded by adding water and dilute sulfuric acid was filled. After the filling, it was aged and dried to obtain a negative electrode plate.

ペースト式正極板が10枚、ペースト式負極板が11枚を使用し、正負極板1枚毎にセパレータ(例えば、ガラス繊維不織布製のリテーナ)を介して積層し、各正極板、各負極板それぞれを溶接して極板群を製造する。そして、製造した極板群の3組を電槽に収容して直列接続し(3セルを直列に接続)、蓋を取り付ける。そして、電槽化成後の仕上り比重が1.28になるように所定量の希硫酸電解液を各セルに注入する。   Ten paste-type positive electrode plates and 11 paste-type negative electrode plates are used, and each positive and negative electrode plate is laminated via a separator (for example, a glass fiber nonwoven fabric retainer). Each is welded to produce an electrode plate group. And 3 sets of manufactured electrode plate groups are accommodated in a battery case, are connected in series (3 cells are connected in series), and a lid is attached. Then, a predetermined amount of dilute sulfuric acid electrolyte is poured into each cell so that the finished specific gravity after the formation of the battery case is 1.28.

希硫酸電解液を各セルに注入してから4時間後に、後述する各例の仕様で電槽化成をし、6V−100Ah(ただし、10時間率放電容量)の制御弁式鉛蓄電池を製造した。   Four hours after injecting the dilute sulfuric acid electrolyte into each cell, a battery case was formed in accordance with the specifications of each example described later, and a 6V-100Ah (however, 10 hour rate discharge capacity) control valve type lead storage battery was manufactured. .

参考例1)
化成開始から化成終了までの充電の間に2回の放電操作を組入れる場合の充放電電流パターンの概略図を図1に示す。
化成開始から、10.6Aで24時間の充電をする。続いて、20Aで1時間の放電操作を組入れる。次に、10.6Aで9.6時間の充電をし、続いて、20Aで2時間の放電をする。最後に、10.6Aで33.6時間の充電をする充放電電流パターンを示している。
すなわち、化成開始から化成終了までの充電の間に2回の放電操作を組入れるとともに、前記放電操作による放電電気量を1回目より2回目で多くするようにした。
( Reference Example 1)
FIG. 1 shows a schematic diagram of a charge / discharge current pattern in the case where two discharge operations are incorporated during charging from the start of formation to the end of formation.
Charge 24 hours at 10.6A from the start of conversion. Subsequently, a 1 hour discharge operation is incorporated at 20A. Next, charge for 9.6 hours at 10.6 A, and then discharge for 2 hours at 20 A. Finally, a charge / discharge current pattern for charging for 33.6 hours at 10.6 A is shown.
That is, two discharge operations were incorporated during the charge from the start of formation to the end of formation, and the amount of discharge electricity by the discharge operation was increased from the first time to the second time.

この電槽化成方法で充電される電気量は650Ahであり、所要時間は70時間である。なお、放電操作時の放電電流は回生電流として異なる系統の電槽化成に利用しているために、前記充電される電気量(Ah)は、充電電気量の総量から放電操作時の放電電気量を減算して算出している。以下の例においても同様である。   The amount of electricity charged by this battery case forming method is 650 Ah, and the required time is 70 hours. In addition, since the discharge current at the time of the discharge operation is used as a regenerative current for the formation of the battery of different systems, the amount of electricity to be charged (Ah) is calculated from the total amount of charge electricity to the amount of discharge electricity at the time of the discharge operation. Is subtracted. The same applies to the following examples.

参考例2)
化成開始から化成終了までの充電の間に3回の放電操作を組入れる場合の充放電電流パターンの概略図を図2に示す。
化成開始から、11.8Aで21.5時間の充電をする。続いて、20Aで1時間の放電をし、11.8Aで8.6時間の充電をする。次に、20Aで2時間の放電をし、11.8Aで12.9時間の充電をする。さらに、20Aで2.5時間の放電をし、最後に、11.8Aで21.5時間の充電をする充放電電流パターンを示している。
すなわち、化成開始から化成終了までの充電の間に3回の放電操作を組入れるとともに、前記放電操作による放電電気量を1回目から3回目になるに従って多くするようにした。
( Reference Example 2)
FIG. 2 shows a schematic diagram of a charge / discharge current pattern in the case where three discharge operations are incorporated during charging from the start of formation to the end of formation.
Charge 21.5 hours at 11.8A from the start of conversion. Subsequently, the battery is discharged at 20A for 1 hour and charged at 11.8A for 8.6 hours. Next, the battery is discharged at 20A for 2 hours and charged at 11.8A for 12.9 hours. Further, a charging / discharging current pattern is shown in which discharging is performed at 20 A for 2.5 hours, and finally charging is performed at 11.8 A for 21.5 hours.
That is, three discharge operations were incorporated during charging from the start of formation to the end of formation, and the amount of discharge electricity by the discharge operation was increased from the first to the third.

この電槽化成方法で充電される電気量は650Ahであり、所要時間は70時間である。   The amount of electricity charged by this battery case forming method is 650 Ah, and the required time is 70 hours.

(実施例
参考例1において、化成開始から1回目の放電操作開始までの間(第1区間)、1回目の放電操作終了から2回目の放電操作開始までの間(第2区間)、2回目の放電操作終了から化成終了までの間(第3区間)の各充電において、充電電流を3段階に減少させる操作を1サイクルとして当該サイクルを繰り返す場合の充放電電流パターンの概略図を図3に示す。
充電電流を3段階に減少させる操作は、28Aで1.1時間充電、次に、10Aで1.3時間充電、さらに、3Aで2.4時間充電を1サイクルとした。この1サイクルの平均充電電流は10.6Aである。前記1サイクルを、上記第1区間では5回、第2区間では2回、第3区間では7回繰り返す充電をする。
(Example 1 )
In Reference Example 1, from the start of chemical conversion to the start of the first discharge operation (first interval), from the end of the first discharge operation to the start of the second discharge operation (second interval), the second discharge operation FIG. 3 shows a schematic diagram of a charge / discharge current pattern when the cycle is repeated with an operation for reducing the charging current in three stages as one cycle in each charge during the period from the end to the end of conversion (third section).
The operation for reducing the charging current in three stages was charging for 1.1 hours at 28A, then charging for 1.3 hours at 10A, and charging for 2.4 hours at 3A as one cycle. The average charging current for one cycle is 10.6A. The one cycle is charged 5 times in the first interval, twice in the second interval, and 7 times in the third interval.

この電槽化成方法で充電される電気量は650Ahであり、所要時間は70時間である。   The amount of electricity charged by this battery case forming method is 650 Ah, and the required time is 70 hours.

(実施例
参考例2において、化成開始から1回目の放電操作開始までの間(第1区間)、1回目の放電操作終了から2回目の放電操作開始までの間(第2区間)、2回目の放電操作終了から3回目の放電操作開始までの間(第3区間)、3回目の放電操作終了から化成終了までの間(第4区間)の各充電において、充電電流を3段階に減少させる操作を1サイクルとして当該サイクルを繰り返す場合の充放電電流パターンの概略図を図4に示す。
充電電流を3段階に減少させる操作は、28Aで1.1時間充電、次に11Aで1.3時間充電、さらに、3Aで1.9時間充電を1サイクルとした。この1サイクルの平均充電電流は11.8Aである。前記1サイクルを、上記第1区間では5回、第2区間では2回、第3区間では3回、第4区間では5回繰り返す充電をする。
(Example 2 )
In Reference Example 2, from the start of chemical conversion to the start of the first discharge operation (first section), from the end of the first discharge operation to the start of the second discharge operation (second section), the second discharge operation An operation for reducing the charging current in three stages in each charge from the end to the start of the third discharge operation (third section) and from the end of the third discharge operation to the end of formation (fourth section). FIG. 4 shows a schematic diagram of a charge / discharge current pattern when the cycle is repeated as a cycle.
The operation for reducing the charging current in three steps was charging for 1.1 hours at 28A, then charging for 1.3 hours at 11A, and charging for 1.9 hours at 3A as one cycle. The average charging current for one cycle is 11.8A. The one cycle is charged 5 times in the first interval, twice in the second interval, 3 times in the third interval, and 5 times in the fourth interval.

この電槽化成方法で充電される電気量は650Ahであり、所要時間は70時間である。   The amount of electricity charged by this battery case forming method is 650 Ah, and the required time is 70 hours.

(比較例1)
化成開始から化成終了までの間に1回の放電操作を組入れる場合の充放電電流パターンの概略図を図5に示す。
化成開始から、9.7Aで27時間の充電をする。続いて、20Aで1時間の放電操作を組入れる。次に、9.7Aで64時間の充電をする充放電電流パターンを示している。
(Comparative Example 1)
FIG. 5 shows a schematic diagram of a charge / discharge current pattern when one discharge operation is incorporated between the start of formation and the end of formation.
From the start of conversion, the battery is charged at 9.7 A for 27 hours. Subsequently, a 1 hour discharge operation is incorporated at 20A. Next, a charging / discharging current pattern for charging at 9.7 A for 64 hours is shown.

この電槽化成方法で充電される電気量は860Ahであり、所要時間は92時間である。   The amount of electricity charged by this battery case forming method is 860 Ah, and the required time is 92 hours.

(比較例2)
比較例1において、放電操作後の充電時間を短くした充放電電流パターンの概略図を図6に示す。
化成開始から、9.7Aで27時間の充電をする。続いて、20Aで1時間の放電操作を組入れる。次に、9.7Aで42時間の充電をする充放電電流パターンを示している。
(Comparative Example 2)
In the comparative example 1, the schematic of the charging / discharging electric current pattern which shortened the charge time after discharge operation is shown in FIG.
From the start of conversion, the battery is charged at 9.7 A for 27 hours. Subsequently, a 1 hour discharge operation is incorporated at 20A. Next, a charge / discharge current pattern for charging for 42 hours at 9.7 A is shown.

この電槽化成方法で充電される電気量は650Ahであり、所要時間は70時間である。   The amount of electricity charged by this battery case forming method is 650 Ah, and the required time is 70 hours.

上記各例の制御弁式鉛蓄電池の電槽化成が終了してから24時間放置して冷却をした後に、20A(5時間率での放電電流)で放電し、電槽化成直後の放電容量(Ah)を測定した。その結果を、電槽化成の充電条件とともに表1に示す。   After the battery formation of the control valve type lead-acid battery in each of the above examples is completed, the battery is left to cool for 24 hours and then cooled, and then discharged at 20 A (a discharge current at a 5-hour rate). Ah) was measured. The results are shown in Table 1 together with the charging conditions for battery case formation.

表1から分かるように、各実施例は、比較例1に比べて、電槽化成に要する時間を22時間短縮するとともに、充電電気量(Ah)を約25%削減しながら、電槽化成直後の放電容量も十分に確保することができる。
比較例2から分かるように、単純に充電電気量(Ah)を少なくすると、電槽化成直後の放電容量が少なくなってしまう。
As can be seen from Table 1, each example shortened the time required for battery case formation by 22 hours and reduced the amount of charged electricity (Ah) by about 25% as compared with Comparative Example 1, immediately after the battery case formation. A sufficient discharge capacity can be secured.
As can be seen from Comparative Example 2, if the amount of charge electricity (Ah) is simply reduced, the discharge capacity immediately after the formation of the battery case is reduced.

本発明に係る各実施例で、充電電気量(Ah)を少なくしても、電槽化成直後の放電容量(Ah)を確保できる理由は、極板の内部に至る活物質まで、均等に充電がされているためと考えられる。   In each of the embodiments according to the present invention, even if the amount of charge electricity (Ah) is reduced, the reason why the discharge capacity (Ah) immediately after the formation of the battery case can be secured is to charge evenly to the active material reaching the inside of the electrode plate. It is thought that this is because

Figure 0005659484
Figure 0005659484

また、各例の電槽化成後の正極板の活物質を採取し、活物質中に残存している硫酸鉛量を測定することにより、化成反応の進行状況を確認した。残存する硫酸鉛量が少なければ、化成反応が効率よく進んでいることになる。
残存する硫酸鉛量測定方法は、次のとおりである。正極活物質に硝酸と過酸化水素を含んだ水溶液を加え、約1時間超音波処理を施す。すなわち、硝酸と過酸化水素を含んだ水溶液(硝酸60質量%、過酸化水素31質量%を含有)を80ml採取し、蒸留水で1リットルに希釈した水溶液20ml程度に1gの正極活物を加える。これに超音波処理を施した後、5Cの濾紙で濾過し蒸留水で濾紙の溶液を十分に流し去る。残渣を含んだ濾紙をるつぼ中で十分に燃焼消失させることで、残留した硫酸鉛の重量を測定する。
Further, the progress of the chemical conversion reaction was confirmed by collecting the active material of the positive electrode plate after the formation of the battery case in each case and measuring the amount of lead sulfate remaining in the active material. If the amount of the remaining lead sulfate is small, the chemical conversion reaction proceeds efficiently.
The method for measuring the amount of lead sulfate remaining is as follows. An aqueous solution containing nitric acid and hydrogen peroxide is added to the positive electrode active material and subjected to ultrasonic treatment for about 1 hour. That is, 80 ml of an aqueous solution containing nitric acid and hydrogen peroxide (containing 60% by mass of nitric acid and 31% by mass of hydrogen peroxide) is sampled, and 1 g of positive electrode active material is added to about 20 ml of an aqueous solution diluted to 1 liter with distilled water. . This is subjected to ultrasonic treatment, filtered through 5C filter paper, and the filter paper solution is sufficiently washed away with distilled water. The weight of the remaining lead sulfate is measured by thoroughly burning and eliminating the filter paper containing the residue in the crucible.

表2に示すように、各例は、本発明係る電槽化成方法を適用することで、電槽化成後の正極活物質中に残存する硫酸鉛が少なくなっており、化成反応が効率よく進行したことが分かる。特に、実施例では、化成反応が効率よく進行している。
なお、各例で、負極活物質中の硫酸鉛の残存量に差異が認められなかった。
As shown in Table 2, each example applied the battery case formation method according to the present invention , so that the amount of lead sulfate remaining in the positive electrode active material after battery case formation is reduced, and the chemical reaction is efficiently performed. You can see that it has progressed. In particular, in Examples 1 and 2 , the chemical reaction proceeds efficiently.
In each example, no difference was observed in the residual amount of lead sulfate in the negative electrode active material.

Figure 0005659484
Figure 0005659484

なお、詳細な実験結果については省略したが、化成開始から化成終了までの間に放電操作を4回以上組入れても、さらなる効果はほとんど認められなかった。参考例2は、放電操作の組入れ回数を、3回を越えて増やしても限界があることを示している。また、前記放電操作は充電反応とは逆の反応であるため、放電操作の組入れを多くすると、電槽化成に要する時間が長くなるという問題点もあるので好ましくないと言える。 Although detailed experimental results were omitted, even if the discharge operation was incorporated four or more times during the period from the start of formation to the end of formation, almost no further effect was observed. Reference Example 2 shows that there is a limit even if the number of incorporation of the discharge operation exceeds 3 times. Further, since the discharging operation is a reaction opposite to the charging reaction, it can be said that increasing the incorporation of the discharging operation is not preferable because there is a problem that the time required for forming the battery case becomes long.

しかし、実施例は、化成反応が効率よく進行することに加え、電槽化成の各工程において、充電電流を3段階に減少させる操作を1サイクルとして当該サイクルを繰り返すことにより、電槽化成直後の鉛蓄電池の放電容量を一層大きくできることを示している。 However, in Examples 1 and 2 , in addition to the chemical conversion reaction proceeding efficiently , in each step of battery case formation, the operation of reducing the charging current to three stages is repeated as one cycle, whereby the battery case is repeated. It shows that the discharge capacity of the lead storage battery immediately after formation can be further increased.

上述した実施例では、制御弁式鉛蓄電池の電槽化成方法について詳細な記載をしたが、自動車用鉛蓄電池などの液式鉛蓄電池の電槽化成方法にも、同様に適用をすることができる。なお、化成反応が進行しにくい大きな粒子を生成させた状態での化成効率の向上について記載したが、小さな粒子においても同様に効果があり、電槽化成方法を適用することができる。   In the above-described embodiments, the battery case forming method for the control valve type lead storage battery has been described in detail, but it can be similarly applied to the battery case forming method for a liquid lead storage battery such as an automotive lead storage battery. . In addition, although it described about the improvement of the chemical conversion efficiency in the state which produced | generated the big particle | grains which a chemical conversion reaction does not advance easily, it is effective similarly in a small particle | grain, and a battery case chemical conversion method can be applied.

本発明は、無停電電源装置や自動車用バッテリなどに使用されている鉛蓄電池の電槽化成方法に用いることができる。   INDUSTRIAL APPLICATION This invention can be used for the battery case formation method of the lead storage battery currently used for the uninterruptible power supply, the battery for motor vehicles, etc.

Claims (3)

鉛蓄電池の電槽化成方法において、
化成開始から化成終了までの充電の間に2回以上の放電操作を組入れ、前記放電操作による放電電気量を1回目より2回目以降で次第に多くするとともに、
前記化成開始から最初の放電操作開始までの間、一つの放電操作終了から次の放電操作開始までの間、最後の放電操作終了から化成終了までの間に行なう各充電においては、充電電流を3段階に減少させる操作を1サイクルとして当該サイクルを繰り返すことを特徴とする鉛蓄電池の電槽化成方法。
In a battery case formation method for a lead storage battery,
Incorporating two or more discharge operations during the charge from the start of formation to the end of formation, and gradually increasing the amount of discharge electricity from the first to the second and subsequent times ,
In each charge performed from the start of formation to the start of the first discharge operation, from the end of one discharge operation to the start of the next discharge operation, and from the end of the last discharge operation to the end of formation, the charging current is 3 A battery case forming method for a lead storage battery, characterized in that the operation to be reduced in stages is set as one cycle and the cycle is repeated .
鉛蓄電池の電槽化成方法において、
化成開始から化成終了までの充電の間に3回の放電操作を組入れ、前記放電操作による放電電気量を1回目から3回目になるに従って多くすることを特徴とする請求項1記載の鉛蓄電池の電槽化成方法。
In a battery case formation method for a lead storage battery,
The lead storage battery according to claim 1, wherein three discharge operations are incorporated during charging from the start of conversion to the end of conversion, and the amount of discharge electricity by the discharge operation is increased from the first to the third. Battery case formation method.
放電操作における放電電流を、異なる系統の電槽化成に用いることを特徴とする請求項1又は2記載の鉛蓄電池の電槽化成方法。 3. A battery case forming method for a lead storage battery according to claim 1 or 2 , wherein a discharge current in the discharging operation is used for forming a battery case of a different system .
JP2009279045A 2008-12-09 2009-12-09 Battery case formation method for lead acid battery Active JP5659484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279045A JP5659484B2 (en) 2008-12-09 2009-12-09 Battery case formation method for lead acid battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008312898 2008-12-09
JP2008312898 2008-12-09
JP2009178625 2009-07-31
JP2009178625 2009-07-31
JP2009279045A JP5659484B2 (en) 2008-12-09 2009-12-09 Battery case formation method for lead acid battery

Publications (2)

Publication Number Publication Date
JP2011049135A JP2011049135A (en) 2011-03-10
JP5659484B2 true JP5659484B2 (en) 2015-01-28

Family

ID=43835259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279045A Active JP5659484B2 (en) 2008-12-09 2009-12-09 Battery case formation method for lead acid battery

Country Status (1)

Country Link
JP (1) JP5659484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299490A (en) * 2016-08-23 2017-01-04 超威电源有限公司 A kind of lead-acid battery formation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633389B (en) * 2013-11-26 2015-12-09 河南超威电源有限公司 A kind of container formation process for lead acid storage battery
CN110176638B (en) * 2019-06-05 2022-04-29 天能电池(芜湖)有限公司 Two-day charging process for reducing charging energy consumption of 20Ah storage battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121069A (en) * 1991-10-30 1993-05-18 Shin Kobe Electric Mach Co Ltd Chemical formation of battery jar for sealed type lead-acid storage battery
JP3764978B2 (en) * 1994-08-04 2006-04-12 株式会社ジーエス・ユアサコーポレーション Manufacturing method of lead acid battery
JPH08130009A (en) * 1994-10-31 1996-05-21 Yuasa Corp Forming method for clad type positive plate
JP2002063895A (en) * 2000-06-08 2002-02-28 Japan Storage Battery Co Ltd Method of chemical conversion of batter case for lead acid battery
JP2002042899A (en) * 2000-07-26 2002-02-08 Shin Kobe Electric Mach Co Ltd Charging system for control valve type lead-acid battery
JP2003317711A (en) * 2001-10-19 2003-11-07 Shin Kobe Electric Mach Co Ltd Formation method of lead-acid battery
JP2003323913A (en) * 2002-04-26 2003-11-14 Japan Storage Battery Co Ltd Method for manufacturing lead storage battery
JP4178442B2 (en) * 2002-05-29 2008-11-12 株式会社ジーエス・ユアサコーポレーション Control valve type lead acid battery manufacturing method
JP2005317398A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Manufacturing method of lead-acid battery
JP5241264B2 (en) * 2008-02-19 2013-07-17 古河電池株式会社 Control valve type lead storage battery manufacturing method
JP5494012B2 (en) * 2010-03-01 2014-05-14 新神戸電機株式会社 Battery case formation method for lead acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299490A (en) * 2016-08-23 2017-01-04 超威电源有限公司 A kind of lead-acid battery formation method
CN106299490B (en) * 2016-08-23 2019-03-12 超威电源有限公司 A kind of lead-acid battery formation method

Also Published As

Publication number Publication date
JP2011049135A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5618254B2 (en) Lead acid battery
JP5769096B2 (en) Lead acid battery
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
TW201001782A (en) Flooded lead-acid battery and method of making the same
JP5494012B2 (en) Battery case formation method for lead acid battery
JP2014123510A (en) Lead storage battery
JP5659484B2 (en) Battery case formation method for lead acid battery
JP2009187776A (en) Control valve type lead-acid storage battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
JP5088656B2 (en) Negative electrode for lead-acid battery and lead-acid battery using the same
JP5573785B2 (en) Lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP6551012B2 (en) Negative electrode for lead acid battery and lead acid battery
JP4356321B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2017117758A (en) Lead storage battery
JP2003323913A (en) Method for manufacturing lead storage battery
JP2007305370A (en) Lead storage cell
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP5682530B2 (en) Method for producing paste-like positive electrode active material for lead acid battery and positive electrode plate for lead acid battery
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP2013080594A (en) Control valve type lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250