JP2003036831A - Sealed lead storage battery having gel electrolyte - Google Patents

Sealed lead storage battery having gel electrolyte

Info

Publication number
JP2003036831A
JP2003036831A JP2001220885A JP2001220885A JP2003036831A JP 2003036831 A JP2003036831 A JP 2003036831A JP 2001220885 A JP2001220885 A JP 2001220885A JP 2001220885 A JP2001220885 A JP 2001220885A JP 2003036831 A JP2003036831 A JP 2003036831A
Authority
JP
Japan
Prior art keywords
less
mass
separator
gel electrolyte
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001220885A
Other languages
Japanese (ja)
Inventor
Tetsuya Kano
哲也 加納
Hiromasa Noguchi
博正 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2001220885A priority Critical patent/JP2003036831A/en
Publication of JP2003036831A publication Critical patent/JP2003036831A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a sealed lead storage battery superior in discharge and charge-discharge cycle life performances which battery has a gel electrolyte, by improving separator arrangement and gel contents. SOLUTION: The sealed lead storage battery comprises: a separator 2 constituted of a thick mat-like sheet 3, a thin porous sheet 4 with a large average pore size, and a thin porous layer 5, a group of small projections or ribs; and the gel electrolyte 8 composed of a dilute sulfuric acid, and fine silica powders of less than 10 wt.%, a small quantity of soluble sulfates and phosphoric acid of 0.75 wt.% to 4.0 wt.%, wherein the gel electrolyte 8 is filled at least almost in the separators and around electrode plates, and the electrode plates are arranged in a strongly pressed state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ゲル状電解液をそ
なえたシール形鉛蓄電池、特にセパレータを含む極板群
とゲル状電解液の内容とに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead acid battery provided with a gel electrolyte, and more particularly to an electrode plate group including a separator and the content of the gel electrolyte.

【0002】[0002]

【従来の技術】酸素サイクル反応によるシール形鉛蓄電
池は、すでに一般化しており、各種の用途に用いられて
いる。その経緯をみると初めに電解液をゲル状とするゲ
ル式が商品化され、つぎに電解液量を減らして多孔性の
リテーナマットに含浸させるリテーナ式が開発され、現
在では性能面からこれが主流となってきている。従来か
ら採用されてきたゲル状電解液をそなえたシール形蓄電
池ではセパレータ部の主な構成は次の通りである。 1.直径1mm以上の孔を穿孔した波形板の両面に、それ
ぞれ正・負極板に当接させる薄い布状体を配したもの。 2.リブ付多孔板のリブ面側に薄いガラスマットを配
し、ガラスマットを正極板に当接させたもの。 3.リブを有する平均孔径2μm未満の微孔性多孔板
で、リブ群を正極板に当接させたもの。 4.直径1mm以上の孔を穿孔した波形板だけを用いたも
の。 5.平均直径1μm以下のガラス短繊維を主体とするリ
テーナマットを用いてシリカ量を少なくした、どちらか
と言えばリテーナ式に近いもの。
2. Description of the Related Art Sealed lead acid batteries based on oxygen cycle reaction have been generalized and used for various purposes. Looking at the history, first a gel type which made the electrolyte into a gel was commercialized, and then a retainer type in which a porous retainer mat was impregnated by reducing the amount of the electrolytic solution was developed.Currently, this is the mainstream in terms of performance. Is becoming. The main structure of the separator part in the seal type storage battery having the gel electrolyte that has been conventionally adopted is as follows. 1. A corrugated plate with holes with a diameter of 1 mm or more, on each side of which a thin cloth-like body is placed to contact the positive and negative plates, respectively. 2. A thin glass mat is placed on the rib side of a ribbed porous plate, and the glass mat is brought into contact with the positive electrode plate. 3. A microporous plate having ribs and having an average pore size of less than 2 μm, in which a group of ribs are brought into contact with a positive electrode plate. 4. Only using corrugated plates with holes with a diameter of 1 mm or more. 5. A retainer mat mainly composed of short glass fibers with an average diameter of 1 μm or less was used to reduce the amount of silica, and it was more like a retainer type.

【0003】上記5を除くゲル式蓄電池では、高圧迫状
態で組立ててあるリテーナ式蓄電池と異なって、これら
のセパレータ構成を有する極板群の正・負極板の全面を
強く圧迫することができない。したがって正極活物質へ
の圧迫力が小さくて、正極板の劣化による短寿命が問題
であった。これを解消するために、ゲルを構成するシリ
カ濃度を10質量%以上に高くするとともに、リン酸を
添加することが多く、その結果として極板間のイオンの
移動が阻害され、かつ硫酸量が少なくなって放電性能が
リテーナ式蓄電池のそれよりも劣るという問題があっ
た。また最近では、据置用、小形可搬用および電気自動
車用などの用途で、蓄電池を横置きにして使用する例が
でてきている。この場合には極板が水平に配列すること
になり、極板の重力によって極板群の底部で、すなわ
ち、ストラップで固定される極板耳の反対部分で極板間
隔が維持できずに狭くなるという問題が発生した。
In the gel type storage batteries other than the above-mentioned 5, unlike the retainer type storage battery assembled under a high pressure, it is not possible to strongly press the entire surface of the positive and negative electrode plates of the electrode plate group having these separator structures. Therefore, the pressing force on the positive electrode active material is small, and the short life due to deterioration of the positive electrode plate has been a problem. In order to solve this, the concentration of silica constituting the gel is increased to 10% by mass or more, and phosphoric acid is often added. As a result, migration of ions between electrode plates is inhibited and the amount of sulfuric acid is increased. There was a problem that the discharge performance was inferior and was inferior to that of the retainer type storage battery. In recent years, there have been examples of using storage batteries in a horizontal position for applications such as stationary use, small portable use, and electric vehicle use. In this case, the plates are arranged horizontally, and due to the gravity of the plates, the plate gap cannot be maintained at the bottom of the plate group, that is, at the part opposite to the plate ears fixed with straps, and the plate plates are narrow. There was a problem.

【0004】さらに、平均孔径が2μm未満の微孔性多
孔板をセパレータに用いるものでは、正極板から発生し
た酸素ガスが該セパレータを透過・拡散することが難し
く、密閉反応効率が低くなり、他方、直径1mm以上のよ
うに大きな孔を穿孔した波形セパレータを用いるもので
は、正・負極板の短絡の発生が該孔部で生じるという問
題があった。
Further, in the case where a microporous plate having an average pore size of less than 2 μm is used as a separator, it is difficult for oxygen gas generated from the positive electrode plate to permeate and diffuse through the separator, resulting in low sealing reaction efficiency. However, in the case of using a corrugated separator having a large hole having a diameter of 1 mm or more, there is a problem that a short circuit occurs between the positive and negative electrode plates in the hole.

【0005】尚、平均直径1μm以下のガラス短繊維を
主体とする表面積が極めて大きなリテーナマットをセパ
レータとし、電解液にシリカ微粒子と希硫酸とからなる
ゲルを用いるゲル式蓄電池では、シリカ微粒子がリテー
ナマットの繊維表面に沈着して多量に失われるので、ゲ
ル状を充分には示さないという問題があった。さらにシ
リカ粉末を15質量%以上含むセパレータを用いる場合
にも、該シリカ粉末上にシリカ微粒子が沈着してしまう
欠点があった。
In a gel-type storage battery using a retainer mat, which is mainly composed of short glass fibers having an average diameter of 1 μm or less and has an extremely large surface area, and a gel containing silica fine particles and dilute sulfuric acid as an electrolyte, the silica fine particles are used as the retainer. Since it deposits on the surface of the mat fiber and is lost in a large amount, there is a problem that the gel state is not sufficiently exhibited. Further, even when a separator containing 15% by mass or more of silica powder is used, there is a defect that silica fine particles are deposited on the silica powder.

【0006】[0006]

【課題を解決するための手段】本発明は片面に正極板を
圧接する直径10μm以上25μm以下のガラス長繊維ま
たは合成樹脂繊維を主体とする、厚み0.5mm以上のマ
ット状体を配置・当接させるか、または一体化させた最
大孔径50μm以下でかつ平均孔径2μm以上であるとと
もに、シリカ量が15質量%以下である厚み0.5mm未
満のシート状多孔板をセパレータとし、少量の可溶性硫
酸塩と、0.75質量%以上4.0質量%以下の望ましく
は1.0質量%以上3.0質量%以下のリン酸とを含
む、10質量%未満の望ましくは5.0質量%以上8.0
質量%以下のシリカ微粒子と希硫酸とからなるゲル状電
解液を少なくとも該セパレータの空孔内および極板群周
囲のセル内空間の大部分に配するものであって、負極
板、セパレータおよび正極板は相互に強く圧迫された状
態で極板群を形成していること、特に直径10μm以上
25μm以下のガラス長繊維または合成樹脂繊維を主体
とする、厚み0.5mm未満の多孔薄層をシート状多孔板
の他面に配置・当接させるかまたは一体化させること、
さらに高さ0.5mm未満の小突起群あるいはリブ群を、
シート状多孔板の他面に一体に形成させることによっ
て、従来のゲル状電解液をそなえたシール形鉛蓄電池の
課題を解決するものである。
According to the present invention, a mat-like body having a thickness of 0.5 mm or more, which is mainly composed of long glass fibers or synthetic resin fibers having a diameter of 10 μm or more and 25 μm or less, which is in pressure contact with a positive electrode plate on one side, is provided. A sheet-like perforated plate having a maximum pore size of 50 μm or less and an average pore size of 2 μm or more and having a silica content of 15% by mass or less and a thickness of less than 0.5 mm is used as a separator, and a small amount of soluble sulfuric acid is used. Less than 10% by mass, preferably 5.0% by mass or more, containing salt and 0.75% by mass or more and 4.0% by mass or less, preferably 1.0% by mass or more and 3.0% by mass or less phosphoric acid 8.0
A gel electrolyte composed of silica fine particles of less than or equal to mass% and dilute sulfuric acid is arranged at least in the pores of the separator and in most of the cell space around the electrode plate group, wherein the negative electrode plate, the separator and the positive electrode. The plates form an electrode plate group in a state of being strongly pressed against each other, and in particular, a sheet of a porous thin layer having a diameter of 10 μm or more and 25 μm or less and mainly composed of long glass fibers or synthetic resin fibers and having a thickness of less than 0.5 mm Arranging and abutting on the other surface of the plate-shaped perforated plate, or integrating them,
Furthermore, a group of small protrusions or ribs with a height of less than 0.5 mm,
By integrally forming it on the other surface of the sheet-shaped porous plate, the problem of the conventional sealed lead-acid battery having a gel electrolyte is solved.

【0007】[0007]

【作用】本発明になるゲル状電解液をそなえたシール形
鉛蓄電池は、次に示す作用を有する。 (1)負極板、マット状体を有するセパレータおよび正
極板は相互に強く圧迫された状態で極板群を形成してい
るから、正極板は劣化が抑えられて、長寿命である。 (2)蓄電池を横置きにしても、極板群は初めから強く
圧迫された状態で組立てられているから、正・負極板の
間隔は一定に保つことができる。 (3)セパレータとして平均直径2μm以上の、やや大
きな孔を有する薄いシート状多孔板と孔の大きなマット
状体とを用いているから、正極板から発生する酸素ガス
はセパレータを容易に透過して負極板へ達することがで
きるので、高い密閉反応効率が得られる。 (4)セパレータのシート状多孔板の孔は、最大直径5
0μm以下であり、正・負極板の短絡の発生を防ぐこと
ができる。これには少量の硫酸塩と適量のリン酸の添加
の効果も寄与している。 (5)ゲル状電解液を構成するシリカ微粒子の量は、1
0質量%未満であり、多くないので、放電性能が優れて
いる。 (6)セパレータのマット状体を構成する繊維の直径が
10〜25μmと太くてその表面積は小さく、しかもセ
パレータのシリカ粉末は15質量%以下で少ないので、
ゲル状電解液を構成するシリカ微粒子が繊維やシリカ粉
末へ沈着して固定される量は少なく、電解液はゲル状態
を充分に保持できる。 (7)ゲル状電解液に少量の硫酸塩と0.75質量%以
上のリン酸とを含むので充電時にはリン酸が正極板へ移
行して、格子の腐食および活物質の軟化を防ぐことがで
き、しかも放電時には硫酸濃度が低くなっても、少量の
硫酸塩に加えて戻ってきたリン酸の作用で電解液はゲル
状態を保ち、鉛イオンの溶出・短絡を防ぐことができ
る。
The sealed lead-acid battery provided with the gel electrolyte according to the present invention has the following actions. (1) Since the negative electrode plate, the separator having the mat-like body, and the positive electrode plate form the electrode plate group in a state of being strongly pressed against each other, the positive electrode plate is suppressed from deterioration and has a long life. (2) Even when the storage battery is placed horizontally, the electrode plate group is assembled in a state of being strongly pressed from the beginning, so that the distance between the positive and negative electrode plates can be kept constant. (3) As a separator, a thin sheet-like porous plate having an average diameter of 2 μm or more and a slightly large hole and a mat-like member having a large hole are used, so that oxygen gas generated from the positive electrode plate easily permeates the separator. Since it can reach the negative electrode plate, a high closed reaction efficiency can be obtained. (4) The sheet-shaped perforated plate of the separator has a maximum diameter of 5
It is 0 μm or less, and it is possible to prevent the occurrence of a short circuit between the positive and negative electrode plates. This also contributes to the effect of adding a small amount of sulfate and an appropriate amount of phosphoric acid. (5) The amount of silica fine particles constituting the gel electrolyte is 1
Since it is less than 0% by mass and is not much, the discharge performance is excellent. (6) Since the diameter of the fibers forming the mat-shaped body of the separator is as large as 10 to 25 μm and the surface area thereof is small, and the silica powder of the separator is less than 15% by mass,
The amount of fine silica particles constituting the gel electrolyte solution deposited and fixed on the fibers or silica powder is small, and the electrolyte solution can sufficiently maintain the gel state. (7) Since the gel electrolyte contains a small amount of sulfate and 0.75 mass% or more of phosphoric acid, phosphoric acid migrates to the positive electrode plate during charging, which prevents corrosion of the grid and softening of the active material. Even if the sulfuric acid concentration becomes low during discharge, the electrolyte solution maintains a gel state due to the action of the returned phosphoric acid in addition to a small amount of sulfate, and lead ion elution and short circuit can be prevented.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態を図1によっ
て説明する。1は負極板、1′は負極板の耳、2はセパ
レータであり、直径10〜25μmのガラス長繊維また
は合成繊維を主体とする、厚み0.5mm以上の厚いマッ
ト状体3と、最大孔径50μm以下でかつ平均孔径2μm
以上であり、厚み0.5mm未満の薄いシート状多孔板4
と、直径10〜25μmのガラス長繊維または合成繊維
を主体とする厚み0.5mm未満の多孔薄層5とからな
る。これらはその順序に貼り付けて一体となっている。
マット状体3および多孔薄層5は、直径10〜15μm
のガラス長繊維をランダムに配向させた湿式法によるマ
ット、あるいは直径約20μmのガラス長繊維を2種類
の異なる方向に配向させた乾式法によるマットが好まし
く、これは少量の合成樹脂などで繊維間を固着してマッ
ト状体とする。多孔薄層5はシート状多孔板4と一体に
形成した高さ0.5mm未満の小突起群、または高さ0.5
mm未満のリブ群に置き換えてもよく、さらにこれを無く
してもよい。シート状多孔板4は鉛蓄電池で一般に用い
られている抄紙式のセパレータのうち、厚みが0.5mm
未満のものが適用できるが、特に0.15〜0.4mmのも
のが好ましい。この素材は親水性ポリエチレン繊維を主
体とし、少量の合成樹脂繊維と硬化剤と珪藻土その他の
シリカ粉末とからなるが、本発明の蓄電池に用いるもの
はシリカ粉末が少なくシート状多孔板の15質量%以
下、望ましくは10質量%以下であること、平均孔径は
2μm以上であることが必要である。ポリエチレンと多
量のシリカ微粉末とからなる平均孔径2μm未満の押出
法による微孔セパレータは、密閉反応効率が低くて耐久
性能上から使用できない。なお最大孔径は50μm以下
であることが短絡発生の防止のために必要である。また
シリカ粉末が多いと、ゲル状を構成するシリカ微粒子を
沈着・固定してその量を減らしてしまうので好ましくな
い。6は正極板、6′は正極板の耳である。負極板1と
正極板6の格子基板には、アンチモンを実質的に含まな
い鉛合金、例えばPb−Ca−Sn−Al合金を用いる。負極
板1、セパレータ2および正極板6はこの順序に積層
し、マット状体3を正極板6に当接させて相互に強く圧
迫させた状態で極板群を形成させ、電槽7内に収納して
ある。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIG. Reference numeral 1 is a negative electrode plate, 1'is an edge of the negative electrode plate, 2 is a separator, which is mainly composed of long glass fibers or synthetic fibers having a diameter of 10 to 25 μm, a thick mat-like body 3 having a thickness of 0.5 mm or more, and a maximum pore diameter. 50μm or less and average pore size 2μm
Above, thin sheet-like perforated plate 4 with a thickness of less than 0.5 mm
And a porous thin layer 5 mainly composed of long glass fibers or synthetic fibers having a diameter of 10 to 25 μm and having a thickness of less than 0.5 mm. These are attached in that order and are integrated.
The mat-like body 3 and the porous thin layer 5 have a diameter of 10 to 15 μm.
Is preferably a wet method mat in which glass long fibers are randomly oriented or a dry method mat in which glass long fibers having a diameter of about 20 μm are oriented in two different directions. Are fixed to form a mat-like body. The porous thin layer 5 is a group of small projections less than 0.5 mm in height formed integrally with the sheet-like porous plate 4, or a height of 0.5.
It may be replaced with a rib group of less than mm, or may be eliminated. The sheet-shaped perforated plate 4 has a thickness of 0.5 mm among paper-making separators generally used in lead-acid batteries.
Those having a length of less than 0.1 mm can be applied, but those having a diameter of 0.15 to 0.4 mm are particularly preferable. This material is mainly composed of hydrophilic polyethylene fibers, and is composed of a small amount of synthetic resin fibers, a curing agent, and diatomaceous earth and other silica powders. The storage battery of the present invention contains less silica powders and contains 15% by mass of a sheet-shaped porous plate. Hereafter, it is desirable that the content is preferably 10% by mass or less, and the average pore size is 2 μm or more. A micropore separator made of polyethylene and a large amount of silica fine powder and having an average pore diameter of less than 2 μm by an extrusion method has low sealing reaction efficiency and cannot be used from the viewpoint of durability. The maximum pore diameter is required to be 50 μm or less in order to prevent the occurrence of short circuit. Further, if the amount of silica powder is large, it is not preferable because the silica fine particles forming a gel are deposited and fixed to reduce the amount. Reference numeral 6 is a positive electrode plate, and 6'is a tab of the positive electrode plate. A lead alloy substantially free of antimony, for example, a Pb-Ca-Sn-Al alloy is used for the lattice substrates of the negative electrode plate 1 and the positive electrode plate 6. The negative electrode plate 1, the separator 2, and the positive electrode plate 6 are laminated in this order, and the electrode plate group is formed in a state where the mat-like body 3 is brought into contact with the positive electrode plate 6 and strongly pressed against each other, and the electrode plate group is formed in the battery case 7. It is stored.

【0009】極板群と平行な電槽壁面は極板群を強く圧
迫するとともに、数セルを横積みにしたときに、上のセ
ルの重力で凹まないようにするために充分に大きな曲げ
強度を有することが望ましい。ただし、蓄電池群を金属
製の箱や枠体によって保持する場合には、電槽壁面の曲
げ強度はやや小さくてもよい。
The wall surface of the battery case parallel to the electrode plate group strongly presses the electrode plate group, and when several cells are stacked horizontally, the bending strength is sufficiently large so as not to be depressed by the gravity of the upper cell. It is desirable to have However, when the storage battery group is held by a metal box or frame, the bending strength of the wall surface of the battery case may be slightly small.

【0010】8はゲル状電解液で、10質量%未満の、
望ましくは5.0〜8.0質量%のシリカ微粒子と希硫酸
とを主成分として構成されるが、少量の可溶性硫酸塩、
例えば約1質量%の硫酸ナトリウム、硫酸マグネシウ
ム、硫酸リチウム、硫酸アルミニウムなどと、0.75
質量%以上で4.0質量%以下の望ましくは1.0〜3.
0質量%のリン酸とを含むものであり、これらの硫酸塩
とリン酸とは蓄電池性能面から必要な成分である。前者
は蓄電池が過放電状態となってゲル状電解液中の硫酸が
消費されたとき、電解液を良好なゲル状態に保つととも
に、極板から鉛イオンが溶出して短絡を生じることを防
ぐ効果がある。後者は充電状態のときに正極板へ移行し
てリン酸鉛となり、格子の腐食を防ぐとともに活物質の
軟化・脱落を防ぐ効果がある。その添加量は0.75質
量%未満かあるいは3.0質量%を大幅に超えて、例え
ば、4.0質量%を超える場合にはむしろ蓄電池寿命に
対し悪影響を及ぼす。このリン酸は放電によって正極板
から電解液へ戻り、電解液の硫酸濃度が低下したとき
に、電解液のゲル状を保つ作用を持っている。尚、前述
の硫酸塩とリン酸とに代えて、リン酸塩例えばリン酸ナ
トリウム、リン酸マグネシウム、リン酸リチウム、リン
酸アルミニウムなどを添加しても、これ等はゲル状電解
液中で解離し各イオンとして存在するので、同じ意味と
なる。さらにリン酸は充電によって正極板へ移行するか
ら、有効な添加量は正極板の厚さや正極活物質量に対す
る電解液量の比率によって若干は変動する。極板が薄い
ほど、また電解液量の比率が小さいほど有効なリン酸量
は多くなる傾向がみられた。
[0010] 8 is a gel electrolyte, less than 10% by mass,
Desirably, the main component is 5.0 to 8.0 mass% of silica fine particles and dilute sulfuric acid, but a small amount of soluble sulfate,
For example, about 1% by mass of sodium sulfate, magnesium sulfate, lithium sulfate, aluminum sulfate, etc., and 0.75
It is preferably 1.0 to 3.0% by mass or more and 4.0% by mass or less.
It contains 0% by mass of phosphoric acid, and these sulfate and phosphoric acid are necessary components from the viewpoint of storage battery performance. The former is an effect that when the storage battery is over-discharged and the sulfuric acid in the gel electrolyte is consumed, it keeps the electrolyte in a good gel state and prevents lead ions from eluting from the electrode plate and causing a short circuit. There is. The latter migrates to the positive electrode plate in the charged state to become lead phosphate, which has the effect of preventing corrosion of the lattice and preventing softening / falling off of the active material. If the added amount is less than 0.75% by mass or significantly exceeds 3.0% by mass, for example, more than 4.0% by mass, the life of the storage battery is rather adversely affected. This phosphoric acid returns from the positive electrode plate to the electrolytic solution due to discharge, and has the action of maintaining the gel state of the electrolytic solution when the sulfuric acid concentration of the electrolytic solution decreases. Incidentally, instead of the above-mentioned sulfate and phosphoric acid, even if a phosphate such as sodium phosphate, magnesium phosphate, lithium phosphate, aluminum phosphate, etc. is added, these are dissociated in the gel electrolyte. Since they exist as respective ions, they have the same meaning. Furthermore, since phosphoric acid migrates to the positive electrode plate by charging, the effective addition amount varies slightly depending on the thickness of the positive electrode plate and the ratio of the electrolytic solution amount to the positive electrode active material amount. The effective phosphoric acid amount tended to increase as the electrode plate became thinner and the ratio of the electrolyte amount decreased.

【0011】このゲル状電解液8は、極板群の周囲の空
隙とセパレータ2の空孔の大部分に充填された状態で配
されており、正・負極活物質の空孔内にも一部分は存在
している。
The gel electrolyte 8 is disposed in a state in which it is filled in the voids around the electrode plate group and most of the pores of the separator 2, and also partially in the pores of the positive and negative electrode active materials. Exists.

【0012】ゲル状電解液は直径5〜40nmのシリカ
微粒子を水に分散させた、たとえば商品名スノーテック
スという、コロイダルシリカと希硫酸とを混合したゾル
状物をセル内に注入し放置すれば得ることができる。コ
ロイダルシリカと希硫酸の混合物は、初めは低粘度のゾ
ル状であり、セパレータの大きな空孔内には容易に含浸
させることができる。正・負極板の活物質には比較的大
きな空孔と微細な空孔とが混在している。したがって、
ゾル状電解液のシリカ微粒子といえども水分子と弱くで
はあるが結合して水和物となっておりいてその寸法はか
なり大きいから、活物質の微細な空孔内へは入ることが
できず、大きな空孔だけに含浸される。
The gel electrolyte is prepared by injecting into the cell a sol-like substance in which fine silica particles having a diameter of 5 to 40 nm are dispersed in water, for example, a trade name Snowtex, which is a mixture of colloidal silica and dilute sulfuric acid. Obtainable. The mixture of colloidal silica and dilute sulfuric acid is a low-viscosity sol at the beginning, and can be easily impregnated into the large pores of the separator. The active material of the positive and negative electrode plates contains relatively large pores and fine pores. Therefore,
Even the silica fine particles in the sol-like electrolyte are bound to water molecules, albeit weakly, to form a hydrate, and their size is so large that they cannot enter the fine pores of the active material. , Only large pores are impregnated.

【0013】その結果として、極板表面の近傍において
は、調合した量よりも多量のシリカが存在する。セル内
に注入されたシリカと希硫酸とを含むゾルは、放置によ
ってシリカの酸素と硫酸の水素との間にファンデアワー
ルス結合が形成されてゲル化する。この結合力は弱いの
で、ゲルを機械的、物理的に刺激するとゾル状になると
いう搖変性を示す。なおコロイダルシリカの微粒子は、
個々に独立して存在するものよりも、糸状、リング状あ
るいはかご状などのように、多数が連結するもののほう
が、シリカ量を少なくしても固いゲル状態を示すので好
ましい。
As a result, in the vicinity of the electrode plate surface, a larger amount of silica than the prepared amount is present. The sol containing silica and dilute sulfuric acid injected into the cell is gelated by leaving van der Waals bonds between oxygen of silica and hydrogen of sulfuric acid when left standing. Since this binding force is weak, it exhibits a so-called denaturation in which the gel is mechanically or physically stimulated to become a sol. The particles of colloidal silica are
It is preferable to use a large number of linked materials such as thread-shaped, ring-shaped, or cage-shaped ones, rather than those that exist independently, because a hard gel state is exhibited even if the amount of silica is reduced.

【0014】9はガラスまたは合成樹脂からなる繊維、
あるいは合成樹脂の発泡体などからなるブロック状体
で、ゲル状電解液の側端部や上端部に配置されており、
ゲル状電解液を押さえて保護するとともに、極板群など
から発生する少量の離しょう液を保持する機能を持って
いる。
9 is a fiber made of glass or synthetic resin,
Alternatively, it is a block-shaped body made of a synthetic resin foam or the like, and is arranged at the side end or the upper end of the gel electrolyte,
It has the function of holding down the gel electrolyte and protecting it, as well as holding a small amount of separating liquid generated from the electrode plate group.

【0015】(10)は負極ストラップ、(11)は排
気弁、(12)は上蓋、(13)は負極端子、(14)
は正極端子である。
(10) is a negative electrode strap, (11) is an exhaust valve, (12) is an upper lid, (13) is a negative electrode terminal, (14)
Is a positive electrode terminal.

【0016】[0016]

【実施例】次に本発明になるゲル状電解液をそなえたシ
ール形鉛蓄電池の充放電サイクル寿命性能を、従来のゲ
ル式シール形およびリテーナマット式のそれと比較して
示す。
EXAMPLE Next, the charge / discharge cycle life performance of the sealed lead acid battery provided with the gel electrolyte according to the present invention will be shown in comparison with that of the conventional gel type sealed type and retainer mat type.

【0017】極板群の内容は、厚み3.0mmの正極板6
枚と厚み2.1mmの負極板7枚とからなる、5時間率放
電容量が約20アンペアー・アワー(Ah)の単セル構成
で、正・負極板間、すなわちセパレータ部の厚みは2.
2mmとし、これらの値はすべての供試蓄電池で同一とし
た。
The electrode plate group consists of a positive electrode plate 6 having a thickness of 3.0 mm.
A single cell structure consisting of one sheet and seven sheets of negative electrode plates having a thickness of 2.1 mm and a 5-hour rate discharge capacity of about 20 ampere hour (Ah), and the thickness between the positive and negative electrode plates, that is, the separator portion is 2.
It was set to 2 mm and these values were the same for all the test storage batteries.

【0018】また、正・負極板はタンク化成とした。こ
れはリン酸を含む希硫酸中では、正極板の化成時におけ
る電流効率が低くなるためである。尚、正・負極板の格
子にはPb−Ca−Sn−Al合金を用いた。さらにシート状
多孔板としては、最大孔径が25μm、平均孔径は約1
0μmの親水性ポリエチレン繊維を主体とする従来から
セパレータとして用いられているもののなかから、シリ
カ量が少なくて約5質量%であり、かつ厚みが0.2mm
の薄いものを選んで主に用いた。マット状体としては直
径が19μmのガラス長繊維を主体とする乾式法による
マットを、多孔薄層には直径が12μmのガラス長繊維
を主体とする湿式法によるマットをそれぞれ用いた。マ
ット状体は、シート状多孔板の厚みと多孔薄層の有無に
応じて、その厚みを調整して変え、電解液を含まない組
立時の圧迫度を30kg/dm2以上に、ゲル状電解液を含浸
させた状態で10kg/dm以上に保った。実施例および
比較例の各供試蓄電池におけるセパレータ構成およびゲ
ル組成は表1に記載の通りである。実施例はNo1〜N
o.9、比較例はNo.10〜No.14である。
The positive and negative electrode plates were formed by tank formation. This is because in dilute sulfuric acid containing phosphoric acid, the current efficiency during formation of the positive electrode plate becomes low. A Pb-Ca-Sn-Al alloy was used for the grid of the positive and negative electrodes. Further, as a sheet-like perforated plate, the maximum pore size is 25 μm, and the average pore size is about 1
Among the conventional separators mainly composed of 0 μm hydrophilic polyethylene fiber, the amount of silica is small, about 5% by mass, and the thickness is 0.2 mm.
I chose a thin one and used it mainly. As the mat-like body, a mat by a dry method mainly containing long glass fibers with a diameter of 19 μm was used, and as a thin porous layer, a mat by a wet method mainly containing long glass fibers with a diameter of 12 μm was used. The thickness of the mat-like body is adjusted by changing the thickness according to the thickness of the sheet-like perforated plate and the presence or absence of the thin porous layer, and the degree of pressure when assembling without electrolyte is 30 kg / dm 2 or more. The liquid was impregnated and kept at 10 kg / dm 2 or more. The constitution of the separator and the gel composition in each of the test storage batteries of Examples and Comparative Examples are as shown in Table 1. Examples are No1 to N
o. 9, the comparative example is No. 10-No. It is 14.

【0019】従来例の供試蓄電池No.A〜Cはゲル式
で、セパレータ部分の構成としては、Aは直径1.5mm
の孔を有する厚み1.6mmの波形穿孔板の両面に厚み
0.3mmの合成樹脂繊維による不織布を貼り付けたも
の、Bは高さ1.5mmのリブを片面に0.2mmのリブを他
面に有する、基板の厚みが0.5mmで平均孔径1.0μm
未満の微孔性多孔板で1.5mmのリブを正極板に向けた
もの、Cは平均直径0.7μmのガラス繊維からなるリ
テーナマットからなるものである。又、従来例の供試蓄
電池No.Dはリテーマット式で、平均直径1μm以下
のガラス短繊維からなるリテーナマットを用いたもの
で、それぞれ試験した。尚、電解液にはすべて希硫酸に
硫酸ナトリウムを1.0質量%溶解させた。
The conventional storage battery No. A to C are gel type, and the separator part has a diameter of 1.5 mm.
A corrugated perforated plate with a thickness of 1.6 mm and a non-woven fabric made of synthetic resin fiber with a thickness of 0.3 mm attached to both sides. B has a rib with a height of 1.5 mm and a rib with a thickness of 0.2 mm on one side. The thickness of the substrate on the surface is 0.5 mm and the average pore size is 1.0 μm.
Is a microporous plate with a rib of 1.5 mm facing the positive electrode plate, and C is a retainer mat made of glass fiber having an average diameter of 0.7 μm. In addition, the conventional storage battery No. D is a re-themed type, and a retainer mat made of short glass fibers having an average diameter of 1 μm or less was used, and each was tested. In the electrolytic solution, 1.0% by mass of sodium sulfate was dissolved in dilute sulfuric acid.

【0020】蓄電池の充放電サイクル条件は、放電は2
0Aで0.5h、充電は2.0Aで5.5hとし、雰囲
気温度は室温とした。蓄電池性能は20A放電で終止電
圧を1.50V/セルとしたときの容量を求めて確認
し、蓄電池の寿命は放電容量が初期の値の60%となっ
たサイクル数で評価した。尚、蓄電池は横置きとし、極
板が水平になるように設置した。
The charging / discharging cycle condition of the storage battery is that discharging is 2
The charging time was 0.5 h at 0 A, the charging time was 5.5 h at 2.0 A, and the ambient temperature was room temperature. The storage battery performance was confirmed by obtaining the capacity when the final voltage was 1.50 V / cell at 20 A discharge, and the life of the storage battery was evaluated by the number of cycles at which the discharge capacity was 60% of the initial value. The storage battery was placed horizontally and the electrode plate was placed horizontally.

【0021】[0021]

【表1】 [Table 1]

【0022】供試蓄電池の構成・内容と初期容量および
充放電サイクル寿命の比較試験の結果を表1にまとめて
示す。
Table 1 shows the results of the comparison test of the constitution and contents of the test storage battery, the initial capacity and the charge / discharge cycle life.

【0023】従来形のゲル状電解液を用いた蓄電池Aお
よびBでは、極板への圧迫が不充分で、正極板の劣化と
極板間隔の低下によって短寿命であった。表面積の大き
なリテーナマットをセパレータに用いるとともに電解液
をゲル状としたCでは、極板の間隔は保持できたが、リ
テーナマットとゲルを構成するためのシリカ微粒子とが
重複しており、そのため硫酸量が少なくなって初期性能
が劣るとともに、寿命性能も悪かった。また表面積の小
さなガラスマットを正極板に当接させて強く圧迫した構
成としても、シート状多孔板の厚みが0.7mm(比較例
No.10)のように大きなものでは、その部分の多孔
度が低くて電気抵抗が大きくなるとともに、酸素ガスの
移動が妨げられて、初期容量と寿命性能のいずれも悪く
なった。
In the storage batteries A and B using the conventional gel electrolyte, the pressure on the electrode plate was insufficient, and the service life was short due to deterioration of the positive electrode plate and reduction of the electrode plate spacing. In C where the retainer mat having a large surface area was used as the separator and the electrolytic solution was in the form of gel, the gap between the electrode plates could be maintained, but the retainer mat and the silica fine particles for forming the gel overlap, and therefore sulfuric acid is used. The amount was small and the initial performance was poor, and the life performance was poor. Even if a glass mat having a small surface area is brought into contact with the positive electrode plate and strongly pressed, if the thickness of the sheet-shaped perforated plate is as large as 0.7 mm (Comparative Example No. 10), the porosity of that portion is increased. , The electric resistance was increased, the movement of oxygen gas was hindered, and both the initial capacity and the life performance were deteriorated.

【0024】ゲル状電解液に添加するリン酸量の影響を
見ると0.75〜3.0質量%のとき(実施例No.4〜
No.7)に著しく長寿命であり、初期性能も優れてい
た。リン酸量が0.4質量%のとき(比較例No.1
2)に短寿命である。理由はわからないが、5.0質量
%のように多量に添加した電池(比較例No.13)で
は、鉛の溶解・折出によって、ゲルに生じている亀裂に
そって微小な短絡が観察された。またゲルを構成するシ
リカ量の影響をみると初期容量はシリカ量が多いものほ
ど小さくなり、特に約10質量%を超えて多くしたもの
(比較例No.14)では、著しく低下した。
The effect of the amount of phosphoric acid added to the gel electrolyte was 0.75 to 3.0% by mass (Example No. 4 to
No. In 7), the life was remarkably long and the initial performance was excellent. When the amount of phosphoric acid is 0.4% by mass (Comparative Example No. 1
2) It has a short life. Although the reason is unknown, in the battery (Comparative Example No. 13) in which a large amount such as 5.0% by mass was added, a minute short circuit was observed along with the crack generated in the gel due to the dissolution / protrusion of lead. It was Looking at the influence of the amount of silica constituting the gel, the initial capacity became smaller as the amount of silica increased, and remarkably decreased especially in the case of more than about 10% by mass (Comparative Example No. 14).

【0025】寿命性能はシリカ量が5〜8質量%の範囲
(実施例No.1〜No.8)では、多いほど長寿命で
あったが、13.0質量%の蓄電池(比較例No.1
4)では、むしろ劣っていた。尚、本発明になるゲル状
電解液をそなえた蓄電池では、シリカ微粒子の量を5.
0質量%のように少なくしても、セパレータを構成する
シート状多孔板に含まれるシリカ粉末の量が少なくて、
しかもマット状体の繊維直径が太くその表面積が小さい
ので、シリカ微粒子はセパレータに沈着して固定される
量が少なく、充分に良好なゲル状を呈していた。
Regarding the life performance, the larger the amount of silica in the range of 5 to 8 mass% (Examples No. 1 to No. 8), the longer the life was, but the storage battery of 13.0 mass% (Comparative example No. 8). 1
In 4), it was rather inferior. Incidentally, in the storage battery provided with the gel electrolyte according to the present invention, the amount of silica fine particles was 5.
Even if the amount is reduced to 0% by mass, the amount of silica powder contained in the sheet-like porous plate constituting the separator is small,
Moreover, since the fiber diameter of the mat-like body is large and its surface area is small, the amount of silica fine particles deposited and fixed on the separator is small, and a sufficiently good gel state is exhibited.

【0026】なお、シート状多孔板に含まれるシリカ粉
末の量が15質量%を超えて多量の場合には、ゲル状電
解液のシリカ微粒子を5.0重量%としたときにゲル状
態が柔らかく不良となったので、蓄電池での実験は行わ
なかった。
When the amount of silica powder contained in the sheet-like porous plate is more than 15% by mass, the gel state becomes soft when the silica fine particles in the gel electrolyte are 5.0% by weight. Since it became defective, the experiment with the storage battery was not conducted.

【0027】[0027]

【発明の効果】本発明はゲル式蓄電池において、セパレ
ータ構成および添加剤を含めたゲル内容を改良すること
により、初期性能を低下させることなく、その寿命性能
を著しく改良したものである。
INDUSTRIAL APPLICABILITY The present invention is to improve the life performance of a gel type storage battery by improving the gel content including the separator structure and additives without lowering the initial performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 要部縦断面図である。FIG. 1 is a vertical cross-sectional view of a main part.

【符号の説明】[Explanation of symbols]

1 ・・・負極板 1′・・・負極板耳 2 ・・・セパレータ 3 ・・・マット状体 4 ・・・シート状多孔板 5 ・・・多孔薄層 6 ・・・正極板 6′・・・正極板耳 7 ・・・電槽 8・・・ゲル状電解液 9・・・ブロック状多孔体 10・・・負極ストラップ 11・・・排気弁 12・・・上蓋 13・・・負極端子 14・・・正極端子 1 ... Negative electrode plate 1 '... negative electrode plate ear 2 ... Separator 3 ・ ・ ・ Mat-like body 4 ... Sheet-shaped perforated plate 5 ... Porous thin layer 6 ... Positive electrode plate 6 '... Positive electrode plate ear 7 ... Battery case 8 ... Gel electrolyte 9 ... Block-shaped porous body 10 ... Negative electrode strap 11 ... Exhaust valve 12 ... Top lid 13 ... Negative electrode terminal 14 ... Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/10 H01M 10/10 G 10/12 10/12 K Fターム(参考) 5H021 AA06 BB02 BB11 CC02 CC03 CC04 CC05 CC09 EE02 EE22 EE23 EE28 EE33 HH01 HH03 HH06 HH10 5H028 AA01 AA05 AA06 CC02 CC05 CC08 CC24 EE02 EE05 EE08 FF02 FF09 FF10 HH02 HH05─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 10/10 H01M 10/10 G 10/12 10/12 K F term (reference) 5H021 AA06 BB02 BB11 CC02 CC03 CC04 CC05 CC09 EE02 EE22 EE23 EE28 EE33 HH01 HH03 HH06 HH10 5H028 AA01 AA05 AA06 CC02 CC05 CC08 CC24 EE02 EE05 EE08 FF02 FF09 FF10 HH02 HH05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直径10μm以上25μm以下のガラス長
繊維または合成樹脂繊維を主体とする厚み0.5mm以上
のマット状体と最大孔径50μm以下でかつ平均孔径2
μm以上であるとともに含有シリカ量が15質量%以下
である厚み0.5mm未満のシート状多孔板を互いに当接
させるかまたは一体化させてセパレータとし、少量の可
溶性硫酸塩と、0.75質量%以上4.0質量%以下の望
ましくは1.0質量%以上3.0質量%以下のリン酸と、
10質量%未満の望ましくは5.0質量%以上8.0質量
%以下のシリカ微粒子とを含む希硫酸とからなるゲル状
電解液を、少なくとも該セパレータの空孔内および極板
群周囲のセル内空間の大部分に配するものであって、該
極板群は、正極板と負極板をセパレータを介して交互に
積層してなり、その正極板はセパレータのマット状体に
圧接していることを特徴とするゲル状電解液をそなえた
シール形鉛蓄電池。
1. A mat-like body having a diameter of 10 μm or more and 25 μm or less and mainly composed of long glass fibers or synthetic resin fibers and having a thickness of 0.5 mm or more, and a maximum pore diameter of 50 μm or less and an average pore diameter of 2
A sheet-like porous plate having a thickness of less than 0.5 mm and a silica content of 15% by mass or less and a thickness of less than 0.5 mm is brought into contact with or integrated with each other to form a separator, and a small amount of soluble sulfate and 0.75% by mass. % Or more and 4.0% by mass or less, preferably 1.0% by mass or more and 3.0% by mass or less, and
A gel electrolyte consisting of dilute sulfuric acid containing less than 10% by mass, preferably 5.0% by mass or more and 8.0% by mass or less of silica fine particles, and a cell at least in the pores of the separator and around the electrode plate group. The electrode plate group is disposed in most of the inner space, and the electrode plate group is formed by alternately stacking positive electrode plates and negative electrode plates with separators interposed therebetween, and the positive electrode plates are in pressure contact with the mat-shaped body of the separator. A sealed lead-acid battery with a gel electrolyte characterized by the following.
【請求項2】 セパレータのシート状多孔板の、マット
状体が当接していない他面に、直径10μm以上25μm
以下のガラス長繊維または合成樹脂樹脂を主体とする厚
み0.5mm未満の多孔薄層を配置・当接させるかまたは
一体化させたことを特徴とする請求項1に記載のゲル状
電解液をそなえたシール形鉛蓄電池
2. A diameter of 10 μm or more and 25 μm on the other surface of the sheet-like porous plate of the separator on which the mat-like body is not in contact.
The gel electrolyte according to claim 1, wherein the following porous thin layers mainly made of long glass fibers or synthetic resin and having a thickness of less than 0.5 mm are arranged, brought into contact with or integrated with each other. Sealed lead acid battery provided
【請求項3】 セパレータのシート状多孔板の、マット
状体が当接していない他面に、高さ0.5mm未満の小突
起群あるいはリブ群をに一体に形成したことを特徴とす
る請求項1に記載のゲル状電解液をそなえたシール形鉛
蓄電池。
3. A small projection group or rib group having a height of less than 0.5 mm is integrally formed on the other surface of the sheet-shaped porous plate of the separator not contacting the mat-shaped body. A sealed lead-acid battery provided with the gel electrolyte according to Item 1.
JP2001220885A 2001-07-23 2001-07-23 Sealed lead storage battery having gel electrolyte Pending JP2003036831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220885A JP2003036831A (en) 2001-07-23 2001-07-23 Sealed lead storage battery having gel electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220885A JP2003036831A (en) 2001-07-23 2001-07-23 Sealed lead storage battery having gel electrolyte

Publications (1)

Publication Number Publication Date
JP2003036831A true JP2003036831A (en) 2003-02-07

Family

ID=19054641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220885A Pending JP2003036831A (en) 2001-07-23 2001-07-23 Sealed lead storage battery having gel electrolyte

Country Status (1)

Country Link
JP (1) JP2003036831A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088774A1 (en) * 2003-03-31 2004-10-14 Nippon Sheet Glass Company, Limited Storage battery-use separator and storage battery
JP2006185743A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it
JP2011507191A (en) * 2007-12-11 2011-03-03 ピー エイチ グラットフェルター カンパニー Battery separator structure
JP2013084362A (en) * 2011-10-06 2013-05-09 Gs Yuasa Corp Lead battery
EP2706606A1 (en) * 2011-05-02 2014-03-12 GS Yuasa International Ltd. Valve regulated lead-acid battery
JP2016192406A (en) * 2016-05-12 2016-11-10 株式会社Gsユアサ Lead storage battery
JPWO2017170977A1 (en) * 2016-03-31 2019-02-07 日本板硝子株式会社 Liquid lead-acid battery separator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it
WO2004088774A1 (en) * 2003-03-31 2004-10-14 Nippon Sheet Glass Company, Limited Storage battery-use separator and storage battery
JPWO2004088774A1 (en) * 2003-03-31 2006-07-06 日本板硝子株式会社 Storage battery separator and storage battery
CN100359719C (en) * 2003-03-31 2008-01-02 日本板硝子株式会社 Storage battery-use separator and storage battery
JP4864457B2 (en) * 2003-03-31 2012-02-01 日本板硝子株式会社 Storage battery separator and storage battery
JP2006185743A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2011507191A (en) * 2007-12-11 2011-03-03 ピー エイチ グラットフェルター カンパニー Battery separator structure
EP2706606A1 (en) * 2011-05-02 2014-03-12 GS Yuasa International Ltd. Valve regulated lead-acid battery
EP2706606A4 (en) * 2011-05-02 2014-10-22 Gs Yuasa Int Ltd Valve regulated lead-acid battery
JP6032498B2 (en) * 2011-05-02 2016-11-30 株式会社Gsユアサ Control valve type lead acid battery
JP2017004963A (en) * 2011-05-02 2017-01-05 株式会社Gsユアサ Control valve type lead-acid storage battery
US9548485B2 (en) 2011-05-02 2017-01-17 Gs Yuasa International Ltd. Valve regulated lead-acid battery
JP2013084362A (en) * 2011-10-06 2013-05-09 Gs Yuasa Corp Lead battery
JPWO2017170977A1 (en) * 2016-03-31 2019-02-07 日本板硝子株式会社 Liquid lead-acid battery separator
JP7248425B2 (en) 2016-03-31 2023-03-29 エンテックアジア株式会社 Separator for flooded lead-acid battery
JP2016192406A (en) * 2016-05-12 2016-11-10 株式会社Gsユアサ Lead storage battery

Similar Documents

Publication Publication Date Title
US5128218A (en) Sealed lead-acid battery
KR101951453B1 (en) Battery, battery plate assembly, and method of assembly
JP4364460B2 (en) Negative electrode for lead acid battery
WO2005124920A1 (en) Lead storage battery
JP5138391B2 (en) Control valve type lead acid battery
EP3352285B1 (en) Lead storage battery
JP2003036831A (en) Sealed lead storage battery having gel electrolyte
JP3952483B2 (en) Sealed lead acid battery
JP2003077445A (en) Lead acid storage battery
JP6525167B2 (en) Lead storage battery
CA2496281A1 (en) Separator, battery with separator and method for producing a separator
JP3388265B2 (en) Lead-acid battery separator
JPH06251759A (en) Separator for lead-acid battery
JPH08329975A (en) Sealed lead-acid battery
JP2022546565A (en) Improved lead-acid battery separators incorporating carbon and improved batteries, systems, vehicles and related methods
JP2005100794A (en) Sealed type lead-acid battery
JP3511858B2 (en) Lead storage battery
JP2573082B2 (en) Sealed lead-acid battery
JPH0677449B2 (en) Lead acid battery
JP2005044675A (en) Sealed type lead-acid storage battery
JPH0251872A (en) Sealed lead-acid battery
JP3567969B2 (en) Sealed lead-acid battery
JP3118718B2 (en) Sealed lead-acid battery
JPH1032018A (en) Sealed type lead-acid battery
JPH07326380A (en) Sealed lead-acid battery