JP2002063895A - Method of chemical conversion of batter case for lead acid battery - Google Patents

Method of chemical conversion of batter case for lead acid battery

Info

Publication number
JP2002063895A
JP2002063895A JP2000201235A JP2000201235A JP2002063895A JP 2002063895 A JP2002063895 A JP 2002063895A JP 2000201235 A JP2000201235 A JP 2000201235A JP 2000201235 A JP2000201235 A JP 2000201235A JP 2002063895 A JP2002063895 A JP 2002063895A
Authority
JP
Japan
Prior art keywords
amount
formation
electricity
battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000201235A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shimizu
浩幸 清水
Kuniharu Kanazawa
金沢  邦治
Tatsuo Mikami
辰男 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000201235A priority Critical patent/JP2002063895A/en
Publication of JP2002063895A publication Critical patent/JP2002063895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of chemical conversion of high efficiency which does not require water tank equipment and overflow preventing tools nor adjustment of liquid volume or the specific weight, on the way of conversion or re- immersion, after conversion or the like. SOLUTION: In chemical conversion of a non-converted polar plate in a battery case, the process of repeating charging and discharging is to be involved during the conversion, before and after which process, charge current is to be changed for two steps or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、鉛蓄電池の電槽
化成方法に関する。
The present invention relates to a method for forming a battery case of a lead storage battery.

【0002】[0002]

【従来の技術】従来の鉛蓄電池の電槽化成方法は、例え
ば図3に示されるように、一定電流で正極理論電気量の
250%から350%程度を通電するのが一般的であっ
た。その際、過充電により電池の温度が上昇し、化成に
悪影響を及ぼしたり、電槽が膨れたりするので、これを
防ぐ為に水槽中で通電する方法が一般的であった。ま
た、化成後にも流動液が多量に存在する液式の鉛蓄電池
においては、化成効率の向上を目的として、定比重の希
硫酸を用いて化成を行った後、所定比重の希硫酸と換液
する方法もあった。
2. Description of the Related Art In a conventional method for forming a battery case of a lead storage battery, as shown in FIG. 3, for example, it is general that a constant current is applied to about 250% to 350% of the theoretical quantity of electricity of a positive electrode. At this time, the temperature of the battery rises due to overcharging, which adversely affects the formation and causes the battery case to swell. In order to prevent this, a method of supplying electricity in a water bath is generally used. In addition, in the case of a liquid type lead-acid battery in which a large amount of fluid is present even after chemical formation, for the purpose of improving the formation efficiency, after performing formation using dilute sulfuric acid having a constant specific gravity, the liquid is exchanged with a dilute sulfuric acid having a predetermined specific gravity. There was a way to do that.

【0003】また、化成後の流動液を制限した制御弁式
の鉛蓄電池のように換液が困難な電池においては、溢液
を防止する為に化成開始前に必要な希硫酸をすべて注液
せず、化成途中あるいは化成終了後に液量あるいは比重
を調整する為に改めて注液する方法もあった。
[0003] Further, in a battery which is difficult to change the liquid, such as a control valve type lead storage battery in which the fluid after the formation is restricted, all necessary dilute sulfuric acid is injected before the start of the formation in order to prevent overflow. There was also a method in which the solution was injected again during the formation or after the formation was completed in order to adjust the amount or specific gravity of the solution.

【0004】また、化成途中あるいは化成終了後に液量
あるいは比重の調整を行わない方法で、かつ、電槽内の
空間が狭い電池の場合、過充電による溢液を防ぐ為、こ
れを防止する治具を用いることもあった。
Further, in the case of a method in which the liquid amount or specific gravity is not adjusted during the formation or after the formation is completed, and in the case of a battery having a narrow space in the battery case, in order to prevent overflow due to overcharging, a treatment for preventing overflow is performed. In some cases, tools were used.

【0005】さらに、特許第3018406号に記載の
ような、電池電圧が上昇し化成時間に対して一定となる
転極以前に放電し、その後再び充電して転極した後、電
流を減少させる方法もある。
[0005] Further, as disclosed in Japanese Patent No. 3018406, a method is used in which the battery voltage is increased and discharged before reversal, which is constant with respect to the formation time, then recharged and repolarized, and the current is reduced. There is also.

【0006】[0006]

【発明が解決しようとする課題】従来の一定電流で正極
理論電気量の250%から350%程度を通電する方法
の場合、溢液を防止する治具や水槽設備を必要とした。
更に、この方法では正極の化成効率が低く、化成後のP
bO2量は90%未満であった。
In the conventional method of applying a current of about 250% to 350% of the theoretical quantity of electricity of the positive electrode at a constant current, a jig and a water tank for preventing overflow are required.
Further, in this method, the formation efficiency of the positive electrode is low, and P
The bO 2 content was less than 90%.

【0007】また、化成後に希硫酸を換液する方法や、
化成途中あるいは化成終了後に改めて希硫酸を注液する
方法では、工程が増える為に余計なコストを必要とし
た。さらに、特許第3018406号に記載のような方
法によっても、化成効率は十分ではなく、また、コスト
的にもまだまだ不十分であった。
Further, a method of replacing dilute sulfuric acid after chemical formation,
In the method of injecting dilute sulfuric acid during the chemical formation or after the completion of the chemical formation, an extra cost is required because the number of steps is increased. Furthermore, even by the method described in Japanese Patent No. 3018406, the formation efficiency was not sufficient, and the cost was still insufficient.

【0008】本発明は上記のような従来技術の課題を解
決し、水槽設備や溢液防止治具を必要とせず、また、化
成後の希硫酸の換液や、化成途中あるいは化成後の再注
液等の、液量あるいは比重の調整をも必要とせず、更に
は、高い化成効率を有する鉛蓄電池の電槽化成方法を安
価に提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, does not require a water tank facility or an overflow preventing jig, and replaces dilute sulfuric acid after chemical formation, or during or after chemical formation. It is another object of the present invention to provide a low-cost method for forming a battery case of a lead storage battery having a high formation efficiency without necessity of adjusting a liquid amount or specific gravity of a liquid injection or the like.

【0009】[0009]

【課題を解決する為の手段】本願第1の発明は、未化成
の極板を電槽内で化成する化成方法であって、化成途中
で放電と充電の繰り返しの工程を含み、その工程の前後
で充電電流が2段階以上変化することを特徴とする鉛蓄
電池の電槽化成方法である。
Means for Solving the Problems The first invention of the present application is a chemical conversion method for forming an unformed electrode plate in a battery case, and includes a step of repeating discharge and charge during the formation. This is a method for forming a battery case of a lead storage battery, wherein a charging current changes at least two stages before and after.

【0010】化成開始時の電流を大きくすると短時間で
化成が終了するが、小さい方が最終的な化成効率は高
い。過充電により電池が高温になりすぎると、化成に悪
影響を及ぼしたり、電槽が膨れたりする。また、電槽内
の空間が狭い電池では溢液が起こりやすくなる。そこ
で、その前に放電を行うことにより、電池温度が低下す
る。その後、充電を行うと再び電池温度が上昇するの
で、再度放電を行う。これを数回繰り返すことにより、
化成効率が向上し、過充電量を少なくすることができる
ので、電槽膨れや溢液が起こりにくくなる。
When the current at the start of formation is increased, the formation is completed in a short time, but the smaller the current, the higher the final formation efficiency. If the temperature of the battery becomes too high due to overcharging, the formation may be adversely affected and the battery case may swell. In addition, in a battery having a narrow space in the battery case, overflow is likely to occur. Therefore, by performing the discharge before that, the battery temperature decreases. Thereafter, when the battery is charged, the battery temperature rises again, so that the battery is discharged again. By repeating this several times,
Since the formation efficiency is improved and the amount of overcharge can be reduced, the battery case is less likely to swell or overflow.

【0011】放電と充電の繰り返し工程が終了した後、
更に一定電流での充電を行うが、この時に最も溢液しや
すくなるので、充電電流に注意する必要がある。ただ
し、充電電流を小さくしすぎると化成全体の時間が長く
なる為、溢液しない限り充電電流は大きい方が良い。充
電が進むと、ガス発生により液量が減少し、溢液は起こ
りにくくなるので、充電電流を上げることができる。た
だし、ここで電流を上げすぎると電池が高温になりすぎ
電槽膨れを起こすので、化成時間に余裕があれば電流を
上げる必要はない。
After the repetition process of discharging and charging is completed,
Further, the battery is charged with a constant current. At this time, the liquid overflows most easily, so it is necessary to pay attention to the charging current. However, if the charging current is too small, the entire formation time is prolonged. Therefore, it is better that the charging current is large unless overflow occurs. As charging proceeds, the amount of liquid decreases due to gas generation, and overflow does not easily occur, so that charging current can be increased. However, if the current is too high here, the battery becomes too hot and the battery case swells, so there is no need to increase the current if there is a margin in the formation time.

【0012】なお、化成開始時の電流と、放電と充電の
繰り返し工程が終了した後の電流、および化成終了時の
電流は、放電と充電の繰り返し工程を行うタイミング等
の時間的な制約を無くすことにより、結果的に同一の値
とすることが出来るが、実際には時間的な制約が存在す
る為に異なった値になる。
The current at the start of the formation, the current after the end of the repetition of the steps of discharging and charging, and the current at the end of the formation eliminate the time restrictions such as the timing of the repetition of the steps of discharging and charging. As a result, the same value can be obtained as a result, but actually different values due to the existence of time constraints.

【0013】本願第2の発明は、上記第1の発明の方法
において、充電電気量が正極理論電気量の100%を超
える前に、化成途中での放電と充電の繰り返しの工程に
おける放電を開始するようにすることを特徴とするもの
である。
According to a second aspect of the present invention, in the method according to the first aspect, before the amount of electricity to be charged exceeds 100% of the theoretical amount of electricity of the positive electrode, the discharge in the process of repeating the discharge and the charge during the formation is started. It is characterized by doing so.

【0014】充電電気量が正極理論電気量の100%を
超えると、急激にガス発生が激しくなり、溢液を起こし
やすくなる。また、電池表面の温度も高温になる。そこ
で、その前に放電を実施すると電池表面の温度は下が
り、ガス発生も収まる。放電を開始する時の充電電気量
は正極理論電気量の90%以下が好ましく、同80%以
下であればより好ましい。
If the amount of electricity charged exceeds 100% of the theoretical amount of electricity of the positive electrode, the generation of gas sharply increases, and the overflow tends to occur. Also, the temperature of the battery surface becomes high. Therefore, if discharging is performed before that, the temperature of the battery surface decreases, and gas generation stops. The amount of electricity charged at the start of discharging is preferably 90% or less of the theoretical amount of electricity of the positive electrode, more preferably 80% or less.

【0015】本願第3の発明は、上記第1または第2の
発明の方法において、繰り返しの工程における繰り返し
の放電と充電の電気量をほぼ均等とし、その電気量を正
極理論電気量の2%以上、その繰り返し数を3回以上と
することを特徴とするものである。
According to a third aspect of the present invention, in the method of the first or second aspect, the amount of electricity of the repeated discharge and charge in the repetitive process is made substantially equal, and the amount of electricity is 2% of the theoretical amount of electricity of the positive electrode. As described above, the number of repetitions is three or more.

【0016】放電した電気量分を補う為、充電を行う
が、この充電電気量が放電電気量より多いと、ガス発生
や電池温度の上昇により、溢液、電槽膨れが起こりやす
くなるので、放電電気量とほぼ同量の電気量を充電す
る。
Charging is performed to compensate for the amount of discharged electricity. If the amount of charged electricity is greater than the amount of discharged electricity, overflow and swelling of the battery case are likely to occur due to gas generation and an increase in battery temperature. Charge the same amount of electricity as the amount of electricity discharged.

【0017】この放電と充電を繰り返すことにより化成
効率が高くなり、その回数が3回以上であるとより効果
的であるが、6回以上繰り返してもそれ以上化成効率は
上がらない。また、放電深度は深いほど化成効率が高く
なり、少なくとも正極理論電気量の2%以上の放電が好
ましく、同4%以上であればより好ましく、同8%以上
であれば尚更好ましい。繰り返しの放電と充電の工程に
おいては、電流が小さいと、化成時間が長くなるので、
概ね15分から1時間で所定の電気量を放電もしくは充
電できる程度の、比較的大きな電流で放電および充電を
行うのが好ましい。
The formation efficiency is increased by repeating the discharging and charging, and it is more effective if the number of times is three or more. However, the formation efficiency is not further increased even if the number is repeated six or more times. The deeper the depth of discharge, the higher the formation efficiency. The discharge is preferably at least 2% or more of the positive electrode theoretical electric charge, more preferably 4% or more, and still more preferably 8% or more. In the process of repeated discharging and charging, if the current is small, the formation time will be long,
It is preferable to perform discharge and charge with a relatively large current that can discharge or charge a predetermined amount of electricity in about 15 minutes to 1 hour.

【0018】本願第4の発明は、上記第1、第2または第
3の発明の方法において、全充電電気量から全放電電気
量を差し引いたトータルの充電電気量を正極理論電気量
の100%以上、190%以下とすることを特徴とする
ものである。全充電電気量から全放電電気量を差し引い
たトータルの充電電気量が正極理論電気量の100%以
上であれば、未化成の正極板への20%の鉛丹の添加と
組み合わせることにより、化成後のPbO2が90%以
上の正極板を得ることができるが、同120%以上であ
ればより好ましい。ただし、正極板の厚みが厚くなる
と、120%でも十分ではなく、より大きい電気量を充
電するのが好ましい。また、更に充電電気量を大きくす
ることにより、特に高率放電時の正極活物質利用率を高
めることができ、正極理論電気量の150%以上が好ま
しいが、同190%以上に上げてもそれ以上の利用率向
上は難しい。
The fourth invention of the present application is the method according to the first, second or third invention, wherein the total amount of charge obtained by subtracting the total amount of discharge from the total amount of charge is 100% of the theoretical amount of positive electrode. As described above, it is characterized by being 190% or less. If the total charge electricity obtained by subtracting the total discharge electricity quantity from the total charge electricity quantity is 100% or more of the positive electrode theoretical electricity quantity, the formation can be achieved by combining with the addition of 20% lead tin to the unformed cathode plate. A positive electrode plate having 90% or more of PbO 2 can be obtained later, but more preferably 120% or more. However, when the thickness of the positive electrode plate is increased, 120% is not sufficient, and it is preferable to charge a larger amount of electricity. Further, by further increasing the amount of charged electricity, it is possible to increase the utilization rate of the positive electrode active material particularly at the time of high-rate discharge, and it is preferably 150% or more of the theoretical amount of electricity of the positive electrode. It is difficult to improve the utilization rate above.

【0019】トータルの電気量が正極理論電気量の10
0%で化成可能であることは、従来の充電電気量に対
し、最大で約70%の電気量の削減にあたり、約20%
の電気量の削減しかできなかった従来の方法に比べてそ
の効果は非常に大きい。なお、トータルの充電電気量と
は全充電電気量から全放電電気量を差し引いたものであ
るが、放電電気量を回生することにより、エネルギーを
有効に活用することができる。
The total quantity of electricity is 10 times the theoretical quantity of electricity of the positive electrode.
Being able to form at 0% means reducing the amount of electricity by up to about 70% compared to the conventional amount of electricity, by about 20%
The effect is very large as compared with the conventional method in which only the amount of electricity can be reduced. Note that the total charge amount is obtained by subtracting the total discharge amount from the total charge amount, but by regenerating the discharge amount, the energy can be effectively used.

【0020】本願第5の発明は、上記第1、第2、3ま
たは第4の発明の方法において、化成時の減液量を加味
した所定比重および液量の希硫酸を予め化成開始前に注
液し、化成途中あるいは化成終了後には液量あるいは比
重の調整を行わないようにすることを特徴とするもので
ある。
The fifth invention of the present application is the method according to the first, second, third or fourth invention, wherein a dilute sulfuric acid having a predetermined specific gravity and a liquid amount taking into account the amount of liquid reduction during chemical formation is prepared before starting chemical formation. It is characterized in that the liquid is injected and the liquid amount or specific gravity is not adjusted during or after the formation.

【0021】化成の途中で放電と充電の繰り返し工程を
行い、全体の過充電量を抑えることにより、過充電によ
る減液量を抑えることができ、なおかつ、充電電流を適
切に変化させることにより、溢液を防ぐことができるの
で、換液、再注液等の液量あるいは比重の調整を必要と
せずに化成を行うことができ、これにより工程の減少に
よるコストダウンが可能である。
By repeating the steps of discharging and charging in the course of the formation to suppress the total amount of overcharge, the amount of liquid reduction due to overcharge can be suppressed, and by appropriately changing the charging current, Since the overflow can be prevented, the formation can be performed without the need for adjusting the liquid amount or specific gravity of liquid replacement, re-injection, and the like, thereby reducing costs by reducing the number of steps.

【0022】本願第6の発明は、上記第1、第2、第
3、第4または第5の発明の方法において、鉛蓄電池を
制御弁式鉛蓄電池とし、安全弁を装着し、仮蓋あるいは
上蓋を固定した後に化成を行うことを特徴とするもので
ある。
According to a sixth aspect of the present invention, in the method according to the first, second, third, fourth or fifth aspect, the lead storage battery is a control valve type lead storage battery, a safety valve is mounted, and a temporary lid or an upper lid is provided. Is formed after fixing.

【0023】これらの化成方法を化成後の電解液が制限
される制御弁式鉛蓄電池に適用する場合、安全弁を装着
し、仮蓋を固定することにより、化成中の密閉反応効率
を高めることができ、ガス発生を抑制することができ
る。また、化成終了後に放置しておいても、安全弁によ
り外気から遮断されるので、負極板の劣化や自己放電を
防ぐことができる。さらには、仮蓋ではなく、本来用い
るべき上蓋を固定することにより、化成後に仮蓋から上
蓋へ交換する工程が省略でき、さらなるコストダウンが
可能である。
When these chemical conversion methods are applied to a control valve type lead-acid battery in which the electrolytic solution after chemical formation is restricted, it is possible to increase the efficiency of hermetic reaction during chemical formation by installing a safety valve and fixing a temporary lid. Gas generation can be suppressed. Further, even if the battery is left after the formation, it is shut off from the outside air by the safety valve, so that deterioration of the negative electrode plate and self-discharge can be prevented. Furthermore, by fixing not the temporary lid but the upper lid that should be used, the step of replacing the temporary lid with the upper lid after the formation can be omitted, and the cost can be further reduced.

【0024】本願第7の発明は、上記第1、第2、第
3、第4、第5または第6の発明の方法において、気相
中で化成を行うことを特徴とするものである。
According to a seventh aspect of the present invention, in the method according to the first, second, third, fourth, fifth or sixth aspect, the chemical conversion is performed in a gas phase.

【0025】これらの化成方法を行うことにより、化成
中の電池温度の上昇を防ぐことができ、水槽設備等の特
別な冷却装置を必要とせずに化成を行うことができ、さ
らに空間を有効に利用できる為、大幅なコストダウンが
可能である。
By performing these chemical conversion methods, it is possible to prevent the battery temperature from increasing during the chemical formation, to perform the chemical formation without the need for a special cooling device such as a water tank facility, and to further effectively use the space. Because it can be used, significant cost reduction is possible.

【0026】[0026]

【発明の実施の形態】図1、2は、本願発明の電槽化成
方法を用いた場合の化成時の電流パターンの例を示す図
である。図1では、充電と放電の繰り返しが、6回行わ
れており、この繰り返し工程の前後で充電電流が3段階
に変化している。くり返し工程後の電流が2段階に変化
しているが、これは、溢液を防ぐ為に上記工程直後は小
さくし、その後化成時間を短縮する為に電流を大きくし
たためである。図2では、充電と放電の繰り返しが3回
行われており、くり返し工程の前後で充電電流が2段階
に変化している。なお、充電電気量と放電電気量はいず
れの場合もほぼ同じにされている。このように、本願発
明の電槽化成方法は、例えば上記のような電流パターン
を用いて実施される。
1 and 2 are diagrams showing an example of a current pattern at the time of chemical formation when the battery case forming method of the present invention is used. In FIG. 1, charging and discharging are repeated six times, and the charging current changes in three stages before and after this repetition process. The current after the repetition process changes in two stages, because the current was reduced immediately after the above process to prevent overflow, and then increased to shorten the formation time. In FIG. 2, charging and discharging are repeated three times, and the charging current changes in two stages before and after the repetition process. Note that the amount of charged electricity and the amount of discharged electricity are almost the same in each case. Thus, the battery case formation method of the present invention is carried out using, for example, the above-described current pattern.

【0027】次に、制御弁式鉛蓄電池に本願発明を適用
した場合の具体例により、さらに本願発明について説明
する。
Next, the present invention will be further described with reference to a specific example in which the present invention is applied to a control valve type lead storage battery.

【0028】(例1)まず、未化成の正負極板で組み立
てられた鉛蓄電池に、化成時の減液量を加味した所定比
重および液量の希硫酸を注液した後、安全弁を装着す
る。その後、化成中のガス発生により安全弁がはずれる
のを防ぐ為に仮蓋を取り付け、固定する。化成開始時の
電流および放電前の充電電気量を同一条件とし、放電深
度、充放電の繰り返し回数、トータルの充電電気量を変
化させた。なお、この電池に使用した正極板には化成効
率の向上の為に20%の鉛丹を添加した。こうしてでき
た鉛蓄電池の正極活物質中に占めるPbO2の比率を分
析した。その結果を下記表1に示す。放電前電気量、放
電深度およびトータルの充電電気量は正極理論電気量に
対する比率である。
(Example 1) First, dilute sulfuric acid having a predetermined specific gravity and a liquid amount in consideration of the amount of liquid reduction during chemical formation is injected into a lead-acid battery assembled with unformed positive and negative electrode plates, and then a safety valve is attached. . Thereafter, a temporary lid is attached and fixed to prevent the safety valve from coming off due to gas generation during chemical formation. The current at the start of formation and the amount of charge before discharge were set to the same conditions, and the depth of discharge, the number of charge / discharge repetitions, and the total amount of charge were varied. In addition, to the positive electrode plate used in this battery, 20% of lead was added to improve the formation efficiency. The ratio of PbO 2 in the positive electrode active material of the lead storage battery thus obtained was analyzed. The results are shown in Table 1 below. The amount of electricity before discharge, the depth of discharge, and the total amount of charge are the ratios to the theoretical amount of electricity of the positive electrode.

【0029】[0029]

【表1】 [Table 1]

【0030】表1に示されるように、放電深度が深いほ
どPbO2の比率が高い。くり返し回数は3回より6回
のほうがPbO2の比率が高いが、それ以上回数を増や
しても効果は見られない。また、トータルの充電電気量
が正極理論電気量の100%でも90%以上のPbO2
が得られているが、正極理論電気量の120%では96
%にまで達している。
As shown in Table 1, the deeper the depth of discharge, the higher the ratio of PbO 2 . As for the number of repetitions, the ratio of PbO 2 is higher when the number of repetitions is six than when the number of repetitions is three. In addition, even if the total amount of charged electricity is 100% of the theoretical amount of electricity of the positive electrode, 90% or more of PbO 2
Is obtained, but at 120% of the theoretical quantity of electricity of the positive electrode, 96
%.

【0031】(例2)上記例1と同様に、まず、未化成
の正負極板で組み立てられた鉛蓄電池に、化成時の減液
量を加味した所定比重および液量の希硫酸を注液した
後、安全弁を装着し、仮蓋を固定する。初充電開始時の
電流、放電前の充電電気量、放電深度および充放電の繰
り返し回数を同一条件とし、トータルの充電電気量を変
化させた。なお、この電池に使用した正極板には化成効
率の向上の為に20%の鉛丹を添加した。こうしてでき
た鉛蓄電池を用いて、定格容量をCと表した時に4CA
の電流で放電を実施した。その時の放電電気量と正極理
論電気量の比率、すなわち正極活物質の利用率を下記表
2に示す。トータルの充電電気量は正極理論電気量に対
する比率である。
(Example 2) As in Example 1, first, dilute sulfuric acid having a predetermined specific gravity and a liquid amount in consideration of a liquid reduction amount during chemical formation is injected into a lead-acid battery assembled with unformed positive and negative electrode plates. After that, attach the safety valve and fix the temporary lid. The current at the start of the first charge, the amount of charge before discharge, the depth of discharge, and the number of repetitions of charge / discharge were set under the same conditions, and the total amount of charge was varied. In addition, to the positive electrode plate used in this battery, 20% of lead was added to improve the formation efficiency. When the rated capacity is expressed as C using the lead storage battery thus formed, 4 CA
Discharge was carried out at a current of. Table 2 below shows the ratio between the amount of discharge electricity and the theoretical amount of cathode electricity, that is, the utilization rate of the cathode active material. The total amount of charged electricity is a ratio to the theoretical amount of electricity of the positive electrode.

【0032】[0032]

【表2】 [Table 2]

【0033】表2に示されるように、トータル充電電気
量が高いほど正極活物質の利用率も向上しているが、ト
ータルの充電電気量が正極理論電気量の190%の時
は、逆に同170%の時よりも正極活物質の利用率は下
がっている。
As shown in Table 2, the higher the total charge, the higher the utilization rate of the positive electrode active material. However, when the total charge is 190% of the theoretical positive charge, the reverse occurs. The utilization rate of the positive electrode active material is lower than at the time of 170%.

【0034】(例3)上記例1、2と同様に、まず、未
化成の正負極板で組み立てられた鉛蓄電池に、化成時の
減液量を加味した所定比重および液量の希硫酸を注液し
た後、安全弁を装着し、仮蓋を固定する。初充電開始時
の電流と放電前の充電電気量を変化させ、放電深度、充
放電の繰り返し回数およびトータルの充電電気量を同一
条件とした。なお、この電池に使用した正極板には化成
効率の向上の為に20%の鉛丹を添加した。こうしてで
きた鉛蓄電池を用いて、実施例2と同様に定格容量をC
と表した時に4CAの電流で放電を実施した。その時の
放電電気量と正極理論電気量の比率、すなわち正極活物
質の利用率を下記表3に示す。放電前の充電電気量は正
極理論電気量に対する比率である。
Example 3 Similarly to Examples 1 and 2, first, dilute sulfuric acid having a specific gravity and a liquid amount in consideration of a reduced amount during formation was added to a lead-acid battery assembled with unformed positive and negative electrode plates. After the injection, attach a safety valve and fix the temporary lid. The current at the start of the initial charge and the amount of charge before discharging were changed, and the depth of discharge, the number of charge / discharge repetitions, and the total amount of charge were the same. In addition, to the positive electrode plate used in this battery, 20% of lead was added to improve the formation efficiency. Using the lead-acid battery thus obtained, the rated capacity is changed to C as in the second embodiment.
The discharge was carried out at a current of 4 CA when Table 3 below shows the ratio between the amount of discharge electricity and the theoretical amount of cathode electricity, that is, the utilization rate of the cathode active material. The quantity of electricity charged before discharging is a ratio to the theoretical quantity of electricity of the positive electrode.

【0035】[0035]

【表3】 [Table 3]

【0036】表3に示されるように、放電前の充電電気
量が正極理論電気量の90%の時より、同77%、ある
いは同66%の時のほうが、正極活物質の利用率は高く
なっている。
As shown in Table 3, the utilization rate of the positive electrode active material was higher when the charged amount of electricity before discharging was 77% or 66% of the theoretical amount of electricity of the cathode than 90% of the theoretical amount of cathode. Has become.

【0037】[0037]

【発明の効果】本願発明によれば、水槽設備や溢液防止
治具等を必要とせず、また、化成後の希硫酸の換液や、
化成途中あるいは化成後の再注液等の、液量あるいは比
重の調整を必要とせず、さらには、高い化成効率を有
し、また化成のコストを低減できる鉛蓄電池の電槽化成
方法を実現できる。
According to the present invention, there is no need for a water tank facility or an overflow preventing jig, etc.
It is not necessary to adjust the amount or specific gravity of the liquid during the formation or re-injection after the formation, and furthermore, it is possible to realize a method for forming a battery case of a lead storage battery which has a high formation efficiency and can reduce the formation cost. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願発明を用いた場合の化成時電流パターン
の例を示す図。
FIG. 1 is a diagram showing an example of a current pattern during formation when the present invention is used.

【図2】 本願発明を用いた場合の化成時電流パターン
の別の例を示す図。
FIG. 2 is a diagram showing another example of a current pattern during formation when the present invention is used.

【図3】 従来の化成時電流パターンを示す図。FIG. 3 is a diagram showing a conventional current pattern during formation.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H028 AA06 BB10 BB14 EE01 EE05 HH01 5H050 AA19 BA09 CA06 CB15 GA15 GA26 HA19  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H028 AA06 BB10 BB14 EE01 EE05 HH01 5H050 AA19 BA09 CA06 CB15 GA15 GA26 HA19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 未化成の極板を電槽内で化成する化成方
法であって、化成途中で放電と充電の繰り返しの工程を
含み、その工程の前後で充電電流が2段階以上変化する
ことを特徴とする鉛蓄電池の電槽化成方法。
1. A chemical conversion method for forming an unformed electrode plate in a battery case, comprising a step of repeating discharge and charge during the formation, wherein the charging current changes by two or more steps before and after the step. A method for forming a battery case of a lead storage battery, comprising:
【請求項2】 充電電気量が正極理論電気量の100%
を超える前に、化成途中での放電と充電の繰り返しの工
程における放電を開始することを特徴とする請求項1記
載の鉛蓄電池の電槽化成方法。
2. The amount of electricity charged is 100% of the theoretical amount of electricity of the positive electrode.
2. The battery case formation method for a lead-acid storage battery according to claim 1, wherein the discharge in the process of repeating the discharging and charging during the formation is started before the temperature exceeds.
【請求項3】 繰り返しの工程における繰り返しの放電
と充電の電気量はほぼ均等であり、その電気量は正極理
論電気量の2%以上であり、その繰り返し数は3回以上
であることを特徴とする請求項1または2記載の鉛蓄電
池の電槽化成方法。
3. The amount of electricity of repetitive discharge and charge in the repetitive process is substantially equal, the amount of electricity is 2% or more of the theoretical amount of electricity of the positive electrode, and the number of repetitions is 3 or more. The method for forming a lead-acid battery according to claim 1 or 2.
【請求項4】 全充電電気量から全放電電気量を差し引
いたトータルの充電電気量は正極理論電気量の100%
以上、190%以下であることを特徴とする請求項1、
2または3記載の鉛蓄電池の電槽化成方法。
4. The total charge electricity amount obtained by subtracting the total discharge electricity amount from the total charge electricity amount is 100% of the positive electrode theoretical electricity amount.
At least 190% or less.
4. The method for forming a battery case of a lead storage battery according to 2 or 3.
【請求項5】 化成時の減液量を加味した所定比重およ
び液量の希硫酸を予め化成開始前に注液し、化成途中あ
るいは化成終了後には液量あるいは比重の調整を行わな
いようにすることを特徴とする請求項1、2、3または
4記載の鉛蓄電池の電槽化成方法。
5. Dilute sulfuric acid having a predetermined specific gravity and a liquid amount in consideration of the liquid reduction amount during chemical formation is injected before the start of chemical formation, and the liquid amount or specific gravity is not adjusted during or after chemical formation. The method for forming a battery case of a lead-acid battery according to claim 1, 2, 3, or 4.
【請求項6】 鉛蓄電池を制御弁式鉛蓄電池とし、安全
弁を装着し、仮蓋あるいは上蓋を固定した後に化成を行
うことを特徴とする請求項1、2、3、4または5記載
の鉛蓄電池の電槽化成方法。
6. The lead according to claim 1, wherein the lead storage battery is a control valve type lead storage battery, the safety valve is mounted, and the temporary lid or the upper lid is fixed, and then the formation is performed. A battery case formation method for storage batteries.
【請求項7】 気相中で化成を行うことを特徴とする請
求項1、2、3、4、5または6記載の鉛蓄電池の電槽
化成方法。
7. The method according to claim 1, wherein the formation is carried out in a gas phase.
JP2000201235A 2000-06-08 2000-07-03 Method of chemical conversion of batter case for lead acid battery Pending JP2002063895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000201235A JP2002063895A (en) 2000-06-08 2000-07-03 Method of chemical conversion of batter case for lead acid battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-172638 2000-06-08
JP2000172638 2000-06-08
JP2000201235A JP2002063895A (en) 2000-06-08 2000-07-03 Method of chemical conversion of batter case for lead acid battery

Publications (1)

Publication Number Publication Date
JP2002063895A true JP2002063895A (en) 2002-02-28

Family

ID=26593587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201235A Pending JP2002063895A (en) 2000-06-08 2000-07-03 Method of chemical conversion of batter case for lead acid battery

Country Status (1)

Country Link
JP (1) JP2002063895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049135A (en) * 2008-12-09 2011-03-10 Shin Kobe Electric Mach Co Ltd Lead-acid battery jar formation method
JP2011181312A (en) * 2010-03-01 2011-09-15 Shin Kobe Electric Mach Co Ltd Method of chemical conversion in battery container for lead-acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049135A (en) * 2008-12-09 2011-03-10 Shin Kobe Electric Mach Co Ltd Lead-acid battery jar formation method
JP2011181312A (en) * 2010-03-01 2011-09-15 Shin Kobe Electric Mach Co Ltd Method of chemical conversion in battery container for lead-acid battery

Similar Documents

Publication Publication Date Title
CN1977418B (en) Method for charging a lithium-ion accumulator with a negative electrode
CN101154747B (en) Formation method for lithium ion secondary battery
CN102013530A (en) Antipole repair method for irreversible vulcanization of 2V high-capacity lead-acid storage battery cathode
JP2011181436A (en) Lead acid battery
CN108400396B (en) Method for improving first charge-discharge specific capacity and first effect of lithium ion battery
JP2000113909A (en) Storing method for lithium secondary battery
CN103633390A (en) Quick charging method of lithium-ion power battery
CN112072076B (en) Modification method for surface of negative electrode of lithium metal battery
JP2002063895A (en) Method of chemical conversion of batter case for lead acid battery
JP4178442B2 (en) Control valve type lead acid battery manufacturing method
JP2008071717A (en) Method of chemical conversion of lead-acid battery
CN112164782B (en) Lithium ion battery with mixed negative electrode and formation method thereof
KR20040110331A (en) Method of post-treating for rechargeable lithium battery
CN110911767A (en) Formation method of lithium ion battery with composite anode
WO1983003714A1 (en) Method of forming lead storage battery
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP3099356B2 (en) Battery forming method for sealed lead-acid batteries
JP4411729B2 (en) Lead-acid battery charging method
JP2001250589A (en) Charging method of sealed lead storage battery
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JP4923399B2 (en) Lead acid battery
JP2003346911A (en) Method for charging lead storage battery
JPH10308215A (en) Manufacture of sealed lead-acid battery
CN118336859A (en) Pulse type battery charging method
JP2003100289A (en) Sealed lead acid battery and method of using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213