JP2005317398A - Manufacturing method of lead-acid battery - Google Patents

Manufacturing method of lead-acid battery Download PDF

Info

Publication number
JP2005317398A
JP2005317398A JP2004134768A JP2004134768A JP2005317398A JP 2005317398 A JP2005317398 A JP 2005317398A JP 2004134768 A JP2004134768 A JP 2004134768A JP 2004134768 A JP2004134768 A JP 2004134768A JP 2005317398 A JP2005317398 A JP 2005317398A
Authority
JP
Japan
Prior art keywords
battery
discharge
lead
active material
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004134768A
Other languages
Japanese (ja)
Inventor
Tokunori Honma
徳則 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004134768A priority Critical patent/JP2005317398A/en
Publication of JP2005317398A publication Critical patent/JP2005317398A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a lead-acid battery suppressing self discharge of the lead-acid battery in which container formation is completed, and frequency of supplementary charge during storage is reduced. <P>SOLUTION: The manufacturing method of the lead-acid battery is that the container formation is completed in a discharged state, and then adjustment of an electrolyte is conducted. The discharge depth in discharge conducted in completion of the container formation is set to 1.0-4.0% of the theoretical capacity of a positive active material. The discharge conducted in the completion of the container formation is preferably conducted at current equivalent to 0.4-2.0 CA of the battery. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池の製造方法、特に電槽化成方法に関するものである。   The present invention relates to a method for producing a lead-acid battery, and more particularly to a method for forming a battery case.

従来の鉛蓄電池の電槽化成は、先ず、鉛と一酸化鉛を主成分とする鉛粉を、水及び希硫酸で練り合せてペースト化してペースト状活物質を作成し、このペースト状活物質を集電体に充填、保持させる。その後このペースト状活物質を集電体に充填した充填板を、活物質の結晶成長、ペーストの強度向上、格子表面と活物質の化学的な結合力の増加、水分の除去等を目的として熟成,乾燥を行い、未化成の陽極極板と陰極極板とを作成する。   In the conventional lead-acid battery formation of lead-acid batteries, first, lead powder mainly composed of lead and lead monoxide is kneaded with water and dilute sulfuric acid to create a paste-like active material. This paste-like active material Is filled and held in the current collector. After that, the packed plate filled with the paste active material is aged for the purpose of crystal growth of the active material, improvement of paste strength, increase of chemical bond strength between the lattice surface and the active material, removal of moisture, etc. , Drying to produce an unformed anode plate and cathode plate.

次いで、前記熟成,乾燥工程を経た未化成の陽極極板と陰極極板をセパレータを挟んで交互に積層して電極群を作成し、この電極群を電槽内に収納する。電極群を電槽内に収納したならば電槽の開口部を電解液注入口を除いて密封し、注入口から電解液を注液して定電流で連続通電し、或いは化成効率を向上させるために電槽化成中に休止や放電、または電流値を下げる段別化成により極板の化成を行う。電槽化成を終了すると電槽内の電解液が所定の電解液組成となるように比重調整と液量調整を行い、或いは電槽内の電解液を一旦抜き取って所定の比重の電解液を再注液する方法が取られる。
特許第2964555号公報 特開平5−151987号公報
Next, an unformed anode electrode plate and cathode electrode plate that have undergone the aging and drying steps are alternately laminated with a separator interposed therebetween to create an electrode group, and this electrode group is housed in a battery case. If the electrode group is stored in the battery case, the opening of the battery case is sealed except for the electrolyte injection port, and the electrolyte solution is injected from the injection port and continuously energized at a constant current, or the chemical conversion efficiency is improved. For this purpose, the electrode plate is formed by resting or discharging during battery case formation, or by stepwise formation for reducing the current value. When the formation of the battery is completed, the specific gravity and the liquid volume are adjusted so that the electrolyte in the battery has a predetermined electrolyte composition, or the electrolyte in the battery is removed once and the electrolyte with a predetermined specific gravity is re-applied. The method of pouring is taken.
Japanese Patent No. 2964555 Japanese Patent Laid-Open No. 5-151987

上述したようにして電槽化成終了後に電解液を調整した鉛蓄電池は、直ぐに出荷され直ちに使用されることは極めて稀で、一般には出荷までに数日から数週間放置される。放置中は自己放電により電解液の比重低下、電圧低下が生じる。そのため、所定期間以上放置された鉛蓄電池は出荷に際して補充電を行い、正規の電解液比重、電圧を維持させる工程が必要である。   As described above, a lead storage battery in which an electrolytic solution is adjusted after completion of battery case formation is very rarely shipped and used immediately, and is generally left for several days to several weeks before shipment. During standing, the specific gravity and voltage of the electrolyte decrease due to self-discharge. For this reason, lead storage batteries that have been left for a predetermined period or longer need to be charged at the time of shipment to maintain a normal electrolyte specific gravity and voltage.

電槽化成終了後の電池の自己放電は正極活物質が電解液と直接反応する
PbO+HSO→PbSO+HO+1/2O
の反応と、負極活物質が電解液と直接反応する
Pb+HSO→PbSO+H
の反応があり、更に格子と活物質との反応に起因する
PbO+HSO+Pb→2PbSO+2HO
が主な反応と考えられる。
The self-discharge of the battery after the formation of the battery is completed is that PbO 2 + H 2 SO 4 → PbSO 4 + H 2 O + 1 / 2O in which the positive electrode active material directly reacts with the electrolyte.
And Pb + H 2 SO 4 → PbSO 4 + H 2 in which the negative electrode active material reacts directly with the electrolytic solution
PbO 2 + H 2 SO 4 + Pb → 2PbSO 4 + 2H 2 O resulting from the reaction between the lattice and the active material
Is considered the main reaction.

電槽化成直後の活物質は未だ結晶化が十分に進んでいず、活物質表面には微細結晶が多数存在しており、活物質の比表面積が大きいため化学的にはまだ不安定な状態にあり、放置中に正極活物質と負極活物質が電解液と直接反応を起し易い状態にあり、このような状態が電解液の比重及び電池電圧の低下に重要な影響を及ぼしている。
特に、夏場等は鉛蓄電池の放置場所の雰囲気温度が高いため、化学反応速度は速くなり、放置中の自己放電反応が活発化し、電解液の比重、電池電圧の低下による電池性能の不良率が増加する傾向にある。このため、夏場は電池不良を起させないために補充電を行う頻度が多くなるという不具合もあった。
The active material immediately after the formation of the battery is not yet sufficiently crystallized, and there are many fine crystals on the active material surface, and the active material has a large specific surface area, so it is still chemically unstable. In this state, the positive electrode active material and the negative electrode active material are likely to react directly with the electrolytic solution during standing, and such a state has an important influence on the specific gravity of the electrolytic solution and the decrease in battery voltage.
In particular, in summer and the like, since the ambient temperature of the lead storage battery is high, the chemical reaction rate is fast, the self-discharge reaction during the stand is activated, and the defective rate of the battery performance due to the specific gravity of the electrolyte and the decrease in the battery voltage is reduced. It tends to increase. For this reason, in summer, there is also a problem that the frequency of performing supplementary charging is increased in order not to cause battery failure.

本発明はこのような課題を解決するもので、電槽化成を終了した鉛蓄電池の自己放電を抑制し、保管中の補充電の頻度を削減した鉛蓄電池の製造方法を提供することを目的とするものである。   This invention solves such a subject, and it aims at providing the manufacturing method of the lead storage battery which suppressed the self-discharge of the lead storage battery which finished battery case formation, and reduced the frequency of the auxiliary charge in storage. To do.

このような問題点を解決するために、本発明の鉛蓄電池の製造方法は、電槽化成を放電で終了させた後、電解液の調整を行う鉛蓄電池の製造方法であって、前記電槽化成の終期に行う放電の放電深度を、正極活物質理論容量に対して1.0%ないし4.0%とするものである。   In order to solve such a problem, the method for manufacturing a lead storage battery according to the present invention is a method for manufacturing a lead storage battery in which the electrolytic solution is adjusted after the formation of the battery case is terminated by discharging. The discharge depth of the discharge performed at the end of the chemical conversion is set to 1.0% to 4.0% with respect to the positive electrode active material theoretical capacity.

なお、電槽化成終了時に行う放電は、電池の0.4CAないし2.0CAに相当する電流で放電することが望ましい。   In addition, as for the discharge performed at the time of completion | finish of battery case formation, it is desirable to discharge with the electric current equivalent to 0.4CA thru | or 2.0CA of a battery.

本発明によれば、電槽化成終期に正極活物質理論容量に対して1.0%ないし4.0%の放電深度で放電を行うことで、電槽化成直後で未だ活物質表面が十分に結晶化が進んでいない微細結晶が硫酸鉛化され、活物質の表面を化学的に安定化させることができる。そのため、鉛蓄電池の放置中に電解液(硫酸)と直接反応する活物質の量が減少し、電解液の比重低下、電池電圧の低下によって起こる電池不良を減少することができ、在庫中の補充電の頻度を少なくすることができる。   According to the present invention, by performing discharge at a discharge depth of 1.0% to 4.0% with respect to the theoretical capacity of the positive electrode active material at the end of battery cell formation, the active material surface is still sufficiently immediately after battery cell formation. Fine crystals that have not been crystallized are converted to lead sulfate, and the surface of the active material can be chemically stabilized. This reduces the amount of active material that reacts directly with the electrolyte (sulfuric acid) while the lead-acid battery is left, reducing the specific gravity of the electrolyte and battery failure caused by a decrease in battery voltage. The frequency of charging can be reduced.

本発明によれば、電槽化成終期に正極活物質の理論容量の1.0%ないし4.0%の放電深度の放電を行うことで、鉛蓄電池の放置中に電解液の比重低下、電池電圧の低下が小さく、電池不良発生率の少ない鉛蓄電池を提供できる優れた製造方法である。   According to the present invention, by performing discharge at a discharge depth of 1.0% to 4.0% of the theoretical capacity of the positive electrode active material at the end of battery cell formation, the specific gravity of the electrolyte is reduced while the lead storage battery is left, and the battery This is an excellent manufacturing method capable of providing a lead storage battery with a small voltage drop and a low incidence of battery failure.

本発明の一実施形態を以下に示す。
鉛と一酸化鉛を主成分とする鉛粉を、水及び希硫酸で練り合せてペースト化してペースト状活物質を作成し、このペースト状活物質を集電体に充填、保持させた。その後このペースト状活物質を集電体に充填した充填板を、活物質の結晶成長、ペーストの強度向上、格子表面と活物質の化学的な結合力の増加、水分の除去等を目的として熟成,乾燥を行い、未化成の陽極極板と陰極極板を製造した。
One embodiment of the present invention is shown below.
A paste powder composed mainly of lead and lead monoxide was kneaded with water and dilute sulfuric acid to prepare a paste-like active material, and this paste-like active material was filled and held in a current collector. After that, the paste plate filled with the paste active material is aged for the purpose of crystal growth of the active material, improvement of the paste strength, increase of the chemical bond strength between the lattice surface and the active material, removal of moisture, etc. Then, drying was performed to produce an unformed anode plate and cathode plate.

次いで、前記熟成,乾燥工程を経た未化成の陽極極板と陰極極板とを、セパレータを挟んで交互に積層して電極群を作成し、この電極群を電槽内に収納し、電槽の開口部を、電解液注入口を除いて密封し、注入口から電解液を注液し鉛蓄電池を組み立てた。この鉛蓄電池に定電流で連続通電し、或いは化成効率を向上させるために電槽化成中に休止や放電、または電流値を下げる段別化成により極板の化成を行い、所定の電槽化成を行った後、直ちに放電を行った.放電は放電深度を正極活物質理論容量に対して1.0%ないし4.0%で行った。   Next, an unformed anode electrode plate and cathode electrode plate that have undergone the aging and drying steps are alternately laminated with a separator interposed therebetween to create an electrode group, and this electrode group is housed in a battery case. The opening was sealed except for the electrolyte inlet and the electrolyte was injected from the inlet to assemble a lead-acid battery. The lead storage battery is continuously energized with a constant current, or in order to improve the formation efficiency, the electrode plate is formed by resting or discharging during battery case formation, or by stepwise formation that reduces the current value, and a predetermined battery case formation is performed. Immediately after the discharge, discharge was performed. The discharge was performed at a discharge depth of 1.0% to 4.0% with respect to the theoretical capacity of the positive electrode active material.

放電の放電深度を、正極活物質理論容量に対して1.0%ないし4.0%とするのは、放電深度が正極活物質理論容量に対して4.0%よりも大きいと活物質中に硫酸鉛が多く生成し過ぎ、反対に1.0%以下ではその目的を十分に達成できないためである。
放電深度が正極活物質理論容量に対して4.0%よりも大きくすると、上述したように活物質中に硫酸鉛が多く生成し過ぎ、電池の初期の性能を十分に発揮できず、初期性能に悪影響を及ぼす。このため、電槽化成終期の放電は放電深度が正極活物質理論容量に対して4.0%までとすることが好ましい。
The discharge depth of the discharge is set to 1.0% to 4.0% with respect to the theoretical capacity of the positive electrode active material when the discharge depth is larger than 4.0% with respect to the theoretical capacity of the positive electrode active material. This is because too much lead sulfate is formed, and on the contrary, if it is 1.0% or less, the purpose cannot be sufficiently achieved.
If the depth of discharge is larger than 4.0% of the theoretical capacity of the positive electrode active material, too much lead sulfate is generated in the active material as described above, and the initial performance of the battery cannot be fully exhibited. Adversely affect. For this reason, it is preferable that the discharge at the end of battery case formation has a depth of discharge of up to 4.0% with respect to the theoretical capacity of the positive electrode active material.

また、電槽化成終了時に行う放電は、電池の0.4CAないし2.0CAに相当する電流で放電することが望ましい。放電を0.4CAに相当する電流以下の小さな電流で行うと電槽化成時間が長くなり生産能率の低下をもたらし好ましくない。反対に放電を電池の2.0CA以上に相当する大きな電流で行うことは、放電に高価な設備を必要とすることからあまり好ましくないためである。   Moreover, it is desirable that the discharge performed at the end of the battery case formation is performed with a current corresponding to 0.4 CA to 2.0 CA of the battery. Discharging at a small current equal to or less than the current corresponding to 0.4 CA unfavorably leads to a long battery formation time and a reduction in production efficiency. On the contrary, it is not preferable to perform discharging with a large current corresponding to 2.0 CA or more of the battery because expensive equipment is required for discharging.

放電が終了したならば電槽内の電解液の比重等を所定の値に調整するよう電解液の液量を調整し、或いは電槽内の電解液を一旦抜き取って所定の比重の電解液を再注液し、鉛蓄電池を完成した。
以下に具体例を示す。
When the discharge is completed, adjust the amount of the electrolyte so that the specific gravity of the electrolyte in the battery case is adjusted to a predetermined value, or once remove the electrolyte in the battery case and replace the electrolyte with a predetermined specific gravity. Re-injection was performed to complete the lead-acid battery.
Specific examples are shown below.

定格容量28Ah/5HRの未化成2Vセルを作製し、比重1.200(20℃)の希硫酸を所定量注液した後、総充電電気量が正極活物質理論容量の200%となるように充電―放電―充電を基本パターンとした電槽化成を行い、引き続き電池の1CAに相当する放電電流28Aで表1に示すように正極活物質理論容量に対する放電深度が0%ないし20%までの条件1ないし9で放電を行い電槽化成を終了した。電槽化成終了後一旦電解液を廃液し、新たに比重1.290(20°C)の希硫酸を所定量注液し、この2Vセルを30°Cの恒温槽中で4週間放置し、電解液の比重の推移、電池電圧の推移を測定した。測定結果を図1、図2に示す。
また、同様に表1に示す条件1ないし9で電槽化成を行った2Vセルで放置期間をおかずに5時間率放電試験を行い、その結果を表2に示した。
An unformed 2V cell with a rated capacity of 28 Ah / 5 HR is prepared, and after pouring a predetermined amount of dilute sulfuric acid with a specific gravity of 1.200 (20 ° C.), the total amount of electricity charged is 200% of the theoretical capacity of the positive electrode active material The battery is formed with the basic pattern of charge-discharge-charge, and the discharge current 28A corresponding to 1CA of the battery is the condition that the discharge depth with respect to the positive electrode active material theoretical capacity is 0% to 20% as shown in Table 1. 1 to 9 was discharged to complete the formation of the battery case. After the formation of the battery case, the electrolyte solution was once drained, and a predetermined amount of dilute sulfuric acid with a specific gravity of 1.290 (20 ° C) was newly injected, and this 2V cell was left in a constant temperature bath at 30 ° C for 4 weeks. The transition of the specific gravity of the electrolyte and the transition of the battery voltage were measured. The measurement results are shown in FIGS.
Similarly, a 5-hour rate discharge test was conducted on a 2V cell subjected to battery formation under the conditions 1 to 9 shown in Table 1 without leaving it, and the results are shown in Table 2.

Figure 2005317398
Figure 2005317398

Figure 2005317398
Figure 2005317398

図1、図2及び表1の結果から、放電中の比重、電圧の低下は放置開始数日間が最も大きく、その後は比較的ゆるやかに低下している。しかし、放電深度が1.0%以上である条件1(実施例1−1)ないし条件3(実施例1−3)と、条件6(比較例1−3)ないし条件9(比較例1−6)は条件4(比較例1−1)、条件5(比較例1−2)よりも明らかに放置中の比重、電圧の低下が小さくなっている。この結果は、活物質の微細結晶を予め硫酸鉛化することで電解液(希硫酸)と直接反応する活物質の量が減少し、化学的に安定化したためと推察される。   From the results shown in FIGS. 1, 2 and Table 1, the specific gravity and voltage drop during discharge is greatest for several days after the start of standing, and thereafter decreases relatively slowly. However, Condition 1 (Example 1-1) to Condition 3 (Example 1-3) and Condition 6 (Comparative Example 1-3) to Condition 9 (Comparative Example 1-) where the depth of discharge is 1.0% or more. 6) is clearly lower than the condition 4 (Comparative Example 1-1) and the condition 5 (Comparative Example 1-2). This result is presumably because the amount of the active material that reacts directly with the electrolytic solution (dilute sulfuric acid) is reduced and chemically stabilized by converting the fine crystals of the active material into lead sulfate in advance.

また、電解液の比重と電池電圧とは相関関係にあるため、比重の低下が大きければ電圧の低下も大きくなる。しかしながら、表2に示す結果のように放電深度が大きい条件6(比較例1−3)ないし条件9(比較例1−6)では活物質中に硫酸鉛が多く生成し過ぎ、定格容量28Ah/5HRを下回る不具合が発生している。そのため、放電深度は正極活物質理論容量に対し1.0%ないし4.0%が好ましい範囲である。   In addition, since the specific gravity of the electrolytic solution and the battery voltage are in a correlation, if the specific gravity decreases greatly, the voltage decrease also increases. However, in the conditions 6 (Comparative Example 1-3) to 9 (Comparative Example 1-6) where the depth of discharge is large as shown in Table 2, too much lead sulfate is generated in the active material, and the rated capacity of 28 Ah / A defect below 5HR has occurred. Therefore, the discharge depth is preferably in the range of 1.0% to 4.0% with respect to the theoretical capacity of the positive electrode active material.

実施例1と同じ2Vセルを用いて電槽化成終期の放電電流の最適化を行った。
最適化するための条件は、放電深度1.0%と4.0%で、表3に示す条件の放電電流値で電槽化成を行い、電槽化成終了後電解液を比重1.290(20°C)の希硫酸と入れ換え、30℃の恒温槽中に放置し、放置中の比重の推移の測定と5時間率放電を行った。放置中の比重の推移を図3、図4に、5時間率放電容量を表4に示す。
Using the same 2V cell as in Example 1, the discharge current at the end of battery case formation was optimized.
The conditions for optimization are 1.0% and 4.0% of the depth of discharge, and the battery case is formed with the discharge current value of the conditions shown in Table 3, and the electrolyte solution has a specific gravity of 1.290 ( (20 ° C.) was replaced with dilute sulfuric acid and left in a constant temperature bath at 30 ° C., and the transition of the specific gravity during the standing and the 5-hour rate discharge were performed. The transition of specific gravity during standing is shown in FIGS. 3 and 4, and the 5-hour rate discharge capacity is shown in Table 4.

Figure 2005317398
Figure 2005317398

Figure 2005317398
Figure 2005317398

図3、図4の結果から各条件とも実施例1で示した条件4よりも比重低下の度合いは小さくなっており効果は認められる。表4の結果より、放電深度が4.0%のものでは放電電流値が比較的小さい条件20(比較例2−1)、条件21(比較例2−2)のものは5時間率放電容量が定格の28Ahを下回っている。これは、放電電流が小さい程活物質の利用率が大きくなるためで、活物質表面の微細結晶だけでなく、内部まで硫酸鉛化が進んでしまっているものと推察される。また、あまり小さい電流で放電を行うと電槽化成時間が長くなり生産能率の低下をもたらし好ましくない。反対に、大きい電流での放電は高価な設備を必要とすることもあり、放電電流は実施例2−1ないし2−3の電池の0.4CAないし2.0CAに相当する電流範囲が最も望ましい。   From the results of FIGS. 3 and 4, the degree of specific gravity reduction is smaller than the condition 4 shown in Example 1 in each condition, and the effect is recognized. From the results of Table 4, when the discharge depth is 4.0%, the discharge current value is relatively small under the condition 20 (Comparative Example 2-1) and under the condition 21 (Comparative Example 2-2) is the 5-hour rate discharge capacity. Is below the rated 28Ah. This is because the utilization rate of the active material increases as the discharge current decreases, and it is presumed that lead sulfate has progressed not only to the fine crystals on the surface of the active material but also to the inside. In addition, if the discharge is performed with a very small current, the time for forming the battery case becomes long, and the production efficiency is lowered, which is not preferable. On the contrary, discharging with a large current may require expensive equipment, and the discharging current is most preferably in the current range corresponding to 0.4 CA to 2.0 CA of the batteries of Examples 2-1 to 2-3. .

以上、本発明は電槽化成の終期に、望ましくは電池の0.4CAないし2.0CAに相当する電流で、正極活物質理論容量1.0%ないし4.0%の放電深度で放電を行い、化学的に不安定な微細結晶を予め硫酸鉛化することで、電池の初期性能を低下することなく放置中の電解液比重、電池電圧の低下を小さくでき、比重低下及び電圧低下に基づく電池性能不良を減少し、在庫電池の補充電の頻度を削減することが可能となる。   As described above, the present invention performs discharge at the final stage of battery case formation, preferably at a current corresponding to 0.4 CA to 2.0 CA of the battery, at a discharge depth of 1.0% to 4.0% of the theoretical capacity of the positive electrode active material. By pre-converting chemically unstable fine crystals to lead sulfate in advance, it is possible to reduce the decrease in the specific gravity of the electrolyte and the battery voltage without deteriorating the initial performance of the battery, and the battery based on the decrease in specific gravity and the voltage decrease. It is possible to reduce performance defects and reduce the frequency of auxiliary charging of stock batteries.

図1は鉛蓄電池の放置中の電解液の比重推移を示すグラフである。FIG. 1 is a graph showing changes in the specific gravity of the electrolyte while the lead-acid battery is being left. 図2は鉛蓄電池の放置中の電圧の推移を示すグラフである。FIG. 2 is a graph showing the transition of voltage while the lead storage battery is left unattended. 図3は鉛蓄電池の放電深度1.0%に於ける放置中の電解液の比重推移を示すグラフである。FIG. 3 is a graph showing the change in the specific gravity of the electrolyte during standing at a discharge depth of 1.0% of the lead storage battery. 図4は鉛蓄電池の放電深度4.0%に於ける放置中の電解液の比重推移を示すグラフである。FIG. 4 is a graph showing the change in the specific gravity of the electrolyte while it is being left at a discharge depth of 4.0% of the lead storage battery.

Claims (2)

電槽化成を放電で終了させた後、電解液の調整を行う鉛蓄電池の製造方法であって、前記電槽化成終了時に行う放電の放電深度を、正極活物質理論容量に対して1.0%ないし4.0%とすることを特徴とする鉛蓄電池の製造方法。   A method for producing a lead-acid battery in which the electrolytic solution is adjusted after battery case formation is terminated by discharge, and the discharge depth of discharge performed at the end of the battery case formation is 1.0% with respect to the theoretical capacity of the positive electrode active material. % To 4.0%, A method for producing a lead-acid battery. 前記電槽化成終了時に行う放電は、電池の0.4CAないし2.0CAに相当する電流で放電する請求項1に記載の鉛蓄電池の製造方法。   The lead storage battery manufacturing method according to claim 1, wherein the discharge performed at the end of the battery case formation is performed with a current corresponding to 0.4 CA to 2.0 CA of the battery.
JP2004134768A 2004-04-28 2004-04-28 Manufacturing method of lead-acid battery Pending JP2005317398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134768A JP2005317398A (en) 2004-04-28 2004-04-28 Manufacturing method of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134768A JP2005317398A (en) 2004-04-28 2004-04-28 Manufacturing method of lead-acid battery

Publications (1)

Publication Number Publication Date
JP2005317398A true JP2005317398A (en) 2005-11-10

Family

ID=35444585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134768A Pending JP2005317398A (en) 2004-04-28 2004-04-28 Manufacturing method of lead-acid battery

Country Status (1)

Country Link
JP (1) JP2005317398A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049135A (en) * 2008-12-09 2011-03-10 Shin Kobe Electric Mach Co Ltd Lead-acid battery jar formation method
CN107681204A (en) * 2017-09-01 2018-02-09 超威电源有限公司 The chemical synthesis technology of the battery prepared using recovery lead powder
CN114512702A (en) * 2022-02-10 2022-05-17 天能电池集团(马鞍山)新能源科技有限公司 Formation and post-treatment process for rapidly stabilizing open-circuit voltage of storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049135A (en) * 2008-12-09 2011-03-10 Shin Kobe Electric Mach Co Ltd Lead-acid battery jar formation method
CN107681204A (en) * 2017-09-01 2018-02-09 超威电源有限公司 The chemical synthesis technology of the battery prepared using recovery lead powder
CN114512702A (en) * 2022-02-10 2022-05-17 天能电池集团(马鞍山)新能源科技有限公司 Formation and post-treatment process for rapidly stabilizing open-circuit voltage of storage battery

Similar Documents

Publication Publication Date Title
TW201001782A (en) Flooded lead-acid battery and method of making the same
JP2001229920A (en) Method of manufacturing sealed lead acid battery
JP4515902B2 (en) Lead acid battery
JP2005317398A (en) Manufacturing method of lead-acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP5196732B2 (en) Method for producing lead-acid battery
JP3659111B2 (en) Manufacturing method of lead acid battery
JP4081698B2 (en) Lead-acid battery charging method
JP2003346890A (en) Valve regulated lead-acid battery and its manufacturing method
JP5879888B2 (en) Control valve type lead acid battery
JP2002008644A (en) Production method of positive electrode plate for lead storage battery
JP2003317711A (en) Formation method of lead-acid battery
JP6115841B2 (en) Lead acid battery
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JPH0850896A (en) Manufacture of lead-acid battery
JP3987998B2 (en) Unformed positive electrode plate for lead acid battery
JP2007035496A (en) Chemical formation method of lead-acid storage battery container
JPH08115718A (en) Manufacture of lead-acid battery
JP3435796B2 (en) Method of manufacturing paste-type positive electrode plate for sealed lead-acid battery
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP4376514B2 (en) Positive electrode for lead acid battery and method for producing the same
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery