JP4411729B2 - Lead-acid battery charging method - Google Patents

Lead-acid battery charging method Download PDF

Info

Publication number
JP4411729B2
JP4411729B2 JP2000050612A JP2000050612A JP4411729B2 JP 4411729 B2 JP4411729 B2 JP 4411729B2 JP 2000050612 A JP2000050612 A JP 2000050612A JP 2000050612 A JP2000050612 A JP 2000050612A JP 4411729 B2 JP4411729 B2 JP 4411729B2
Authority
JP
Japan
Prior art keywords
amount
electricity
charge
ratio
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000050612A
Other languages
Japanese (ja)
Other versions
JP2001243990A (en
Inventor
宏之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000050612A priority Critical patent/JP4411729B2/en
Publication of JP2001243990A publication Critical patent/JP2001243990A/en
Application granted granted Critical
Publication of JP4411729B2 publication Critical patent/JP4411729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、充放電を繰り返して使用される鉛蓄電池、いわゆるサイクル使用される鉛蓄電池を充電する方法の技術に関するものである。
【0002】
【従来の技術】
鉛蓄電池の充電をする場合、鉛蓄電池のサイクル寿命、放電容量を充分に発揮させるには、過不足なく適性な電気量が充電されることが必要てあり、従来の鉛蓄電池の充電方法においては、適正な電気量が充電されるようにするために、放電電気量を算出して充電電気量を推定したり、充電過程で一定の電圧値になるまでの充電電気量を算出して放電電気量を推定したりすることにより充電電気量を求めて充電していた。
【0003】
【発明が解決しようとする課題】
従来の鉛蓄電池の充電方法にあっては、以下に説明するような問題点を有していた。
【0004】
充分な放電容量が得られるようにするには、充電電気量が多めになるように設定した条件で鉛蓄電池を充電すれば良いが、充電電気量が多めに設定された鉛蓄電池は充放電サイクルを繰り返し継続して使用すると、電解液が枯渇したり、活物質が劣化したり、活物質を保持する格子体が劣化したりして放電容量の低下が著しくなり、また、寿命特性が悪くなるという問題点があった。そこで、充電電気量を少なめに設定した条件で充電すると、鉛蓄電池の寿命特性は良くなるが、放電容量が抑制されるという問題点が新たに発生する。
【0005】
本発明は、鉛蓄電池の寿命特性および放電容量の両者を向上させることができる充電方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記問題点を解決するために、本発明の鉛蓄電池の充電方法においては、充放電サイクルの初期段階とそれ以降の段階とでは異なる電気量により充電し、初期段階での放電電気量に対する充電電気量の割合は高くし、初期段階以降の段階での放電電気量に対する充電電気量の割合は低くすることとしている。
【0007】
そして、このようにすることにより、高い放電容量を引き出すことができ、優れた寿命特性を長く維持することができる。
【0008】
【発明の実施の形態】
本発明の鉛蓄電池の充電方法にあっては、各請求項に記載したような形態で実施することができ、以下にその構成に作用効果を併記して説明する。
【0009】
請求項1に記載のように、充放電サイクルの初期段階とそれ以降の段階とでは異なる電気量により充電し、放電電気量に対する充電電気量の割合を、初期段階ではそれ以降の段階よりも大きくするものである。
【0010】
充放電サイクルの初期段階での鉛蓄電池の放電容量が、その電池の最大放電容量よりも少ないめであると、初期段階での放電電気量に対する充電電気量の割合が高くなって好ましい。充放電サイクルの初期段階での放電容量は、最大放電容量に対する割合、いわゆる放電深度が0.80〜0.98(80〜89%)になるようにすると、放電電気量に対する充電電気量が高くなって効果的である。
【0011】
そして、充放電サイクルの初期段階では、最大放電容量よりも少ないめの放電容量にし、放電電気量に対する充電電気量の割合を高くして充電量を多いめにすることにより、高い放電容量を維持することができ、また、初期段階以降の段階での放電電気量に対する充電電気量の割合を低くして充電量を少なめにすることにより、寿命特性を向上させることができる。
【0012】
また、請求項2に記載のように、充放電サイクルの初期段階としては、1サイクルから5〜200サイクルの範囲の所定サイクル値まで、すなわち、最小が1〜5サイクルで最大が1〜200サイクルの範囲までが好ましく、効果的である。
【0013】
また、充放電サイクルの初期段階での放電電気量に対する充電電気量の割合は、請求項3に記載のように、1サイクルから最終サイクルまで所定の一定値にしたり、請求項4に記載のように段階的に減少させたり、請求項5に記載のように、連続的に減少させたりすることができるが、初期段階でも段階的もしくは連続的に減少させて低下させるようにすると、長寿命化を図る点からは効果的である。
【0014】
さらに、請求項6に記載のように、充放電サイクルの初期段階での放電電気量に対する充電電気量の割合は、高い放電容量を引き出すことを考慮すると、1.15〜1.30の範囲の所定値とするのが好ましく、また、初期段階以降の段階での放電電気量に対する充電電気量の割合は、寿命特性を向上させることを考慮すると、1.00〜1.15の範囲の所定値とするのが好ましい。そして、前者の割合が後者の割合よりも大きくなるようにすると、放電容量を向上させ、寿命特性の低下を阻止することができる。
【0015】
【実施例】
その実施例について、図1ないし図4を参照して詳述する。なお、図1は放電電気量に対する充電電気量の割合とサイクル数との関係を説明する図、図2は実施例におけるサイクル寿命特性を説明する図、図3は放電電気量に対する充電電気量の割合とサイクル数との関係の他の例を説明する図、図4は放電電気量に対する充電電気量の割合とサイクル数との関係の別の例を説明する図を示している。
【0016】
充放電サイクル試験では、図1に示すように、充放電サイクルの初期段階、すなわち1サイクルより5〜200サイクルの範囲で設定した所定サイクル値までの段階では、放電電気量に対する充電電気量の割合が、1.15〜1.30の範囲で設定した所定値になるように制御し、前記所定サイクル値以降の段階では、放電電気量に対する充電電気量の割合が、前記の初期段階よりは低い1.00〜1.15の範囲で設定した所定値になるように制御している。
【0017】
実施例による充放電サイクル試験は、電圧12V、定格電気容量60Ahの密閉型鉛蓄電池を用い、試験は温度25℃で行い、以下に説明するa、b、cの条件で充電し、20A定電流で放電深度80%の条件で放電した。そして、aの場合は、放電電気量に対する充電電気量の割合を、50サイクルまでは1.25(125%)、50サイクル以降は1.10(110%)と多めに減少させたもの(実施例)、bの場合は、放電電気量に対する充電電気量の割合を、50サイクルまでは1.15(115%)、50サイクル以降は1.10(110%)と少なめに減少させたもの(実施例)、cの場合は、放電電気量に対する充電電気量の割合を、50サイクルまでは1.25(125%)、50サイクル以降も1.25(125%)と変化させないもの(比較例)である。また、サイクル寿命特性は、50サイクル毎に20A定電流で9.9Vまで放電して容量を測定し、そのサイクルにおける初期の放電容量に対する容量の変化率(%)として求めた。この結果は、図2に示す通りである。
【0018】
図2より、aの場合は、充放電サイクルの初期段階で引きだした高い放電容量を50サイクル以降も維持し、サイクル寿命も長く維持しており、また、bの場合は、50サイクルまでの放電電気量に対する充電電気量の割合がaの場合に比べて低いので、放電容量も低めに維持されているが、充分な寿命特性を有しており、cの場合は、50サイクルまでの放電電気量に対する充電電気量の割合を高くして充電量を多くしているので、高い放電容量を引き出しているが、50サイクル以降もその多い充電量で推移させているので、電解液が枯渇し、活物質および格子体が劣化して放電容量の低下が著しくなり、寿命特性も極端に短くなっていることが分かる。
【0019】
なお、aの場合、電解液の比重を高めにし、充放電サイクルの初期段階での放電電気量に対する充電電気量の割合を高くして充電量を多くし、初期段階以降の段階での充電量を低めに設定すると、鉛蓄電池が劣化することなく、高い放電容量を寿命末期まで維持できることを確認している。また、bの場合は、充放電サイクルの初期段階での放電電気量に対する充電電気量の割合が低く、充電量が多くないので、電解液の比重は低めにするのが好ましい。
【0020】
さらに、以上では、充放電サイクルの初期段階、すなわち1サイクルより5〜200サイクルの範囲で設定した所定サイクル値までの段階では、放電電気量に対する充電電気量の割合を、1.15〜1.30の範囲で設定した所定値を一定に維持させる場合について説明したが、放電電気量に対する充電電気量の割合は1.15〜1.30の範囲内で、図3に示すように段階的で不連続に減少させたり、図4に示すように傾斜状に連続させて減少させたりすることができ、このように充放電サイクルの初期段階からそれ以降の段階へ移行する際の充電量の変化を少なくすると、寿命特性がさらに向上して効果的となる。
【0021】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0022】
充放電サイクルの初期段階での放電電気量に対する充電電気量の割合を、初期段階以降の段階での放電電気量に対する充電電気量の割合よりも高くすることにより、放電容量を向上させ、優れた寿命特性を維持させることができる。
【図面の簡単な説明】
【図1】本発明の実施例における放電電気量に対する充電電気量の割合とサイクル数との関係を説明する図
【図2】同実施例におけるサイクル寿命特性を説明する図
【図3】放電電気量に対する充電電気量の割合とサイクル数との関係の他の例を説明する図
【図4】放電電気量に対する充電電気量の割合とサイクル数との関係の別の例を説明する図
【符号の説明】
a 実施例による放電容量の変化を示す線図
b 他の実施例による放電容量の変化を示す線図
c 比較例による放電容量の変化を示す線図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for charging a lead storage battery that is used by repeatedly charging and discharging, that is, a lead storage battery that is used in a so-called cycle.
[0002]
[Prior art]
When charging a lead-acid battery, it is necessary to charge a suitable amount of electricity without excess or deficiency in order to fully demonstrate the cycle life and discharge capacity of the lead-acid battery. In conventional lead-acid battery charging methods, In order to charge an appropriate amount of electricity, the amount of discharged electricity is estimated by estimating the amount of discharged electricity, or the amount of charged electricity until a constant voltage value is obtained during the charging process. The amount of charge electricity was calculated | required by estimating the quantity and it charged.
[0003]
[Problems to be solved by the invention]
The conventional lead storage battery charging method has the following problems.
[0004]
In order to obtain a sufficient discharge capacity, it is sufficient to charge the lead storage battery under conditions set to increase the amount of charge electricity, but a lead storage battery with a large amount of charge electricity is charged / discharged. If the battery is continuously used repeatedly, the electrolytic solution is depleted, the active material is deteriorated, the grid holding the active material is deteriorated, and the discharge capacity is remarkably lowered, and the life characteristics are deteriorated. There was a problem. Thus, if charging is performed under a condition in which the amount of charged electricity is set to be small, the life characteristics of the lead storage battery are improved, but a problem that discharge capacity is suppressed is newly generated.
[0005]
An object of this invention is to provide the charging method which can improve both the lifetime characteristic and discharge capacity of lead acid battery.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, in the method for charging a lead-acid battery according to the present invention, charging is performed with different amounts of electricity in the initial stage of the charge / discharge cycle and the subsequent stages, and the charging electricity with respect to the amount of discharged electricity in the initial stage. The ratio of the amount is increased, and the ratio of the amount of charged electricity to the amount of discharged electricity in the stages after the initial stage is decreased.
[0007]
And by doing in this way, high discharge capacity can be drawn and the outstanding lifetime characteristic can be maintained long.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The lead storage battery charging method of the present invention can be carried out in the form as described in each claim, and the following description will be made with its function and effect written together.
[0009]
As described in claim 1, charging is performed with different amounts of electricity in the initial stage and the subsequent stages of the charge / discharge cycle, and the ratio of the charged amount of electricity to the amount of discharged electricity is larger in the initial stage than in the subsequent stages. To do.
[0010]
If the discharge capacity of the lead storage battery in the initial stage of the charge / discharge cycle is less than the maximum discharge capacity of the battery, the ratio of the charge electricity to the discharge electricity in the initial stage is preferably increased. When the discharge capacity at the initial stage of the charge / discharge cycle is set to a ratio to the maximum discharge capacity, that is, a so-called depth of discharge of 0.80 to 0.98 (80 to 89%), the charge electricity amount is high with respect to the discharge electricity amount. It is effective.
[0011]
In the initial stage of the charge / discharge cycle, the discharge capacity is smaller than the maximum discharge capacity, and the charge capacity is increased by increasing the ratio of the charge capacity to the discharge capacity, thereby maintaining a high discharge capacity. In addition, the life characteristics can be improved by reducing the charge amount by reducing the ratio of the charge electricity amount to the discharge electricity amount in the stages after the initial stage.
[0012]
In addition, as described in claim 2, as an initial stage of the charge / discharge cycle, a predetermined cycle value ranging from 1 cycle to 5 to 200 cycles, that is, a minimum of 1 to 5 cycles and a maximum of 1 to 200 cycles. The range up to is preferable and effective.
[0013]
Further, the ratio of the amount of charged electricity to the amount of discharged electricity at the initial stage of the charge / discharge cycle is set to a predetermined constant value from one cycle to the last cycle as described in claim 3, or as described in claim 4. It can be decreased stepwise or continuously as described in claim 5, but if it is decreased by stepwise or continuously decreasing even in the initial stage, the life is extended. It is effective from the point of aiming.
[0014]
Furthermore, as described in claim 6, the ratio of the charge electricity amount to the discharge electricity amount in the initial stage of the charge / discharge cycle is in the range of 1.15 to 1.30 in consideration of drawing out a high discharge capacity. It is preferable to set a predetermined value, and the ratio of the charge electricity amount to the discharge electricity amount in the stage after the initial stage is a predetermined value in the range of 1.00 to 1.15 in consideration of improving the life characteristics. Is preferable. And if the ratio of the former is made larger than the ratio of the latter, the discharge capacity can be improved and the deterioration of the life characteristics can be prevented.
[0015]
【Example】
The embodiment will be described in detail with reference to FIGS. 1 is a diagram for explaining the relationship between the ratio of the charge electricity amount to the discharge electricity amount and the number of cycles, FIG. 2 is a diagram for explaining cycle life characteristics in the embodiment, and FIG. 3 is a diagram of the charge electricity amount with respect to the discharge electricity amount. FIG. 4 is a diagram for explaining another example of the relationship between the ratio and the number of cycles, and FIG. 4 is a diagram for explaining another example of the relationship between the ratio of the charged electricity amount to the discharged electricity amount and the cycle number.
[0016]
In the charge / discharge cycle test, as shown in FIG. 1, in the initial stage of the charge / discharge cycle, that is, the stage from the first cycle to the predetermined cycle value set in the range of 5 to 200 cycles, the ratio of the charged electric quantity to the discharged electric quantity Is controlled to be a predetermined value set in the range of 1.15 to 1.30, and in the stage after the predetermined cycle value, the ratio of the charged electric quantity to the discharged electric quantity is lower than the initial stage. Control is performed so as to be a predetermined value set in a range of 1.00 to 1.15.
[0017]
The charge / discharge cycle test according to the example uses a sealed lead-acid battery having a voltage of 12 V and a rated electric capacity of 60 Ah, the test is performed at a temperature of 25 ° C., charged under the conditions of a, b, and c described below, and a constant current of 20 A The discharge was performed under the condition of a discharge depth of 80%. In the case of a, the ratio of the amount of charged electricity to the amount of discharged electricity is reduced to 1.25 (125%) up to 50 cycles and 1.10 (110%) after 50 cycles (implementation) Example) In the case of b, the ratio of the amount of charged electricity to the amount of discharged electricity is slightly reduced to 1.15 (115%) up to 50 cycles and 1.10 (110%) after 50 cycles ( In the case of Example) and c, the ratio of the charged electricity amount to the discharged electricity amount is not changed to 1.25 (125%) until 50 cycles and 1.25 (125%) after 50 cycles (Comparative Example) ). In addition, the cycle life characteristics were determined as the rate of change (%) of the capacity with respect to the initial discharge capacity in that cycle by discharging the battery up to 9.9 V at a constant current of 20 A every 50 cycles. The result is as shown in FIG.
[0018]
From FIG. 2, in the case of a, the high discharge capacity drawn out in the initial stage of the charge / discharge cycle is maintained after 50 cycles and the cycle life is maintained long, and in the case of b, the discharge is up to 50 cycles. Since the ratio of the amount of charge to the amount of electricity is lower than that of a, the discharge capacity is kept low, but it has sufficient life characteristics, and in the case of c, the discharge electricity up to 50 cycles. Since the charge amount is increased by increasing the ratio of the charge electricity amount to the amount, a high discharge capacity is drawn, but since the amount of charge is changed after 50 cycles, the electrolyte is depleted, It can be seen that the active material and the lattice are deteriorated, the discharge capacity is significantly reduced, and the life characteristics are extremely shortened.
[0019]
In the case of a, the specific gravity of the electrolyte is increased, the ratio of the amount of charged electricity to the amount of discharged electricity in the initial stage of the charge / discharge cycle is increased to increase the amount of charge, and the amount of charge in the stages after the initial stage It has been confirmed that a high discharge capacity can be maintained until the end of the life without deteriorating the lead-acid battery if the battery is set to be low. In the case of b, since the ratio of the amount of charged electricity to the amount of discharged electricity at the initial stage of the charge / discharge cycle is low and the amount of charge is not large, the specific gravity of the electrolyte is preferably low.
[0020]
Further, in the above, in the initial stage of the charge / discharge cycle, that is, the stage from the first cycle to the predetermined cycle value set in the range of 5 to 200 cycles, the ratio of the charge electricity amount to the discharge electricity amount is 1.15 to 1. Although the case where the predetermined value set in the range of 30 is maintained constant has been described, the ratio of the charge electricity amount to the discharge electricity amount is within the range of 1.15 to 1.30, and is stepwise as shown in FIG. The amount of charge can be reduced discontinuously or continuously in a slanted manner as shown in FIG. 4, and thus the amount of charge when changing from the initial stage of the charge / discharge cycle to the subsequent stage. If the number is reduced, the life characteristics are further improved and become effective.
[0021]
【The invention's effect】
The present invention is implemented in the form as described above, and has the effects described below.
[0022]
By making the ratio of the amount of charged electricity to the amount of discharged electricity in the initial stage of the charge / discharge cycle higher than the ratio of the amount of charged electricity to the amount of discharged electricity in the stages after the initial stage, the discharge capacity is improved and excellent Life characteristics can be maintained.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the relationship between the ratio of charge electricity to the amount of discharge electricity and the number of cycles in an embodiment of the present invention. FIG. 2 is a diagram for explaining cycle life characteristics in the embodiment. FIG. 4 is a diagram for explaining another example of the relationship between the ratio of charge electricity to the amount and the number of cycles. FIG. 4 is a diagram for explaining another example of the relationship between the ratio of charge electricity to the amount of discharge and the number of cycles. Explanation of]
a diagram showing change in discharge capacity according to an example b diagram showing change in discharge capacity according to another example c diagram showing change in discharge capacity according to a comparative example

Claims (5)

充放電サイクルの初期段階とそれ以降の段階とでは異なる電気量により充電し、初期段階での放電電気量に対する充電電気量の割合を1.15〜1.30の範囲とし、初期段階以降の段階での放電電気量に対する充電電気量の割合を1.00〜1.15の範囲とする鉛蓄電池の充電方法。Charging with different amounts of electricity in the initial stage and subsequent stages of the charge / discharge cycle, the ratio of the amount of charged electricity to the amount of discharged electricity in the initial stage is in the range of 1.15 to 1.30, and stages after the initial stage The charge method of the lead storage battery which makes the ratio of the amount of charge electricity with respect to the amount of discharge electricity in 1.00 to 1.15 the range . 充放電サイクルの初期段階は5〜200サイクルまでの範囲にする請求項1記載の鉛蓄電池の充電方法。  The lead-acid battery charging method according to claim 1, wherein the initial stage of the charge / discharge cycle is in the range of 5 to 200 cycles. 充放電サイクルの初期段階での放電電気量に対する充電電気量の割合は一定にする請求項1記載の鉛蓄電池の充電方法。  The method for charging a lead-acid battery according to claim 1, wherein the ratio of the amount of charge to the amount of discharge in the initial stage of the charge / discharge cycle is constant. 充放電サイクルの初期段階での放電電気量に対する充電電気量の割合を段階的に減少させる請求項1記載の鉛蓄電池の充電方法。  The method for charging a lead-acid battery according to claim 1, wherein the ratio of the amount of charged electricity to the amount of discharged electricity in the initial stage of the charge / discharge cycle is reduced stepwise. 充放電サイクルの初期段階での放電電気量に対する充電電気量の割合を連続的に減少させる請求項1記載の鉛蓄電池の充電方法。  The lead-acid battery charging method according to claim 1, wherein the ratio of the amount of charged electricity to the amount of discharged electricity in the initial stage of the charge / discharge cycle is continuously reduced.
JP2000050612A 2000-02-28 2000-02-28 Lead-acid battery charging method Expired - Fee Related JP4411729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050612A JP4411729B2 (en) 2000-02-28 2000-02-28 Lead-acid battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050612A JP4411729B2 (en) 2000-02-28 2000-02-28 Lead-acid battery charging method

Publications (2)

Publication Number Publication Date
JP2001243990A JP2001243990A (en) 2001-09-07
JP4411729B2 true JP4411729B2 (en) 2010-02-10

Family

ID=18572377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050612A Expired - Fee Related JP4411729B2 (en) 2000-02-28 2000-02-28 Lead-acid battery charging method

Country Status (1)

Country Link
JP (1) JP4411729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128052A (en) * 2004-09-30 2006-05-18 Toshiba Tec Corp Method and device for controlling discharge of secondary battery
JP2008005644A (en) 2006-06-23 2008-01-10 Sanyo Electric Co Ltd Battery charging method

Also Published As

Publication number Publication date
JP2001243990A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP5089825B2 (en) Non-aqueous electrolyte secondary battery charging method and battery pack
EP2960978B1 (en) Flooded lead-acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP4411729B2 (en) Lead-acid battery charging method
JP4081698B2 (en) Lead-acid battery charging method
JPH11329476A (en) Sealed lead-acid battery
KR20180021789A (en) Rapid formation of electrodes
JP2004220792A (en) Lead-acid battery
CN113964401B (en) Charging method for prolonging service life of lithium iron phosphate battery
WO2023185148A1 (en) Electrochemical apparatus and control method therefor, and electronic device and storage medium
JPH0869811A (en) Lead-acid battery
JP4120084B2 (en) Lead-acid battery charging method
JP2596273B2 (en) Anode plate for lead-acid battery
JP2002165378A (en) Charging system of control valve type lead-acid battery
JP3838298B2 (en) Charging method of sealed lead-acid battery using antimony alloy lattice
JP2003223935A (en) Charging method of control valve lead storage battery
JP2006185743A (en) Control valve type lead-acid battery
JPH10189057A (en) Charging method for lead-acid battery
JPH10241746A (en) Charging method of sealed-type lead storage battery
JP3975558B2 (en) Battery power unit and control method thereof
JP2001160422A (en) Charging control method of lead storage battery
JP2964555B2 (en) Battery storage method for lead-acid batteries
JP2000299134A (en) Lead-acid battery charging method
JPH0654661B2 (en) Sealed lead acid battery
JP2000243456A (en) Method for charging lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4411729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees