JP2007035496A - Chemical formation method of lead-acid storage battery container - Google Patents

Chemical formation method of lead-acid storage battery container Download PDF

Info

Publication number
JP2007035496A
JP2007035496A JP2005218666A JP2005218666A JP2007035496A JP 2007035496 A JP2007035496 A JP 2007035496A JP 2005218666 A JP2005218666 A JP 2005218666A JP 2005218666 A JP2005218666 A JP 2005218666A JP 2007035496 A JP2007035496 A JP 2007035496A
Authority
JP
Japan
Prior art keywords
active material
lead
positive electrode
current density
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005218666A
Other languages
Japanese (ja)
Inventor
Tokunori Honma
徳則 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2005218666A priority Critical patent/JP2007035496A/en
Publication of JP2007035496A publication Critical patent/JP2007035496A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical formation method of a lead storage battery container with production efficiency improved by preventing or restraining stratification of electrolyte solution and unevenness of a cathode active material. <P>SOLUTION: In chemical formation of the lead-acid storage battery container, charging is made until a charged electricity volume reaches 60 to 80% to a theoretical capacity of the cathode active material, and then current density is increased to generate gas and stir the electrolyte solution, so that a current density to be increased is to be 40 to 60 mA/cm<SP>2</SP>per unit area of a cathode plate, a charging electricity volume is to be 5 to 15% to a theoretical capacity of the cathode active material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解液の成層化や正極活物質の不均一化を防止または抑制することで生産効率が向上する鉛蓄電池の電槽化成方法に関するものである。 The present invention relates to a battery case forming method for a lead storage battery in which production efficiency is improved by preventing or suppressing stratification of an electrolytic solution and non-uniformity of a positive electrode active material.

鉛蓄電池は、鉛と一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、ペースト状活物質とした後、ペースト状活物質を鉛合金などの集電体に充填し保持させ、ペースト状活物質を充填し保持された充填板を、活物質の結晶の成長、ペーストの強度アップ、格子表面と活物質との化学的な結合力の増加、水分の除去などを目的とした熟成乾燥を行い、この後、熟成乾燥工程を経て作製された未化成の正負極板をセパレータを挟んで交互に積層することにより極板群を形成し、この極板群を電槽に収納し、注液口を設けた蓋と熱溶着をし、この鉛蓄電池内に電解液である希硫酸を注液して、通電し電槽化成を行い製造される。 In lead-acid batteries, lead powder containing lead and lead monoxide as the main components is kneaded with water and dilute sulfuric acid to make a paste-like active material, and then the paste-like active material is filled in a current collector such as a lead alloy and held. The purpose of this work is to fill the active plate with the paste-like active material and hold it, for the purpose of growing the crystal of the active material, increasing the strength of the paste, increasing the chemical bonding force between the lattice surface and the active material, and removing moisture. After aging and drying, an electrode plate group is formed by alternately laminating unformed positive and negative electrode plates produced through an aging drying process with a separator interposed therebetween, and this electrode plate group is stored in a battery case. It is manufactured by heat-welding with a lid provided with a liquid injection port, injecting dilute sulfuric acid, which is an electrolytic solution, into this lead storage battery, energizing it, and forming a battery case.

通常の電槽化成においては、充填し保持されたペースト状活物質の脱落防止と、化成効率を考慮し、比較的低い電流密度、例えば、正極板の単位面積あたり10mA/cm2程度で充電している。この様な比較的低い電流密度で充電した場合は、充電電気量が正極活物質理論容量の100%付近までは未だ活物質の転極が起きず、分極が小さいためにガス発生は少ない。しかし、充電電気量が理論容量の100%を過ぎたあたりから分極が大きくなりガスは激しく発生し始め、また温度上昇も大きくなる。この様な状態になると化成効率が急激に低下する。そのため、一旦休止または放電を入れた後、化成効率を低下させないように段階的に電流を下げてガス発生を極力抑える方法が一般的である。 In normal battery case formation, charging is performed at a relatively low current density, for example, about 10 mA / cm 2 per unit area of the positive electrode plate in consideration of prevention of falling off of the filled and held pasty active material and formation efficiency. ing. When charging is performed at such a relatively low current density, the active material does not invert until the charged electric charge is close to 100% of the theoretical capacity of the positive electrode active material, and gas generation is small because the polarization is small. However, when the amount of charged electricity exceeds 100% of the theoretical capacity, polarization increases, gas starts to be generated vigorously, and the temperature rise also increases. In such a state, the chemical conversion efficiency decreases rapidly. Therefore, a general method is to suppress gas generation as much as possible by temporarily reducing the current after stopping or discharging and reducing the chemical conversion efficiency.

電槽化成を行う際に注液された希硫酸は、未化成の正負極活物質と反応し硫酸鉛が生成するため、注液された希硫酸の濃度は低くなり、比重が低下する。この状態から電槽化成を行うと、今度は極板内部から硫酸が吐出してくる。この硫酸分は周囲の希硫酸よりも十分に濃度が高いため、電池の下部に沈降して行き、電槽内部の上下で硫酸濃度が異なる成層化と呼ばれる現象が起こる。正極活物質理論容量に対する充電電気量が100%付近まではガス発生も少ないため硫酸の攪拌が行われ難く、化成が進行するに伴い、上下の硫酸濃度差も大きくなっていく。両極板の周囲に濃度の高い硫酸分が存在すると、硫酸鉛の溶解反応が進み難いため化成効率が低下する。この様に電池内の上部と下部で硫酸の濃度差ができてしまうと、極板の上部と下部で化成効率が異なるため化成後の極板組成が不均一となってしまう。特に正極においては、負極よりも化成効率が低いためにこの差は顕著である。この様な組成の不均一な極板で構成された電池は自己放電が大きく保存特性が著しく劣り、また未化成分も多く存在するため初期性能も低いといった不具合があった。 The dilute sulfuric acid injected at the time of battery cell formation reacts with the unformed positive and negative electrode active materials to produce lead sulfate, so that the concentration of the diluted dilute sulfuric acid decreases and the specific gravity decreases. When the battery case is formed from this state, sulfuric acid is discharged from the inside of the electrode plate. Since this sulfuric acid content is sufficiently higher than the surrounding dilute sulfuric acid, it sinks to the lower part of the battery and causes a phenomenon called stratification in which the sulfuric acid concentration differs between the upper and lower parts inside the battery case. As the amount of electricity charged relative to the theoretical capacity of the positive electrode active material is close to 100%, the generation of gas is small, so that stirring of sulfuric acid is difficult, and as the formation proceeds, the difference in sulfuric acid concentration between the upper and lower sides increases. If sulfuric acid having a high concentration is present around the bipolar plate, it is difficult for the lead sulfate dissolution reaction to proceed, resulting in a decrease in chemical conversion efficiency. If the sulfuric acid concentration difference between the upper part and the lower part in the battery is thus made, the chemical composition efficiency is different between the upper part and the lower part of the electrode plate, so that the composition of the electrode plate after the conversion becomes non-uniform. Particularly in the positive electrode, this difference is remarkable because the conversion efficiency is lower than that of the negative electrode. A battery composed of such a non-uniform electrode plate has a problem in that the self-discharge is large and the storage characteristics are remarkably inferior, and the initial performance is also low due to the presence of many undeveloped components.

そこで、例えば、化成電流を大きくする為に、正極格子に耐食性鉛合金を用いた鉛蓄電池の電槽化成方法において、電槽化成前にガス発生電位を超えない電流を10分間以上通電して予備充電する方法(特許文献1)や、電解液の注液時に生じる硫酸濃度の不均一化を抑制する為に、極群を電槽に注入後、まず該電槽内を減圧して低濃度の希硫酸を注入し、次に大気圧下で高濃度の希硫酸を注入した後に電槽化成を行う方法であって、前記低濃度の希硫酸は、体積が注入される前希硫酸の体積の60〜90%で、かつ硫酸分が注入される全硫酸分の35重量%以上であり、前記高濃度の希硫酸は、硫酸の濃度が60重量%を超えない電槽化成法(特許文献2)が行われている。 Therefore, for example, in order to increase the formation current, in a battery case formation method for a lead storage battery using a corrosion-resistant lead alloy for the positive grid, a current not exceeding the gas generation potential is applied for 10 minutes or more before the battery formation. In order to suppress the non-uniformity of the sulfuric acid concentration that occurs during the charging of the electrolytic solution (Patent Document 1) and the electrolyte solution, after injecting the pole group into the battery case, the inside of the battery case is first depressurized to lower the concentration A method of injecting dilute sulfuric acid and then injecting high-concentration dilute sulfuric acid under atmospheric pressure and then forming a battery case, wherein the low-concentration dilute sulfuric acid has a volume of dilute sulfuric acid before the volume is injected. 60% to 90% and 35% by weight or more of the total sulfuric acid to which sulfuric acid is injected, and the high-concentration dilute sulfuric acid has a sulfuric acid concentration not exceeding 60% by weight (PTL 2). ) Is done.

特開2004−356080号公報JP 2004-356080 A 特開2002−352849号公報JP 2002-352849 A

しかしながら上記した特許文献1の方法では、電槽化成時間を短縮することは可能であるが、化成時の電流密度は正極板の単位面積あたり20mA/cm2程度であり、この値で固定して化成しても電解液の成層化や正極活物質の不均一化を防止または抑制することはできない。また、特許文献2の方法では、注液時の電解液の成層化や正極活物質の不均一化を防止または抑制することはできるが、化成によって生じる不均一化を解消することは全く考慮されておらず、従来の電流密度での化成ではこれを防止または抑制することが出来ない。よって、特許文献1、2の方法では現在の市場要求を満たすには更なる改良が必要である。 However, in the method of Patent Document 1 described above, it is possible to shorten the battery case formation time, but the current density during formation is about 20 mA / cm 2 per unit area of the positive electrode plate, and is fixed at this value. Even if it forms, it cannot prevent or suppress the stratification of electrolyte solution and the nonuniformity of a positive electrode active material. Further, in the method of Patent Document 2, it is possible to prevent or suppress stratification of the electrolyte solution and non-uniformity of the positive electrode active material at the time of pouring, but it is completely considered to eliminate the non-uniformity caused by the chemical formation. However, this cannot be prevented or suppressed by chemical conversion at a conventional current density. Therefore, the methods of Patent Documents 1 and 2 require further improvement to meet the current market demand.

この様な背景の下、電解液の成層化や正極活物質の不均一化を防止または抑制することで生産効率が向上する鉛蓄電池の電槽化成方法が望まれている。 Under such circumstances, there is a demand for a battery case forming method for a lead-acid battery that improves production efficiency by preventing or suppressing stratification of the electrolyte and non-uniformity of the positive electrode active material.

本発明は、鉛蓄電池の電槽化成において、正極活物質の理論容量に対する充電電気量が60〜80%まで充電行ってから電流密度を増大してガスを発生させ電解液を攪拌することを特徴としたものである。 The present invention is characterized in that, in the battery case formation of a lead storage battery, the amount of electricity charged with respect to the theoretical capacity of the positive electrode active material is charged to 60 to 80%, and then the current density is increased to generate gas and stir the electrolyte. It is what.

また、増大させる電流密度が正極板の単位面積あたり40〜60mA/cmであることを特徴としたものである。 Further, the current density to be increased is 40 to 60 mA / cm 2 per unit area of the positive electrode plate.

また、40〜60mA/cmの電流密度で充電する場合の充電電気量が、正極活物質の理論容量に対し5〜15%あることを特徴としたものである。 Moreover, the amount of charge when charging at a current density of 40 to 60 mA / cm 2 is 5 to 15% of the theoretical capacity of the positive electrode active material.

本発明は、正極活物質の理論容量に対する充電電気量が60〜80%まで充電を行ってから電流密度を増大してガスを発生させ電解液を攪拌することで、電解液の成層化や正極活物質の不均一化を防止または抑制することができる。充電電気量が60%より小さい場合、この状態でガス発生を起こさせると、格子と活物質界面および活物質同士の化学的な結合力が弱いため活物質が剥離してしまう恐れがある。また、活物質中の硫酸鉛が十分に残っているため、一旦ガス発生により電解液を撹拌しても、再度成層化現象が生じ効果が薄い。充電電気量が80%よりも大きい場合、既に蓄電池内でかなりの成層化現象が起こってしまっているため、化成効率も低下し効果が小さい。   In the present invention, the amount of electricity charged to the theoretical capacity of the positive electrode active material is charged to 60 to 80%, and then the current density is increased to generate gas and stir the electrolytic solution, thereby stratifying the electrolytic solution and the positive electrode. Non-uniformization of the active material can be prevented or suppressed. When the amount of charged electricity is less than 60%, if gas is generated in this state, the active material may peel off because the chemical bonding force between the lattice and the active material interface and between the active materials is weak. Moreover, since sufficient lead sulfate remains in the active material, even if the electrolyte is once stirred by gas generation, the stratification phenomenon occurs again and the effect is weak. When the amount of charged electricity is larger than 80%, a considerable stratification phenomenon has already occurred in the storage battery, so the formation efficiency is lowered and the effect is small.

また、電流密度を40〜60mA/cmとするのは、充電電気量が60〜80%の範囲では鉛蓄電池は比較的充電効率が良く、分極によるガスの発生が起こり難くいため、40mA/cmより小さい電流密度では、ガス発生量が比較的少なく成層化を解消させる効果が比較的少なく、一方、60mA/cmよりも大きい電流密度では、必要以上に多量のガスが発生してしまうため、格子/活物質界面および活物質同士の剥離やクラックが発生し電池性能が低下する恐れが生じる。 Also, the current density is set to 40 to 60 mA / cm 2 because the lead storage battery has relatively good charging efficiency in the range of 60 to 80% of the charge electricity amount, and it is difficult for gas generation due to polarization to occur. If the current density is less than 2 , the amount of gas generated is relatively small, and the effect of eliminating stratification is relatively small. On the other hand, if the current density is greater than 60 mA / cm 2 , an excessive amount of gas is generated. Further, peeling or cracking between the lattice / active material interface and the active materials may occur, and the battery performance may be deteriorated.

また、40〜60mA/cmの電流密度で充電する充電電気量を正極活物質の理論容量に対し5〜15%とすることで、特に充電中の蓄電池内部の温度上昇による電池性能の低下を抑え、電解液を撹拌することが可能であり、充電電気量が5%より小さい場合、電解液を撹拌するのに十分とは言えず期待する効果が少ない。一方、15%より大きい場合、電解液を撹拌するには十分であるが蓄電池内部の温度上昇が大きくなってしまう。蓄電池内部の温度上昇の度合いは、充電電流が大きく充電時間が長いほど温度発熱量が大きくなり、蓄電池内部の温度が急激に上昇する。電槽化成中に高温状態が続くと電池性能が低下する不具合が生じる。 In addition, by setting the amount of charge to be charged at a current density of 40 to 60 mA / cm 2 to 5 to 15% of the theoretical capacity of the positive electrode active material, the battery performance is particularly deteriorated due to the temperature rise inside the storage battery during charging. It is possible to suppress and stir the electrolyte, and if the amount of charged electricity is less than 5%, it is not sufficient to stir the electrolyte, and the expected effect is small. On the other hand, if it is larger than 15%, it is sufficient for stirring the electrolytic solution, but the temperature rise inside the storage battery becomes large. The degree of temperature rise inside the storage battery is such that the greater the charging current and the longer the charging time, the greater the amount of heat generated by the temperature, and the temperature inside the storage battery rises rapidly. If the high temperature state continues during the formation of the battery case, there arises a problem that the battery performance is lowered.

本発明のように、正極活物質の理論容量に対する充電電気量が60〜80%まで充電を行ってから電流密度を増大してガスを発生させ電解液を攪拌させることで、一時的に分極を増大させてガスを発生させ、比較的早い段階で電解液(硫酸)の攪拌が行え、上下の成層化を防止することにより、局部的な化成効率の低下を抑制し、組成の均一な極板を作製することが可能となり、保存特性および初期性能の良好な電池が得られる。また電槽化成の充電時間も短くできるため生産効率を上げることが可能である。 As in the present invention, the amount of charge with respect to the theoretical capacity of the positive electrode active material is charged to 60 to 80%, and then the current density is increased to generate gas and stir the electrolyte, thereby temporarily polarizing. The gas is generated by increasing, and the electrolyte solution (sulfuric acid) can be stirred at a relatively early stage. By preventing upper and lower stratification, the local reduction in chemical formation efficiency is suppressed and the electrode plate has a uniform composition. Can be manufactured, and a battery having good storage characteristics and initial performance can be obtained. In addition, since the charging time for forming the battery case can be shortened, the production efficiency can be increased.

極板は従来と同様に、鉛と一酸化鉛を主成分とする鉛粉を水と希硫酸で混練したペースト状活物質をPb−Ca系やPb−Ca−Sn系の鉛合金からなる格子基板等の集電体に充填して保持させた充填板を、活物質の結晶の成長、ペーストの強度アップ、格子表面と活物質との化学的な結合力の増加、水分の除去などを目的とした熟成乾燥工程を経て作製さる。この様に作成された未化成の正負極板をセパレータを挟んで交互に積層して極板群を形成し、この極板群を電槽内に収納し、注液口を設けた蓋と熱融着し、注液口より電槽内に電解液である希硫酸を注液した後、化成工程で充放電され化成されて蓄電池が製造されるものである。 The electrode plate is made of a Pb-Ca-based or Pb-Ca-Sn-based lead alloy made of a paste-like active material obtained by kneading lead powder containing lead and lead monoxide as main components with water and dilute sulfuric acid. For the purpose of growing the active material crystals, increasing the strength of the paste, increasing the chemical bonding force between the lattice surface and the active material, removing moisture, etc. It is produced through the aging drying process. The unformed positive and negative electrode plates prepared in this way are alternately stacked with separators interposed therebetween to form an electrode plate group, the electrode plate group is housed in a battery case, and a lid provided with a liquid inlet and a heat After fusing and injecting dilute sulfuric acid, which is an electrolytic solution, into the battery case from the injection port, the storage battery is manufactured by charging and discharging in the chemical conversion step.

正極格子基板(高さ108mm、幅102mm)に活物質を63.5g充填した未化成正極板4枚と、負極格子基板(高さ109mm、幅102mm)に活物質を53.0g充填した未化成負極板5枚をセパレータを介して交互に積層して正極板同士および負極板同士をそれぞれストラップで溶接して極板群を製作した。そして、極板群を電槽に収納し、該電槽に蓋を施して電槽蓋に施してある注液口より比重1.28の希硫酸を注入し、理論容量58Ah(定格容量27Ah)の2Vセルの鉛蓄電池を作製した。その後、40℃水槽中において、電槽化成を行った。なお、鉛蓄電池の希硫酸の比重は電槽化成終了時にほぼ所望の液比重となるようにしてある。 Four unformed positive electrode plates filled with 63.5 g of active material on a positive electrode grid substrate (height 108 mm, width 102 mm), and non-formed material filled with 53.0 g of active material on a negative electrode lattice substrate (height 109 mm, width 102 mm) Five negative electrode plates were alternately stacked via separators, and the positive electrode plates and the negative electrode plates were welded with straps to produce an electrode plate group. Then, the electrode plate group is housed in a battery case, a lid is applied to the battery case, and diluted sulfuric acid having a specific gravity of 1.28 is injected from a liquid injection port provided on the battery case cover, and a theoretical capacity of 58 Ah (rated capacity of 27 Ah) A 2V cell lead-acid battery was prepared. Thereafter, a battery case was formed in a 40 ° C. water tank. In addition, the specific gravity of the dilute sulfuric acid in the lead storage battery is set to a desired liquid specific gravity at the end of the formation of the battery case.

電槽化成の通電条件は、まず第1充電として正極板の単位面積あたりの電流密度10mA/cmで表1に示す様に正極活物質の理論容量に対し20%〜100%(本発明1、2、比較例1〜3)の充電電気量まで充電を行った後、正極板の単位面積あたりの電流密度40mA/cmで充電電気量を正極活物質の理論容量に対し10%分の充電を行い、再び電流密度10mA/cmで第1充電の総充電電気量が正極活物質の理論容量に対し120%になるまで充電を行った。 The energization conditions of the battery case formation are 20% to 100% of the theoretical capacity of the positive electrode active material as shown in Table 1 at a current density of 10 mA / cm 2 per unit area of the positive electrode plate as the first charge (Invention 1). 2, after charging to the amount of charge in Comparative Examples 1 to 3), the amount of charge is 10% of the theoretical capacity of the cathode active material at a current density of 40 mA / cm 2 per unit area of the cathode plate. Charging was performed, and charging was performed again at a current density of 10 mA / cm 2 until the total amount of charge in the first charge was 120% of the theoretical capacity of the positive electrode active material.

次に、各々の充電した鉛蓄電池を正極板の単位面積あたりの電流密度10mA/cmで正極活物質の理論容量に対し電気量10%分の放電を行い、その後、第2充電として正極板の単位面積あたりの電流密度10mA/cmで正極活物質の理論容量に対し100%分の充電電気量を充電し化成を終了した。電槽化成終了後、各々の2Vセルの鉛蓄電池を解体し正極板を取出し、水洗・乾燥を行い、正極板の上部と下部それぞれ硫酸鉛量の測定を行った。表2は各々の2Vセルの鉛蓄電池において、正極板も上部と下部の単位重量あたりの硫酸鉛量の含有率の結果を示したものである。なお、硫酸鉛量の含有率の測定は組成分析によって算出した。 Next, each charged lead-acid battery is discharged at a current density of 10 mA / cm 2 per unit area of the positive electrode plate for an amount of electricity of 10% with respect to the theoretical capacity of the positive electrode active material. At a current density of 10 mA / cm 2 per unit area, 100% of charge electricity was charged with respect to the theoretical capacity of the positive electrode active material, and the formation was completed. After the formation of the battery case, each 2V cell lead storage battery was disassembled, the positive electrode plate was taken out, washed and dried, and the amount of lead sulfate was measured on the upper and lower portions of the positive electrode plate. Table 2 shows the results of the content of lead sulfate per unit weight of the upper and lower unit weights of each 2V cell lead-acid battery. In addition, the measurement of the content rate of the amount of lead sulfate was calculated by composition analysis.

表2に示すように、本発明1、2(充電電気量がそれぞれ60、80%)は比較例1〜3(充電電気量がそれぞれ20、40、100%)に比し正極板上下での組成の差が小さく、均一に化成されていることがわかる。そして、比較例1〜3で正極板の下部の硫酸鉛量が多く、成層化現象により比較的高濃度の硫酸が分布していたことが分かる。 As shown in Table 2, the present invention 1 and 2 (charged electricity amount is 60 and 80%, respectively) are compared with Comparative Examples 1 to 3 (charged electricity amount is 20, 40 and 100%, respectively). It can be seen that the difference in composition is small and uniform formation is achieved. In Comparative Examples 1 to 3, it can be seen that the amount of lead sulfate in the lower portion of the positive electrode plate was large, and a relatively high concentration of sulfuric acid was distributed due to the stratification phenomenon.

次に、同様の各々の2Vセルの鉛蓄電池を用いて5時間率放電容量試験を放電電流5.4A、終止電圧1.75Vの条件で行った。また、同様の各々の2Vセルの鉛蓄電池を用いて放置中の自己放電の差を見るため、まず低温高率放電試験として、−15℃雰囲気中で放電電流150A、終止電圧1.0Vの条件での持続時間と、5秒目電圧測定を行い、そして、完全充電後40℃雰囲気中で4週間放置した後、同一条件で再度低温高率放電試験を行い、放置前後での自己放電による性能の低下度合いを測定して保存特性を確認した。表3には各々の2Vセルの鉛蓄電池の5時間率放電容量および保存特性として、放置前後の低温高率放電試験における持続時間と5秒目電圧の比をそれぞれ持続時間保存率、5秒目電圧保存率としてその結果を示す。 Next, a 5-hour rate discharge capacity test was conducted under the conditions of a discharge current of 5.4 A and a final voltage of 1.75 V using the same lead storage battery of each 2 V cell. In addition, in order to see the difference in self-discharge during standing using the same lead storage battery of each 2V cell, first, as a low temperature high rate discharge test, a condition of a discharge current of 150 A and a final voltage of 1.0 V in an atmosphere of −15 ° C. Measured duration and voltage at 5 seconds, and left in a 40 ° C atmosphere for 4 weeks after full charge, and then conducted a low-temperature, high-rate discharge test again under the same conditions. The degree of storage was measured to confirm the storage characteristics. Table 3 shows the 5 hour rate discharge capacity and storage characteristics of each 2V cell lead-acid battery. The result is shown as the voltage storage rate.

表3に示すように、本発明1、2は比較例1〜3と比し初期の放電特性が良く、更に放置中の保存特性が良いことが分かる。この結果から極板組成の均一性と電池性能が強く関係していることがわかる。比較例1〜3の性能が劣っていた理由として、比較例3は電槽化成の進行に伴って極板から吐出された濃度の高い硫酸による成層化で不可逆な組成の不均一化を起こしてしまっており効果が薄い。また比較例1、2の様に比較的充電電気量が浅い場合は、活物質と格子や活物質同士の化学的な結合がまだ弱いため、この様な状態でガスが発生するほどの大きい電流密度で充電されると、クラックや活物質の剥離が生じるため、悪い影響を与えてしまったものと考えられる。これらの結果から充電電気量が60〜80%まで充電を行った所で電流密度を増大し、ガスを発生させるのが良い。 As shown in Table 3, it can be seen that the present inventions 1 and 2 have better initial discharge characteristics than those of Comparative Examples 1 to 3, and further have better storage characteristics during standing. This result shows that the uniformity of the electrode plate composition and the battery performance are strongly related. As a reason why the performance of Comparative Examples 1 to 3 was inferior, Comparative Example 3 caused irreversible compositional non-uniformity by stratification with high-concentration sulfuric acid discharged from the electrode plate as the battery cell formation progressed. The effect is weak. In addition, when the amount of charge electricity is relatively shallow as in Comparative Examples 1 and 2, since the chemical bond between the active material and the lattice or the active material is still weak, the current is large enough to generate gas in such a state. When charged at a density, cracks and peeling of the active material occur, which is considered to have adversely affected. From these results, it is preferable to increase the current density and generate gas when the amount of charge is charged to 60 to 80%.

次に、電槽化成を開始後、充電電気量が60〜80%まで充電を行ってから増大させる電流密度の好ましい範囲を求めるため、実施例1と同様に2Vセルの鉛蓄電池を作製し、40℃水槽中で電槽化成を行った。電槽化成の通電条件は、第1充電として正極板の有効単位面積あたりの電流密度10mA/cmの電流で正極活物質の理論容量に対し60%の充電電気量まで充電を行った後、表4に示す様に、正極板の有効単位面積あたり30〜70mA/cm(本発明1および3〜6)の電流密度で正極活物質の理論容量に対し充電電気量10%分の充電を行い、その後再び電流密度10mA/cmで第1充電の総充電電気量が正極活物質の理論容量に対し120%となるまで充電を行った。その後は実施例1と同様に電流密度10mA/cmで正極活物質の理論容量に対し電気量10%分の放電を行い、その後、第2充電として正極板の単位面積あたりの電流密度10mA/cmで正極活物質の理論容量に対し100%分の充電電気量を充電し化成を終了した。電槽化成終了後、電槽化成終了後、実施例1と同様に各々の2Vセルの鉛蓄電池を解体し正極板を取出し、水洗・乾燥を行い、正極板の上部と下部それぞれ硫酸鉛量の測定を行った。その結果を表5に示す。 Next, in order to obtain a preferable range of the current density to be increased after charging up to 60 to 80% after starting the battery formation, a 2V cell lead-acid battery is produced in the same manner as in Example 1, Battery formation was performed in a 40 ° C. water bath. The energization conditions for the battery case formation are as follows. After charging to the charge capacity of 60% of the theoretical capacity of the positive electrode active material at a current density of 10 mA / cm 2 per effective unit area of the positive electrode plate as the first charge, As shown in Table 4, charging for 10% of the charge electricity amount with respect to the theoretical capacity of the positive electrode active material at a current density of 30 to 70 mA / cm 2 (present inventions 1 and 3 to 6) per effective unit area of the positive electrode plate. Thereafter, charging was performed again at a current density of 10 mA / cm 2 until the total charge amount of the first charge became 120% of the theoretical capacity of the positive electrode active material. Thereafter, as in Example 1, the discharge was carried out for 10% of the electric capacity with respect to the theoretical capacity of the positive electrode active material at a current density of 10 mA / cm 2 , and then the current density per unit area of the positive electrode plate was 10 mA / cm as the second charge. The amount of electricity charged for 100% of the theoretical capacity of the positive electrode active material was charged at cm 2 to complete the formation. After completion of battery case formation, after completion of battery case formation, the lead storage battery of each 2V cell was disassembled in the same manner as in Example 1, the positive plate was taken out, washed and dried, and the amount of lead sulfate in the upper and lower portions of the positive plate was set. Measurements were made. The results are shown in Table 5.

表5に示すように、本発明1、4および5(電流密度がそれぞれ40、50、60mA/cm)は本発明3、6(電流密度がそれぞれ30、70mA/cm)に比し正極板上下での組成の差が小さく、より均一に化成されていることがわかる。 As shown in Table 5, the present invention 1, 4 and 5 (current density, respectively 40,50,60mA / cm 2) is compared with the present invention 3,6 (current density, respectively 30,70mA / cm 2) positive It can be seen that the difference in composition between the top and bottom of the plate is small, and the formation is more uniform.

次に、同様の各々の2Vセルの鉛蓄電池を用いて5時間率放電容量試験および保存特性の確認を行った。なお、試験は実施例1と同一条件で行った。表6には各々の2Vセルの鉛蓄電池の放電容量および保存特性の結果を示す。 Next, a 5-hour rate discharge capacity test and storage characteristics were confirmed using the same lead storage battery of each 2V cell. The test was performed under the same conditions as in Example 1. Table 6 shows the results of discharge capacity and storage characteristics of each 2V cell lead-acid battery.

表6に示すように、本発明1、4および5はそれ以外と比べ初期の放電特性および保存特性が特に優れることが分かる。本発明3は電流密度が小さいためガス発生少なく電解液(硫酸)の攪拌がわずかであったためであると思われる。また本発明6は持続時間保存率と5秒目電圧保存率は本発明1、4および5と比し大きな差は無いが、5時間率放電が低下しており、これは電流密度が大きいため、活物質の剥離が一部発生したものと考えられる。 As shown in Table 6, it can be seen that the present inventions 1, 4 and 5 are particularly excellent in the initial discharge characteristics and the storage characteristics compared to the others. The third aspect of the present invention seems to be because the current density was small and gas generation was small and the stirring of the electrolyte (sulfuric acid) was slight. In the present invention 6, the duration storage rate and the 5th second voltage storage rate are not significantly different from those of the present inventions 1, 4 and 5, but the 5-hour rate discharge is lowered because the current density is large. It is considered that some peeling of the active material occurred.

増大させた電流密度での好ましい充電電気量を求めるため、実施例1と同様に2Vセルの鉛蓄電池を作製し、40℃水槽中で電槽化成を行った。電槽化成の通電条件は、第1充電として正極板の有効単位面積あたりの電流密度10mA/cmで正極活物質の理論容量に対し充電電気量60%まで充電を行った後、引き続き電流密度40mA/cmで表7に示す通り正極活物質の理論容量に対し充電電気量2.5%〜20%(本発明1および7〜10)まで充電を行った。その後再び電流密度10mA/cmで第1充電の総充電電気量が正極活物質の理論容量に対し120%になるまで充電を行った。その後は実施例1と同様に放電および第2充電を実施し化成を終了した。電槽化成終了後、実施例1と同様に各々の2Vセルの鉛蓄電池を解体し正極板を取出し、水洗・乾燥を行い、正極板の上部と下部それぞれ硫酸鉛量の測定を行った。その結果を表8に示す。 In order to obtain a preferable amount of charge electricity at an increased current density, a lead-acid battery having a 2V cell was produced in the same manner as in Example 1, and a battery case was formed in a 40 ° C. water tank. The energization conditions for the battery case formation were as follows: the first charge was charged at a current density of 10 mA / cm 2 per effective unit area of the positive electrode plate up to the theoretical capacity of the positive electrode active material up to 60% of charge electricity, and then the current density As shown in Table 7 at 40 mA / cm 2 , the charge capacity was charged to 2.5% to 20% (Invention 1 and 7 to 10) with respect to the theoretical capacity of the positive electrode active material. Thereafter, charging was performed again at a current density of 10 mA / cm 2 until the total charge amount of the first charge was 120% of the theoretical capacity of the positive electrode active material. Thereafter, discharging and second charging were performed in the same manner as in Example 1 to complete the formation. After the formation of the battery case, the lead storage battery of each 2V cell was disassembled in the same manner as in Example 1, the positive electrode plate was taken out, washed and dried, and the amount of lead sulfate in each of the upper and lower portions of the positive electrode plate was measured. The results are shown in Table 8.

表8に示すように、本発明1および8、9(充電電気量がそれぞれ5.0、10.0、15.0%)は本発明7(充電電気量2.5%)に比し正極板上下での組成の差が特に小さく、均一に化成されていることがわかる。本発明10(充電電気量20.0%)は正極板上下での組成の差が小さいものの他のものと比べ蓄電池温度が非常に高くなった。 As shown in Table 8, the present invention 1 and 8, 9 (charged electricity amount is 5.0, 10.0, 15.0%, respectively) are positive electrodes compared to the present invention 7 (charged electricity amount 2.5%). It can be seen that the difference in composition between the top and bottom of the plate is particularly small, and it is uniformly formed. In the invention 10 (charged electricity amount 20.0%), the storage battery temperature was very high as compared with other ones having a small difference in composition between the upper and lower sides of the positive electrode plate.

次に、同様の各々の2Vセルの鉛蓄電池を用いて5時間率放電容量試験および保存特性試験を行った。なお、試験は実施例1と同一条件で行った。表9には各々の2Vセルの鉛蓄電池の放電容量および保存特性の結果を示す。 Next, a 5-hour rate discharge capacity test and a storage characteristic test were performed using the same lead storage battery of each 2V cell. The test was performed under the same conditions as in Example 1. Table 9 shows the results of discharge capacity and storage characteristics of each 2V cell lead-acid battery.

表9に示すように、本発明1および8、9は本発明7および10と比し初期の放電特性および保存特性が特に優れることが分かる。本発明10は電槽化成中(充電中)に蓄電池温度が非常に高くなったために、温度により特性の低下があり、結果として特に優れた特性にはならなかった。 As shown in Table 9, it can be seen that the present inventions 1, 8 and 9 are particularly superior in initial discharge characteristics and storage characteristics as compared with the present inventions 7 and 10. In the invention 10, since the storage battery temperature became very high during the formation of the battery case (during charging), the characteristics were deteriorated depending on the temperature, and as a result, the characteristics were not particularly excellent.

以上の結果より、正極活物質の理論容量に対する充電電気量が60〜80%まで充電行ってから電流密度を増大してガスを発生させ電解液を攪拌することで、電解液の成層化を抑制して極板上下で組成を均一にし得る。更に、充電密度を増大させた分、充電期間を短くすることが出来る。
更に、増大させる電流密度を正極板の単位面積あたり40〜60mA/cmとするこや、増大した電流密度での充電電気量を正極活物質の理論容量に対し5〜15%とすることで、より優れた効果を奏することができるものである。
Based on the above results, the amount of charge with respect to the theoretical capacity of the positive electrode active material is charged to 60 to 80%, and then the current density is increased to generate gas and stir the electrolyte to suppress stratification of the electrolyte. Thus, the composition can be made uniform above and below the electrode plate. Furthermore, the charging period can be shortened by increasing the charging density.
Furthermore, the current density to be increased is set to 40 to 60 mA / cm 2 per unit area of the positive electrode plate, and the charge electricity amount at the increased current density is set to 5 to 15% with respect to the theoretical capacity of the positive electrode active material. It is possible to achieve more excellent effects.

Claims (3)

鉛蓄電池の電槽化成方法において、正極活物質の理論容量に対する充電電気量が60〜80%まで充電を行ってから電流密度を増大してガスを発生させ電解液を攪拌することを特徴とする鉛蓄電池の電槽化成方法。 In a battery formation method for a lead-acid battery, the amount of charge with respect to the theoretical capacity of the positive electrode active material is charged to 60 to 80%, and then the current density is increased to generate gas and stir the electrolyte. A battery case formation method for lead-acid batteries. 増大させる電流密度が正極板の単位面積あたり40〜60mA/cmであることを特徴とする請求項1記載の鉛蓄電池の電槽化成方法。 The battery case formation method for a lead storage battery according to claim 1, wherein the current density to be increased is 40 to 60 mA / cm 2 per unit area of the positive electrode plate. 40〜60mA/cmの電流密度で充電する場合の充電電気量が、正極活物質の理論容量に対し5〜15%あることを特徴とする請求項2記載の鉛蓄電池の電槽化成方法。
40~60MA / charged electricity quantity in the case of charging at a current density of cm 2 is conductive container formation method of a lead-acid battery according to claim 2, characterized in that there 5-15% relative to the theoretical capacity of the positive electrode active material.
JP2005218666A 2005-07-28 2005-07-28 Chemical formation method of lead-acid storage battery container Pending JP2007035496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218666A JP2007035496A (en) 2005-07-28 2005-07-28 Chemical formation method of lead-acid storage battery container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218666A JP2007035496A (en) 2005-07-28 2005-07-28 Chemical formation method of lead-acid storage battery container

Publications (1)

Publication Number Publication Date
JP2007035496A true JP2007035496A (en) 2007-02-08

Family

ID=37794493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218666A Pending JP2007035496A (en) 2005-07-28 2005-07-28 Chemical formation method of lead-acid storage battery container

Country Status (1)

Country Link
JP (1) JP2007035496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181312A (en) * 2010-03-01 2011-09-15 Shin Kobe Electric Mach Co Ltd Method of chemical conversion in battery container for lead-acid battery
CN106340681A (en) * 2016-08-26 2017-01-18 骆驼集团襄阳蓄电池有限公司 Acid-pouring-free container formation process for lead-acid storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181312A (en) * 2010-03-01 2011-09-15 Shin Kobe Electric Mach Co Ltd Method of chemical conversion in battery container for lead-acid battery
CN106340681A (en) * 2016-08-26 2017-01-18 骆驼集团襄阳蓄电池有限公司 Acid-pouring-free container formation process for lead-acid storage battery

Similar Documents

Publication Publication Date Title
JP5938254B2 (en) Negative electrode plate for lead acid battery, method for producing the same and lead acid battery
TW201001782A (en) Flooded lead-acid battery and method of making the same
JP5138391B2 (en) Control valve type lead acid battery
JP2005044759A (en) Lead-acid storage battery and manufacturing method of the same
JP2007035496A (en) Chemical formation method of lead-acid storage battery container
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JP2001028263A (en) Lead-acid battery formation method
JP4507483B2 (en) Control valve type lead acid battery
JP2005025955A (en) Lead acid battery and its manufacturing method
JP2007294124A (en) Manufacturing method of lead-acid battery
JP2009016143A (en) Manufacturing method of paste type cathode plate for lead storage cell and lead storage cell
JP2012169089A (en) Manufacturing method of control valve type lead-acid storage battery
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP4515046B2 (en) Lead acid battery conversion method
JP2004356080A (en) Formation method for battery jar of lead-acid storage battery
JP2009231014A (en) Manufacturing method of positive electrode active material paste for lead-acid storage battery, and positive electrode plate for lead-acid storage battery using the paste
JP2013093312A (en) Lead acid battery
JP2008091189A (en) Sealed lead acid storage battery
JP2005317398A (en) Manufacturing method of lead-acid battery
JPH08115718A (en) Manufacture of lead-acid battery
JPH07288128A (en) Activation method for sealed lead-acid battery
JPH0234758Y2 (en)
JP4390481B2 (en) Lead acid battery
JP2014191976A (en) Sealed lead acid battery
JPH11185750A (en) Manufacture of lead-acid battery