JP2006185743A - Control valve type lead-acid battery - Google Patents

Control valve type lead-acid battery Download PDF

Info

Publication number
JP2006185743A
JP2006185743A JP2004378164A JP2004378164A JP2006185743A JP 2006185743 A JP2006185743 A JP 2006185743A JP 2004378164 A JP2004378164 A JP 2004378164A JP 2004378164 A JP2004378164 A JP 2004378164A JP 2006185743 A JP2006185743 A JP 2006185743A
Authority
JP
Japan
Prior art keywords
control valve
valve type
acid battery
type lead
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004378164A
Other languages
Japanese (ja)
Inventor
Hideaki Yoshida
英明 吉田
Kazuhiro Tochikubo
和弘 栃窪
Toru Mangahara
徹 萬ケ原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004378164A priority Critical patent/JP2006185743A/en
Publication of JP2006185743A publication Critical patent/JP2006185743A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost control valve type lead-acid battery excelling in a discharge capacity, a cycle life and charging efficiency and facilitating the injection of an electrolyte. <P>SOLUTION: In this control valve type lead-acid battery, 0.5-5.0 mass% of silica fine particles and 0.25-3.0 mass% of aluminum sulfate are added in the electrolyte. In the control valve type lead-acid battery, since an appropriate amount of silica fine particles is added in the electrolyte, the electrolyte is moderately gelled and a stratification phenomenon hardly occurs. Thereby, the control valve type lead-acid battery excels in discharge capacity (initial capacity ratio) and cycle life, has a good electrolyte injection property, and is manufacturable without needing much material cost. In addition, the control valve type lead-acid battery excels in charging efficiency because an appropriate amount of aluminum sulfate is added in the electrolyte. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放電容量、サイクル寿命、充電効率に優れ、電解液の注入が容易であり、かつ低コストの制御弁式鉛蓄電池に関する。   The present invention relates to a control valve type lead-acid battery that is excellent in discharge capacity, cycle life, and charging efficiency, is easy to inject electrolyte, and is low in cost.

制御弁式鉛蓄電池は、過充電時に正極で発生する酸素ガスを負極で消費して水に戻すことで密閉化を可能とすると共に、万一に備え蓄電池内圧が異常上昇した場合に発生酸素ガスを外部へ逃すための所定圧力で作動する弁体を備える鉛蓄電池である。   The control valve type lead-acid battery can be sealed by consuming the oxygen gas generated at the positive electrode during overcharge at the negative electrode and returning it to water, and the oxygen gas generated when the internal pressure of the storage battery rises abnormally in case It is a lead acid battery provided with the valve body which operate | moves with the predetermined pressure for letting out outside.

制御弁式鉛蓄電池では電解液はセパレータや極板に含浸される程度しか存在せず従って電解液は非流動化されているため、液式鉛蓄電池にみられる充放電中に濃厚な硫酸が沈降して電解液の比重が電極板の下部ほど高くなる成層化現象が起き難いと考えられているが、比較的過充電量の少ない状態で充放電を繰り返した場合電解液の成層化が起こる。この現象が起きると電極板下部が電気化学反応に寄与しなくなるため電池容量が低下し、また電極板での反応が不均一になるためサイクル寿命が低下する。   In a control valve type lead-acid battery, the electrolyte is only impregnated in the separator and the electrode plate, and therefore the electrolyte is non-fluidized, so that concentrated sulfuric acid settles during charge and discharge in liquid lead-acid batteries. Thus, it is considered that the stratification phenomenon in which the specific gravity of the electrolytic solution becomes higher at the lower part of the electrode plate is less likely to occur. When this phenomenon occurs, the lower part of the electrode plate does not contribute to the electrochemical reaction, so that the battery capacity is reduced, and the reaction at the electrode plate becomes non-uniform so that the cycle life is reduced.

これらの現象を抑制する手段として、電解液中にシリカ等のゲル化剤を多少混入したゲル式の制御弁式鉛蓄電池が知られている。これらゲル式の制御弁式鉛蓄電池としては、シリカ微粒子を5.0〜8.0質量%添加して電解液をゲル化した制御弁式鉛蓄電池(特許文献1)が提案されているが、この制御弁式鉛蓄電池は、その製造工程中に蓄電池の電槽内へ電解液を注入するのであるが、その際シリカが極板群上部に全体的に行き渡らず十分な効果が得られず、また、電槽内における極板群の占める割合を多くして容量を大きくしようとして極板群上方の空間を狭くした場合は電解液の注入に困難であった。またシリカ微粒子の添加量が多いためコスト的に不利であった。   As means for suppressing these phenomena, a gel-type control valve type lead-acid battery in which a gelling agent such as silica is mixed in an electrolytic solution is known. As these gel-type control valve type lead acid batteries, a control valve type lead acid battery (Patent Document 1) in which 5.0 to 8.0% by mass of silica fine particles are added to gel the electrolyte solution has been proposed. This control valve type lead storage battery injects electrolyte into the battery case of the storage battery during its manufacturing process, but at that time silica does not spread over the entire electrode plate group, and a sufficient effect cannot be obtained, Further, when the space above the electrode plate group is narrowed to increase the capacity by increasing the proportion of the electrode plate group in the battery case, it is difficult to inject the electrolyte. In addition, since the amount of silica fine particles added is large, it is disadvantageous in terms of cost.

特開2003−36831号公報JP 2003-36831 A

本発明者等は、電解液の成層化現象を抑制でき、かつ電解液の注入性を害さないシリカ微粒子添加量、および充電効率を高める電解液添加剤について検討した。その結果、成層化現象を抑制するのに必要なシリカ微粒子の添加量は0.5質量%以上、電解液の注入性を害さないシリカ微粒子の添加量は5.0質量%未満であることを見出し、さらに前記電解液添加剤には硫酸アルミニウムが好適なことを見出し、さらに検討を進めて本発明を完成させるに至った。
本発明は、放電容量、サイクル寿命、充電効率に優れ、電解液の注入が容易であり、かつ低コストの制御弁式鉛蓄電池の提供を目的とする。
The inventors of the present invention have studied an amount of silica fine particles added that can suppress the stratification phenomenon of the electrolytic solution and do not impair the injection property of the electrolytic solution, and an electrolytic solution additive that enhances charging efficiency. As a result, the addition amount of the silica fine particles necessary for suppressing the stratification phenomenon is 0.5% by mass or more, and the addition amount of the silica fine particles that do not impair the electrolyte injection property is less than 5.0% by mass. In addition, the inventors have found that aluminum sulfate is suitable for the electrolyte additive, and have further studied and have completed the present invention.
An object of the present invention is to provide a control valve type lead-acid battery that is excellent in discharge capacity, cycle life, and charging efficiency, is easy to inject electrolyte, and is low in cost.

請求項1記載発明は、電解液に、シリカ微粒子が0.5質量%以上、5.0質量%未満添加され、さらに硫酸アルミニウムが0.25質量%以上、3.0質量%以下添加されていることを特徴とする制御弁式鉛蓄電池である。   In the first aspect of the present invention, silica fine particles are added in an amount of 0.5% by mass or more and less than 5.0% by mass, and aluminum sulfate is added in an amount of 0.25% by mass or more and 3.0% by mass or less. It is the control valve type lead acid battery characterized by having.

本発明の制御弁式鉛蓄電池は、電解液にシリカ微粒子が適量添加されているので、電解液が適度にゲル化している。そのため成層化現象が起き難く、従って良好な放電容量およびサイクル寿命が得られる。また注液が容易であり、原料費も安い。さらに硫酸アルミニウムが適量添加されているので充電効率に優れ、良好なサイクル寿命特性を得ることが出来る。   In the control valve type lead-acid battery of the present invention, an appropriate amount of silica fine particles is added to the electrolytic solution, so that the electrolytic solution is appropriately gelled. Therefore, the stratification phenomenon hardly occurs, and thus a good discharge capacity and cycle life can be obtained. In addition, liquid injection is easy and raw material costs are low. Furthermore, since an appropriate amount of aluminum sulfate is added, the charging efficiency is excellent and good cycle life characteristics can be obtained.

本発明において、電解液は、シリカ微粒子が添加されているので、注液後の初充電における温度上昇でゲル化する。前記シリカ微粒子の電解液への添加量を0.5質量%以上、5.0質量%未満に規定する理由は、0.5質量%未満ではゲル度(ゲル化の程度)が低く成層化現象を十分抑制できないためである。また5.0質量%以上では電解液中のゲル化剤が極板群内に均一に行き渡らず、また、電解液の注入が困難になるうえ、原料費が高くなるためである。   In the present invention, since the silica fine particles are added to the electrolytic solution, the electrolytic solution gels due to a temperature increase in the initial charge after the injection. The reason why the amount of silica fine particles added to the electrolytic solution is specified to be 0.5% by mass or more and less than 5.0% by mass is that the gel degree (degree of gelation) is low and the stratification phenomenon is less than 0.5% by mass. This is because it cannot be sufficiently suppressed. On the other hand, when the content is 5.0% by mass or more, the gelling agent in the electrolytic solution does not spread uniformly in the electrode plate group, the injection of the electrolytic solution becomes difficult, and the raw material cost increases.

本発明において、硫酸アルミニウムは負極活物質を微細な状態に維持して充電効率を高める。前記硫酸アルミニウムの添加量を0.25質量%以上、3.0質量%以下に規定する理由は、前記規定値外ではその効果が十分に得られないためである。硫酸アルミニウムの特に好ましい添加量は0.5質量%以上、2.0質量%以下である。   In the present invention, aluminum sulfate maintains the negative electrode active material in a fine state to increase charging efficiency. The reason why the amount of aluminum sulfate added is specified to be 0.25% by mass or more and 3.0% by mass or less is that the effect is not sufficiently obtained outside the specified value. A particularly preferable addition amount of aluminum sulfate is 0.5% by mass or more and 2.0% by mass or less.

本発明の制御弁式鉛蓄電池は、電解液に、シリカ微粒子および硫酸アルミニウムの他、電池特性を改善するための他の添加剤を添加した制御弁式鉛蓄電池も含む。   The control valve type lead acid battery of the present invention also includes a control valve type lead acid battery in which other additives for improving battery characteristics are added to the electrolytic solution in addition to silica fine particles and aluminum sulfate.

公知の方法で作製した複数の負極化成板と正極化成板とを、直径19μmのガラス長繊維からなるガラスマットを介して交互に積層し、この積層体の同極板耳同士を、足し鉛を用いてバーナーで溶接して極板群とした。   A plurality of negative electrode conversion plates and positive electrode conversion plates produced by a known method are alternately laminated through glass mats made of long glass fibers having a diameter of 19 μm, and the same-polarity plate ears of this laminate are added together with lead. The electrode plate group was welded with a burner.

次に前記極板群をABS製の電槽に挿入し、接着剤により蓋を施し、該蓋の注液口から電解液を注入して12V−38Ahの制御弁式鉛蓄電池を作製した。   Next, the electrode plate group was inserted into an ABS battery case, a lid was applied with an adhesive, and an electrolyte was injected from a liquid inlet of the lid to produce a 12V-38 Ah control valve type lead storage battery.

前記電解液には、比重が1.300(20℃)の希硫酸に硫酸アルミニウム(Al(SO)を1.0質量%添加し、さらにシリカ微粒子を本発明規定値内(0.5質量%以上、5.0質量%未満)で種々の量添加したものを用いた。 To the electrolytic solution, 1.0% by mass of aluminum sulfate (Al 2 (SO 4 ) 3 ) is added to dilute sulfuric acid having a specific gravity of 1.300 (20 ° C.), and silica fine particles are within the specified range of the present invention (0 0.5 mass% or more and less than 5.0 mass%) and various amounts added.

得られた各々の制御弁式鉛蓄電池について、放電電流8A(0.25C)、終止電圧10.2Vの放電と、充電電流6.4A(0.2C)、定電圧14.7Vの定電流定電圧充電(充電時間8時間)を1サイクルとするサイクル試験を行った。放電容量が初期容量の70%になったときのサイクル回数を寿命とした。 The obtained respective valve-regulated lead-acid batteries, the discharge current 8A (0.25 C 5), and a discharge termination voltage 10.2V, the charging current 6.4A (0.2 C 5), a constant of the constant voltage 14.7V A cycle test was conducted in which constant current charging (charging time: 8 hours) was one cycle. The number of cycles when the discharge capacity reached 70% of the initial capacity was defined as the life.

[比較例1]シリカ微粒子を添加しないか、シリカ微粒子の添加量を本発明規定値外とした他は、実施例1と同じ方法により鉛蓄電池を製造し、実施例1と同じ方法によりサイクル寿命を調べた。   [Comparative Example 1] A lead-acid battery was produced by the same method as in Example 1 except that the silica fine particles were not added or the addition amount of the silica fine particles was outside the specified value of the present invention. I investigated.

実施例1および比較例1の試験結果を表1に示す。
表1には電解液注入性およびコストの評価結果を併記した。
The test results of Example 1 and Comparative Example 1 are shown in Table 1.
Table 1 also shows the evaluation results of the electrolyte injection property and cost.

表1から明らかなように、実施例1のNo.1〜6(本発明例品)はいずれもサイクル寿命が400回以上で優れた寿命性能を示した。これはシリカ微粒子が適量含まれていて成層化現象が起きなかったこと、硫酸アルミニウムの添加により充電効率が向上したことによる。またシリカ微粒子の添加量が少ないため電解液が注入前にゲル化するようなことがなく、注入が容易に行えた。しかも原料費が安かった。   As is apparent from Table 1, No. 1 in Example 1 was obtained. Each of Nos. 1 to 6 (example products of the present invention) exhibited excellent life performance when the cycle life was 400 times or more. This is because a suitable amount of silica fine particles was contained and no stratification phenomenon occurred, and the charging efficiency was improved by the addition of aluminum sulfate. Further, since the amount of silica fine particles added was small, the electrolyte did not gel before the injection, and the injection could be performed easily. Moreover, raw material costs were low.

これに対し、比較例1のNo.7はシリカ微粒子を含まず電解液がゲル化しなかったため、No.8はシリカ微粒子の添加量が少なくゲル度が低かったため、いずれも成層化現象が起きてサイクル寿命が低下した。No.9はシリカ微粒子の添加量が多く、注入前に電解液がゲル化して電槽への注入が困難であった。また原料費も高かった。   On the other hand, No. 1 of Comparative Example 1 was used. No. 7 contained no silica fine particles and the electrolyte did not gel. In No. 8, since the addition amount of silica fine particles was small and the gel degree was low, the stratification phenomenon occurred and the cycle life was reduced in all cases. No. In No. 9, the amount of silica fine particles added was large, and the electrolyte gelled before injection, making it difficult to inject into the battery case. Raw material costs were also high.

比重が1.300(20℃)の希硫酸にシリカ微粒子を1.0質量%添加し、さらに硫酸アルミニウム水和物を硫酸アルミニウム換算で0.25〜3.0質量%の範囲で種々の量添加した電解液を用いた他は、実施例1と同じ方法により制御弁式鉛蓄電池を製造した。
得られた各々の制御弁式鉛蓄電池について、実施例1と同じ条件でサイクル試験を行った。
Silica fine particles are added in an amount of 1.0% by mass to dilute sulfuric acid having a specific gravity of 1.300 (20 ° C.), and aluminum sulfate hydrate is added in various amounts within a range of 0.25 to 3.0% by mass in terms of aluminum sulfate. A control valve type lead storage battery was manufactured by the same method as in Example 1 except that the added electrolyte was used.
About each obtained control valve type lead acid battery, the cycle test was done on the same conditions as Example 1. FIG.

(比較例2)
硫酸アルミニウム水和物を添加しないか、または添加量を本発明規定値外(添加しないものと4質量%添加したもの)とした他は、実施例2と同じ方法により制御弁式鉛蓄電池を製造し、実施例2と同じ方法によりサイクル試験を行った。
実施例2および比較例2の調査結果を図1に示す。横軸はサイクル数、縦軸は初期容量比(最初の容量に対する各サイクル経過時の容量の比)である。
(Comparative Example 2)
A control valve type lead-acid battery was manufactured in the same manner as in Example 2 except that aluminum sulfate hydrate was not added or the amount added was outside the specified range of the present invention (no added and 4% by mass added). Then, a cycle test was performed by the same method as in Example 2.
The investigation results of Example 2 and Comparative Example 2 are shown in FIG. The horizontal axis represents the number of cycles, and the vertical axis represents the initial capacity ratio (ratio of capacity at the end of each cycle to the initial capacity).

図1から明らかなように、実施例2(本発明例品)のNo.11(硫酸アルミニウム0.25質量%添加)〜14(硫酸アルミニウム3.0質量%添加)はいずれも初期容量比が99%以上の高レベルで推移した。これは電解液にシリカ微粒子が適量含有されていて成層化現象が起きなかったことと、硫酸アルミニウムが適量含有されていて充電効率が向上したことによる。特に硫酸アルミニウムを1.0質量%含むNo.12と、2.0質量%含むNo.13は初期容量比がほぼ102%以上の高レベルで推移した。   As is apparent from FIG. 1, No. 2 of Example 2 (example product of the present invention). 11 (addition of 0.25% by mass of aluminum sulfate) to 14 (addition of 3.0% by mass of aluminum sulfate) all had a high initial capacity ratio of 99% or more. This is because an appropriate amount of silica fine particles was contained in the electrolytic solution and no stratification phenomenon occurred, and an appropriate amount of aluminum sulfate was contained to improve charging efficiency. In particular, No. 1 containing 1.0% by mass of aluminum sulfate. 12 and 2.0% by mass. No. 13 had a high initial capacity ratio of approximately 102% or higher.

これに対し、比較例2のNo.15は硫酸アルミニウムを4.0質量%添加したものであるが、添加量が多すぎて電気化学反応が阻害されたために、また、No.16は硫酸アルミニウムが添加されず十分な充電効率が得られなかったため、いずれも70サイクルを超えたあたりから初期容量比が95%以下に低下した。   On the other hand, the comparative example 2 No. No. 15 was obtained by adding 4.0% by mass of aluminum sulfate, but because the electrochemical reaction was inhibited due to the addition amount being too large, No. 15 was also added. In No. 16, since aluminum sulfate was not added and sufficient charging efficiency was not obtained, the initial capacity ratio decreased to 95% or less from the point where all exceeded 70 cycles.

実施例2で行ったサイクル試験結果を基にして充電率(充電容量/放電容量)を10サイクルごとに求めた。No.12(本発明例)とNo.16(比較例)の結果を図2に示す。   Based on the results of the cycle test conducted in Example 2, the charging rate (charge capacity / discharge capacity) was determined every 10 cycles. No. 12 (examples of the present invention) and No. The result of 16 (comparative example) is shown in FIG.

図2から明らかなように、本発明例品(No.12)は、比較例品(No.16)と充電率がほぼ同等であった。このように本発明例品は充電率が比較例品とほぼ同等であるにも関わらず、初期容量比が高い(図1参照)、つまり高容量で放電が維持されているわけで、このことは、本発明例品は充電効率が向上していることを意味する。この充電効率の向上は硫酸アルミニウムを適量添加したことによる効果である。   As is clear from FIG. 2, the product of the present invention (No. 12) had a charging rate substantially equal to that of the comparative product (No. 16). In this way, the product of the present invention has a high initial capacity ratio (see FIG. 1), although the charging rate is almost the same as that of the comparative product, that is, the discharge is maintained at a high capacity. Means that the product of the present invention has improved charging efficiency. This improvement in charging efficiency is due to the addition of an appropriate amount of aluminum sulfate.

本発明の制御弁式鉛蓄電池のサイクル試験における初期容量比の推移を示す図である。It is a figure which shows transition of the initial stage capacity ratio in the cycle test of the control valve type lead acid battery of this invention. 本発明の制御弁式鉛蓄電池のサイクル試験における充電率の推移を示す図である。It is a figure which shows transition of the charging rate in the cycle test of the control valve type lead acid battery of this invention.

Claims (1)

電解液に、シリカ微粒子が0.5質量%以上、5.0質量%未満添加され、さらに硫酸アルミニウムが0.25質量%以上、3.0質量%以下添加されていることを特徴とする制御弁式鉛蓄電池。
Control in which silica fine particles are added to the electrolytic solution in an amount of 0.5% by mass or more and less than 5.0% by mass, and aluminum sulfate is further added in an amount of 0.25% by mass or more and 3.0% by mass or less. Valve-type lead acid battery.
JP2004378164A 2004-12-27 2004-12-27 Control valve type lead-acid battery Pending JP2006185743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378164A JP2006185743A (en) 2004-12-27 2004-12-27 Control valve type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378164A JP2006185743A (en) 2004-12-27 2004-12-27 Control valve type lead-acid battery

Publications (1)

Publication Number Publication Date
JP2006185743A true JP2006185743A (en) 2006-07-13

Family

ID=36738704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378164A Pending JP2006185743A (en) 2004-12-27 2004-12-27 Control valve type lead-acid battery

Country Status (1)

Country Link
JP (1) JP2006185743A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142220A1 (en) 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
EP3021415A1 (en) 2014-11-13 2016-05-18 F.I.A.M.M. S.P.A. Additive for electrolyte of lead-acid batteries
US9548485B2 (en) 2011-05-02 2017-01-17 Gs Yuasa International Ltd. Valve regulated lead-acid battery
KR20170007434A (en) * 2014-05-15 2017-01-18 암테크 리서치 인터내셔널 엘엘씨 Covalently cross-linked gel electrolytes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119082A (en) * 1983-11-30 1985-06-26 Yuasa Battery Co Ltd Sealed lead-acid battery
JPS61267274A (en) * 1985-05-20 1986-11-26 Yuasa Battery Co Ltd Enclosed lead storage battery
JPS61271756A (en) * 1985-05-28 1986-12-02 S P Battery Hanbai Kk Manufacture of electrolyte for colloid storage battery
JPS63237364A (en) * 1987-03-25 1988-10-03 Japan Storage Battery Co Ltd Enclosed type lead storage battery
JPH04366546A (en) * 1991-06-13 1992-12-18 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH08153535A (en) * 1994-11-29 1996-06-11 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and its manufacture
JP2003036831A (en) * 2001-07-23 2003-02-07 Furukawa Battery Co Ltd:The Sealed lead storage battery having gel electrolyte
JP2003051334A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Sealed lead-acid battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119082A (en) * 1983-11-30 1985-06-26 Yuasa Battery Co Ltd Sealed lead-acid battery
JPS61267274A (en) * 1985-05-20 1986-11-26 Yuasa Battery Co Ltd Enclosed lead storage battery
JPS61271756A (en) * 1985-05-28 1986-12-02 S P Battery Hanbai Kk Manufacture of electrolyte for colloid storage battery
JPS63237364A (en) * 1987-03-25 1988-10-03 Japan Storage Battery Co Ltd Enclosed type lead storage battery
JPH04366546A (en) * 1991-06-13 1992-12-18 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH08153535A (en) * 1994-11-29 1996-06-11 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and its manufacture
JP2003036831A (en) * 2001-07-23 2003-02-07 Furukawa Battery Co Ltd:The Sealed lead storage battery having gel electrolyte
JP2003051334A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Sealed lead-acid battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142220A1 (en) 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
US9548485B2 (en) 2011-05-02 2017-01-17 Gs Yuasa International Ltd. Valve regulated lead-acid battery
KR20170007434A (en) * 2014-05-15 2017-01-18 암테크 리서치 인터내셔널 엘엘씨 Covalently cross-linked gel electrolytes
KR102422983B1 (en) * 2014-05-15 2022-07-19 암테크 리서치 인터내셔널 엘엘씨 Covalently cross-linked gel electrolytes
EP3021415A1 (en) 2014-11-13 2016-05-18 F.I.A.M.M. S.P.A. Additive for electrolyte of lead-acid batteries

Similar Documents

Publication Publication Date Title
EP2960978B1 (en) Flooded lead-acid battery
JP2008153128A (en) Negative electrode active material for secondary battery
JP2013218894A (en) Lead acid battery
CN102660697B (en) Lead-acid battery grid alloy for power
JP6043734B2 (en) Lead acid battery
JP2006049025A (en) Control valve type lead-acid storage battery
JP2009170234A (en) Control valve type lead-acid battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP4647722B1 (en) Lead acid battery
JP2007250308A (en) Control valve type lead acid battery
JP2018055903A (en) Positive electrode plate for lead storage battery and lead storage battery
JP2006185743A (en) Control valve type lead-acid battery
JP2010102922A (en) Control valve type lead-acid battery
JP5549881B2 (en) Negative electrode plate for lead-acid battery and lead-acid battery using the same
JP2011049135A (en) Lead-acid battery jar formation method
JP4812386B2 (en) Method for producing lead-acid battery
JP2013145664A (en) Control valve type lead storage battery
US20220200060A1 (en) Synthetic proton-conductive additives for battery electrolytes
KR100433470B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
JP2008103180A (en) Control valve type lead-acid battery
JP2009289595A (en) Sealed lead acid storage battery
JP2006310062A (en) Lead-acid battery
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP2003178794A (en) Production process of sealed lead acid storage battery
JP2016213050A (en) Control valve-type lead storage battery and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518