JP2005044675A - Sealed type lead-acid storage battery - Google Patents

Sealed type lead-acid storage battery Download PDF

Info

Publication number
JP2005044675A
JP2005044675A JP2003278662A JP2003278662A JP2005044675A JP 2005044675 A JP2005044675 A JP 2005044675A JP 2003278662 A JP2003278662 A JP 2003278662A JP 2003278662 A JP2003278662 A JP 2003278662A JP 2005044675 A JP2005044675 A JP 2005044675A
Authority
JP
Japan
Prior art keywords
electrode plate
separator
felt
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003278662A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003278662A priority Critical patent/JP2005044675A/en
Publication of JP2005044675A publication Critical patent/JP2005044675A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed type lead-acid storage battery in which life prolongation can be achieved, in which sulfation which occurs at a negative electrode plate surface is suppressed, and in which a low temperature rapid discharge characteristic is maintained for a long time, by preventing the generation of a short circuit due to the growth of dendrite possessed by the sealed type lead-acid storage battery. <P>SOLUTION: In the sealed type lead-acid storage battery having a group of electrode plates in which the negative electrode plate, a separator, and a positive electrode plate are laminated, the separator is the laminated type separator which has such a structure that a porous synthetic resin film is pinched from both sides by a felt state separator of which the main component is glass fiber, in which a space volume of the felt state separator contacted with the positive electrode plate of the laminated type separator is smaller than that of the felt state separator contacted with the negative electrode plate, and in which the space volume of the positive electrode plate is larger than that of the negative electrode plate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐短絡性に優れ、且つ長期間にわたり低温急放電特性を維持する密閉形鉛蓄電池に関する。   The present invention relates to a sealed lead-acid battery that has excellent short-circuit resistance and maintains low-temperature rapid discharge characteristics over a long period of time.

近年、メンテナンスが不要で長寿命な密閉形鉛蓄電池は、自動車などの車載用途においてはHEV(42Vシステム)の主電源、補機、そしてバックアップ電源などへの適用が期待されている。又、産業用途においてはIT関連のサイクルユース、スタンバイユース等の分野で需要が高まっている。   In recent years, sealed lead-acid batteries that do not require maintenance and have a long service life are expected to be applied to HEV (42V system) main power supplies, auxiliary equipment, backup power supplies, and the like in in-vehicle applications such as automobiles. In industrial applications, demand is increasing in the fields of IT-related cycle use and standby use.

このような密閉形鉛蓄電池は、ガラス繊維を主成分とするフェルト状セパレータに電解液を染み込ませ、それを負極板および正極板と組み合わせた極板群を構成し、密閉容器に封入した構造となっている。そして、前記フェルト状セパレータは電解液との濡れ性及び電解液の保持力の点から、直径数ミクロンのガラス繊維を厚み約1〜数mmのマット状に加工したものが使用されている。   Such a sealed lead-acid battery has a structure in which an electrolytic solution is impregnated into a felt-like separator mainly composed of glass fiber, and an electrode plate group is formed by combining it with a negative electrode plate and a positive electrode plate, and sealed in a sealed container. It has become. The felt separator is made of a glass fiber having a diameter of several microns processed into a mat having a thickness of about 1 to several mm from the viewpoint of wettability with the electrolyte and retention of the electrolyte.

しかしながら、前記フェルト状セパレータを用いた密閉形鉛蓄電池は、第1に、鉛の析出によるデンドライトが負極板に発生し、そのデンドライトが成長することにより前記フェルト状セパレータを貫通してしまい、負極板と正極板を短絡する現象が生じて密閉形鉛蓄電池の寿命を短くする問題が起こっている。第2に、密閉形鉛蓄電池の放電容量は電解液中の硫酸イオンの拡散性に大きく依存しているが、密閉形鉛蓄電池では電解液がセパレータに保液されているために、硫酸イオンが移動し難く、放電後半では硫酸イオンが枯渇状態となり放電電圧が低下する問題が起こっている。   However, in the sealed lead-acid battery using the felt separator, first, dendrite due to lead deposition is generated in the negative electrode plate, and the dendrite grows and penetrates the felt separator. As a result, there is a problem of short-circuiting the positive electrode plate and shortening the life of the sealed lead-acid battery. Secondly, the discharge capacity of the sealed lead-acid battery depends largely on the diffusibility of sulfate ions in the electrolyte. However, in the sealed lead-acid battery, the electrolyte is retained in the separator, so It is difficult to move, and in the latter half of the discharge, sulfate ions are depleted and the discharge voltage is reduced.

この第1の問題に対しては、セパレータの構造を改善した特許文献1のような密閉形鉛蓄電池が提案されている。そのセパレータは、中央にポリエチレン樹脂またはポリプロピレン樹脂製の微孔性フィルムを配し、その両側に電解液を保液するセパレータを配する3層構造となっている。そして、負極板に接する側のセパレータの保液量が正極側のセパレータのものより多くなるような構造をしている。   For this first problem, a sealed lead-acid battery as in Patent Document 1 with an improved separator structure has been proposed. The separator has a three-layer structure in which a microporous film made of polyethylene resin or polypropylene resin is disposed at the center, and separators for retaining the electrolyte solution are disposed on both sides thereof. And the liquid retention amount of the separator in contact with the negative electrode plate is larger than that of the separator on the positive electrode side.

第2の問題に対しては、特許文献2の密閉形鉛蓄電池が提案されている。その密閉形鉛蓄電池では、正極板および負極板に保持する電解液の割合を、負極板より正極板における保持量を多くすることにより問題の解決をはかっている。   For the second problem, a sealed lead-acid battery of Patent Document 2 has been proposed. In the sealed lead-acid battery, the problem is solved by increasing the amount of electrolyte held in the positive electrode plate and the negative electrode plate by holding the positive electrode plate more than the negative electrode plate.

特開2001−68086号公報JP 2001-68086 A 特開平11−339843号公報JP 11-339843 A

しかしながら、前記従来技術による改良にもかかわらず、(1)デンドライトの成長による浸透短絡の発生、(2)充電中の正極に発生する酸素ガスがセパレータ中を移動して負極板表面で還元される再結合反応による負極板表面層に生じるサルフェーションの進行、などの密閉形鉛蓄電池における本質的な問題の更なる解決が望まれている。   However, despite the improvement by the prior art, (1) Osmotic short circuit due to dendrite growth, (2) Oxygen gas generated in the positive electrode during charging moves in the separator and is reduced on the negative electrode plate surface. Further solutions to essential problems in sealed lead-acid batteries such as the progress of sulfation that occurs in the surface layer of the negative electrode plate due to the recombination reaction are desired.

前記2つの問題の発生には相互関係が認められる。即ち、充電の際に正極板表面に発生する酸素ガスがセパレータ内部を移動する過程において、その圧力によりセパレータ内のガラス繊維の分布に粗密を発生させ、電解液の分布にも影響し偏りを生じさせる。このことにより電流密度の局部的増加が分極を促し、負極板表面層にサルフェーションを起こす。その結果、低温での急速充放電特性の著しい劣化を招いている。更に、この電流密度の局部的な偏りは、デンドライトの生成を助長して短絡の発生を誘引する結果ともなる。   The occurrence of the two problems is reciprocal. That is, in the process in which oxygen gas generated on the surface of the positive electrode plate during charging moves inside the separator, the pressure causes the distribution of glass fibers in the separator to become dense, which also affects the distribution of the electrolyte and creates a bias. Let As a result, a local increase in current density promotes polarization and causes sulfation in the surface layer of the negative electrode plate. As a result, the rapid charge / discharge characteristics at a low temperature are significantly deteriorated. In addition, this local bias in current density also encourages the formation of dendrites and induces the occurrence of short circuits.

本発明はこのような問題に鑑みなされたもので、デンドライトの成長による短絡を防いで長寿命をはかり、長期にわたり低温急放電特性を維持する密閉形鉛蓄電池を提供することである。   The present invention has been made in view of such problems, and it is an object of the present invention to provide a sealed lead-acid battery that prevents short-circuiting due to dendrite growth, extends its life, and maintains low-temperature rapid discharge characteristics over a long period of time.

請求項1記載の発明は、負極板、セパレータ、および正極板を積層した極板群を有する密閉形鉛蓄電池において、前記セパレータが、芯に多孔性の合成樹脂膜を配し、その両側からガラス繊維を主成分とするフェルト状セパレータで挟み込んで積層構造とする積層型のセパレータであって、前記積層型のセパレータの正極板と接するフェルト状セパレータの空間体積が、負極板と接するフェルト状セパレータの空間体積より小さく、且つ前記正極板の空間体積が前記負極板の空間体積より大きいことを特徴とした密閉形鉛蓄電池である。   According to the first aspect of the present invention, in the sealed lead-acid battery having an electrode plate group in which a negative electrode plate, a separator, and a positive electrode plate are laminated, the separator has a porous synthetic resin film on the core, and glass is formed from both sides thereof. A laminated separator having a laminated structure sandwiched between felt-like separators mainly composed of fibers, wherein the spatial volume of the felt-like separator in contact with the positive electrode plate of the laminated separator is such that the felt-like separator in contact with the negative electrode plate It is a sealed lead-acid battery characterized in that it is smaller than the space volume and the space volume of the positive electrode plate is larger than the space volume of the negative electrode plate.

請求項2記載の発明は、多孔性の合成樹脂膜をその両側から挟み込んでいるフェルト状セパレータが、多孔性の合成樹脂膜の少なくとも片側に2枚以上配されていることを特徴とする請求項1記載の密閉形鉛蓄電池である。   The invention according to claim 2 is characterized in that two or more felt separators sandwiching a porous synthetic resin film from both sides are arranged on at least one side of the porous synthetic resin film. The sealed lead-acid battery according to 1.

請求項3記載の発明は、前記フェルト状セパレータが、熱融着性合成繊維を含むことを特徴とする請求項1および請求項2記載の密閉形鉛蓄電池である。   The invention according to claim 3 is the sealed lead-acid battery according to claim 1 or 2, wherein the felt-like separator includes a heat-fusible synthetic fiber.

請求項4記載の発明は、前記多孔性の合成樹脂膜が、ポリエチレンまたはポリプロピレンからなり、且つ孔径が0.1μm以下、膜厚が0.03〜0.5mmであることを特徴とする請求項1乃至3のいずれかに記載の密閉形鉛蓄電池である。   The invention according to claim 4 is characterized in that the porous synthetic resin film is made of polyethylene or polypropylene, has a pore diameter of 0.1 μm or less, and a film thickness of 0.03 to 0.5 mm. The sealed lead-acid battery according to any one of 1 to 3.

本発明によれば、密閉形鉛蓄電池にとって致命的な短絡現象を抑制し、長期にわたって低温急放電性能を維持するもので、自動車等の輸送分野やITなどの産業分野で使用する密閉形鉛蓄電池を大きく改善する。依って、工業上顕著な効果を奏するものである。   According to the present invention, a short-circuit phenomenon that is fatal to a sealed lead-acid battery is suppressed, and low-temperature rapid discharge performance is maintained for a long period of time. The sealed lead-acid battery used in the transport field of automobiles and the industrial field such as IT Greatly improve. Therefore, there is an industrially remarkable effect.

本発明では多孔性の合成樹脂膜をその両側からガラス繊維を主体とするフェルト状セパレータで挟み込んだ積層構造の積層型のセパレータを用い、この積層型のセパレータの正極板と接するフェルト状セパレータの空間体積を負極板に接するフェルト状セパレータの空間体積より小さくし、且つ正極板の空間体積を負極板の空間体積より大きくした極板群構成を備えることにより前記問題の解決をはかるものである。   In the present invention, a laminated separator having a laminated structure in which a porous synthetic resin film is sandwiched between felt separators mainly composed of glass fibers from both sides thereof is used, and the space of the felt separator in contact with the positive electrode plate of the laminated separator is used. The above problem is solved by providing an electrode plate group configuration in which the volume is made smaller than the space volume of the felt-shaped separator in contact with the negative electrode plate and the space volume of the positive electrode plate is made larger than the space volume of the negative electrode plate.

即ち、フェルト状セパレータで多孔性の合成樹脂膜を挟み込むことで、正極板で発生する酸素ガスの透過量が制限されることでガラス繊維の偏りが防がれ、よって電流密度の偏在が抑制される。   In other words, sandwiching a porous synthetic resin film with a felt-like separator limits the permeation amount of oxygen gas generated in the positive electrode plate, thereby preventing the glass fiber from being biased and thus suppressing the uneven distribution of current density. The

更に、本発明に係る積層型のセパレータにおける正極板と接するフェルト状セパレータの空間体積を負極板に接するフェルト状セパレータの空間体積より小さくし、且つ正極板の空間体積を負極板の空間体積より大きくするのは、効率よく充放電を行うために電解液を分配するものである。即ち、正極板は放電の際、その表面が生成される硫酸鉛に覆われ、正極板の外部にある電解液を利用できないために、正極板内に電解液を多く保持する必要がある。負極板ではそのようなことはなく外側の電解液を利用して放電する。したがって、負極板側のフェルト状セパレータには多くの電解液を保持する必要があるためである。   Furthermore, the spatial volume of the felt separator in contact with the positive electrode plate in the multilayer separator according to the present invention is smaller than the spatial volume of the felt separator in contact with the negative electrode plate, and the spatial volume of the positive electrode plate is larger than the spatial volume of the negative electrode plate. In order to charge and discharge efficiently, the electrolyte solution is distributed. That is, since the surface of the positive electrode plate is covered with lead sulfate that is generated during discharge and the electrolyte solution outside the positive electrode plate cannot be used, it is necessary to hold a large amount of electrolyte solution in the positive electrode plate. This is not the case with the negative electrode plate, and discharge is performed using the outer electrolyte. Therefore, it is necessary to hold a lot of electrolyte in the felt separator on the negative electrode plate side.

多孔性の合成樹脂膜は、微細な孔により鉛のデンドライトの成長を妨げて短絡の発生を抑える効果を示すもので、平均孔径0.1μm以下の場合が特に好ましく、平均孔径が0.1μmを超えるとその効果が低下してしまう。また、その膜厚が薄いとデンドライトの成長を抑えることができず、厚すぎると放電性能を損なってしまうために限定するもので、0.03〜0.5mmの厚みが良い。その材質は、ポリエチレンや親水性化したポリプロピレンなどを用いる。なお、多孔性の合成樹脂膜が設けられることにより極板表面の凸凹や活物質の破片などの突き刺しに起因する短絡を抑制する効果も大きい。   The porous synthetic resin film shows the effect of preventing the occurrence of short circuits by preventing the growth of lead dendrite by fine pores, and the average pore size is particularly preferably 0.1 μm or less, and the average pore size is 0.1 μm. When it exceeds, the effect will fall. Moreover, if the film thickness is thin, the growth of dendrites cannot be suppressed, and if it is too thick, the discharge performance is impaired, so a thickness of 0.03 to 0.5 mm is good. As the material, polyethylene, hydrophilic polypropylene, or the like is used. Note that the provision of the porous synthetic resin film has a great effect of suppressing a short circuit caused by punctures such as irregularities on the surface of the electrode plate and fragments of the active material.

多孔性の合成樹脂膜を挟み込むフェルト状セパレータは、通常片側1枚ずつの2枚で構成するが、少なくとも何れか一方の片側に2枚以上のフェルト状セパレータを重ねて配して構成しても良く、特にデンドライトが発生する負極板側にフェルト状セパレータを2枚以上重ねることにより、デンドライトの発生と成長をより抑えることができより効果的である。更に、フェルト状セパレータに熱融着性の合成繊維を含むと、フェルト状セパレートと多孔性の合成樹脂膜を積層した状態で熱融着し、前記効果をよりあげることが出来ると共に製造工程中におけるハンドリング性を向上できる。   A felt-type separator sandwiching a porous synthetic resin film is usually composed of two sheets of one sheet on each side, but may be configured by stacking two or more felt-shaped separators on at least one side. In particular, by stacking two or more felt separators on the side of the negative electrode plate where dendrites are generated, the generation and growth of dendrites can be further suppressed, which is more effective. Further, when the felt-like separator contains heat-fusible synthetic fibers, the felt-like separator and the porous synthetic resin film are heat-sealed in a laminated state, and the above-mentioned effects can be further enhanced and the manufacturing process can be performed. Handleability can be improved.

以下に、実施例を用いて本発明を詳細に説明する。
化成処理済みの密閉形鉛蓄電池用の正極板、負極板、および表1の本発明例No.1〜No.10および比較例No.11〜No.14に示す積層型のセパレータを組み合わせて極板群を構成し、5時間容量率が6Ahの12V密閉形鉛蓄電池を作製した。
なお、正極板と負極板の空間体積はそれぞれ表1に記載のものを用いた。
Hereinafter, the present invention will be described in detail with reference to examples.
A positive electrode plate and a negative electrode plate for a sealed lead-acid battery that has been subjected to chemical conversion treatment; 1-No. 10 and Comparative Example No. 11-No. An electrode plate group was constructed by combining the laminated separators shown in FIG. 14, and a 12-V sealed lead-acid battery having a 5-hour capacity ratio of 6 Ah was produced.
In addition, the space volume of a positive electrode plate and a negative electrode plate used the thing of Table 1, respectively.

極板群は、厚み2.0mmの正極板を4枚と厚み1.3mmの負極板を5枚を、正極板に接する側のフェルト状セパレータAと多孔性の合成樹脂膜Bと負極板に接する側のフェルト状セパレータCを該多孔性の合成樹脂膜Bを中央に位置させその両側面をフェルト状セパレータA、Cで挟み込んで積層構造とした積層型のセパレータを120℃、20kPaの条件で熱融着して作製した積層型セパレータで正極板をおしめ状に挟み、これに負極板を重ね合わせることで交互に積層して作製した。作製した極板群は、圧迫度が40〜60kPa、その時の積層されたセパレータのフェルト状セパレータA、Bの厚さ合計が約0.7mmとなるようにスペーサーで調整して電槽内に挿入した。なお、本発明例のNo.8では、負極板に接する側のフェルト状セパレータは同一のものを2枚重ねにした。   The electrode plate group consists of four 2.0 mm-thick positive plates and five 1.3 mm-thick negative plates on the felt separator A, porous synthetic resin film B, and negative electrode plate in contact with the positive electrode plate. A laminated separator C having a laminated structure in which the felt-like separator C on the side in contact is positioned at the center of the porous synthetic resin film B and sandwiched between the felt-like separators A and C at a temperature of 120 ° C. and 20 kPa. A positive electrode plate was sandwiched in a diaper shape by a laminated separator produced by heat fusion, and a negative electrode plate was superimposed on the positive electrode plate to produce an alternating laminate. The produced electrode plate group is adjusted with a spacer so that the compression degree is 40-60 kPa and the total thickness of the felt separators A and B of the stacked separators is about 0.7 mm. did. In addition, No. of the present invention example. In No. 8, the same felt-shaped separator on the side in contact with the negative electrode plate was overlapped.

フェルト状セパレータは、ガラス繊維を主成分とし20質量%のポリエチレン繊維を熱融着繊維として含んでいる。なお、表1の本発明例のNo.6で用いたフェルト状セパレータは熱融着繊維を含まないものなので熱融着せずに用いた。
多孔性の合成樹脂膜は、ポリエチレン製のものを用いた。
The felt separator includes glass fiber as a main component and 20% by mass of polyethylene fiber as a heat-sealing fiber. In Table 1, No. of the present invention example. The felt-like separator used in No. 6 does not contain heat-sealing fibers, so it was used without heat-sealing.
The porous synthetic resin film was made of polyethylene.

極板群を挿入した電槽に熱融着により蓋を取り付けて密閉形鉛蓄電池を組み立てた。これらの密閉形鉛蓄電池に比重1.30の希硫酸を50cm注入し、初回充電と5時間率の容量試験を行い、5時間容量率がおよそ6Ahであることを確認した。 A sealed lead-acid battery was assembled by attaching a lid to the battery case into which the electrode plate group had been inserted by heat sealing. These sealed lead-acid batteries were injected with 50 cm 3 of dilute sulfuric acid having a specific gravity of 1.30, subjected to initial charge and a 5-hour rate capacity test, and confirmed that the 5-hour capacity rate was about 6 Ah.

作製した密閉形鉛蓄電池を供試材とし、低温急放電特性と耐短絡性を測定した。その結果を表2に記す。   The produced sealed lead-acid battery was used as a test material, and the low temperature rapid discharge characteristics and short circuit resistance were measured. The results are shown in Table 2.

低温急放電特性は、完全充電した供試材を−30℃に16時間保持後、−30℃で5C相当の電流で放電し、放電10秒後の電圧を測定した。その後に、再び完全充電しJIS D5301に規定されている40℃軽負荷寿命試験を1週間行い、その後再び完全充電した供試材を−30℃に16時間保持後、−30℃で5C相当の電流で放電し、放電10秒後の電圧を測定した。   For the low temperature rapid discharge characteristics, a fully charged specimen was held at −30 ° C. for 16 hours, then discharged at −30 ° C. with a current corresponding to 5 C, and the voltage after 10 seconds of discharge was measured. After that, the battery was fully charged again, and the 40 ° C light load life test specified in JIS D5301 was conducted for one week. After that, the fully charged specimen was held at -30 ° C for 16 hours, and the equivalent of 5C at -30 ° C. The battery was discharged with current, and the voltage after 10 seconds of discharge was measured.

耐短絡性は、表1の本発明例のNo.1〜No.10および比較例のNo.11〜No.14の積層型のセパレータを、正極板と負極板とで挟み込み、50kPaで加圧して作製した試験セルを飽和硫酸鉛水溶液に浸し、電流密度5mA/cmで通電して、電位差が0Vになるまでの時間を測定した。 The short circuit resistance is No. of the present invention example in Table 1. 1-No. 10 and Comparative Example No. 11-No. A test cell prepared by sandwiching 14 laminated separators between a positive electrode plate and a negative electrode plate and pressurizing at 50 kPa is immersed in a saturated lead sulfate aqueous solution and energized at a current density of 5 mA / cm 2 , resulting in a potential difference of 0V. The time until was measured.

Figure 2005044675
Figure 2005044675

Figure 2005044675
Figure 2005044675

表1、表2の本発明例のNo.1〜No.10から明らかなように、積層型のセパレータを規定し、且つ正極板及び負極板の空間体積を規定した本発明に係る密閉形鉛蓄電池は、寿命試験後の低温急放電特性に優れ、且つ耐短絡性も良好である。   Tables 1 and 2 show examples of the present invention. 1-No. As can be seen from FIG. 10, the sealed lead-acid battery according to the present invention in which the laminated separator is defined and the space volume of the positive electrode plate and the negative electrode plate is specified is excellent in low-temperature rapid discharge characteristics after the life test and is resistant to Short circuiting is also good.

対して、フェルト状セパレータのみで構成されたセパレータを用いた比較例のNo.11では、低温急放電特性、耐短絡性共に低下し、特に短時間で短絡が生じている。正極板および負極板に接するフェルト状セパレータの空間体積を同じとした比較例のNo.12では、寿命試験後の低温急放電特性が悪くなり、耐短絡性も劣っている。本発明例のNo.2と同じ構造の積層型のセパレータを使用しているが正極板と負極板の空間体積を同じとした比較例のNo.13及び負極板の空間体積を正極板のそれより大きくした比較例のNo.14では、低温急放電特性が低下している。   On the other hand, No. of the comparative example using the separator comprised only with the felt-like separator. No. 11, both low temperature rapid discharge characteristics and short circuit resistance are reduced, and a short circuit occurs particularly in a short time. Comparative Example No. 1 in which the space volume of the felt separator in contact with the positive electrode plate and the negative electrode plate was the same. In No. 12, the low temperature rapid discharge characteristics after the life test are deteriorated, and the short circuit resistance is also inferior. No. of the example of the present invention. No. 2 of the comparative example in which the laminated separator having the same structure as that of No. 2 is used but the space volume of the positive electrode plate and the negative electrode plate is the same. No. 13 and Comparative Example No. 1 in which the space volume of the negative electrode plate is larger than that of the positive electrode plate. In 14, the low-temperature rapid discharge characteristics are degraded.

Claims (4)

負極板、セパレータ、および正極板を積層した極板群を有する密閉形鉛蓄電池において、前記セパレータが、中央に多孔性の合成樹脂膜を配し、その両側からガラス繊維を主成分とするフェルト状セパレータで挟み込んで積層構造とする積層型のセパレータであって、前記積層型のセパレータの正極板と接するフェルト状セパレータの空間体積が、負極板と接するフェルト状セパレータの空間体積より小さく、且つ前記正極板の空間体積が前記負極板の空間体積より大きいことを特徴とした密閉形鉛蓄電池。 In a sealed lead-acid battery having a negative electrode plate, a separator, and an electrode plate group in which positive electrode plates are laminated, the separator has a felt-like shape in which a porous synthetic resin film is arranged in the center and glass fiber is a main component from both sides. A laminated separator having a laminated structure sandwiched between separators, wherein the spatial volume of the felt separator in contact with the positive electrode plate of the laminated separator is smaller than the spatial volume of the felt separator in contact with the negative electrode plate, and the positive electrode A sealed lead-acid battery, wherein the space volume of the plate is larger than the space volume of the negative electrode plate. 多孔性の合成樹脂膜をその両側から挟み込むフェルト状セパレータが、多孔性の合成樹脂膜の少なくとも片側に2枚以上重ねて配されている事を特徴とする請求項1記載の密閉形鉛蓄電池。 2. The sealed lead-acid battery according to claim 1, wherein two or more felt-like separators sandwiching the porous synthetic resin film from both sides are arranged on at least one side of the porous synthetic resin film. 前記フェルト状セパレータが、熱融着性合成繊維を含むことを特徴とする請求項1および請求項2記載の密閉形鉛蓄電池。 The sealed lead-acid battery according to claim 1 or 2, wherein the felt-like separator includes a heat-fusible synthetic fiber. 前記多孔性の合成樹脂膜が、ポリエチレンまたはポリプロピレンからなり、その孔径が0.1μmm以下、膜厚が0.03〜0.5mmであることを特徴とする請求項1乃至請求項3のいずれかに記載の密閉形鉛蓄電池。 The porous synthetic resin film is made of polyethylene or polypropylene, and has a pore diameter of 0.1 μm or less and a film thickness of 0.03 to 0.5 mm. The sealed lead-acid battery described in 1.
JP2003278662A 2003-07-23 2003-07-23 Sealed type lead-acid storage battery Pending JP2005044675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278662A JP2005044675A (en) 2003-07-23 2003-07-23 Sealed type lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278662A JP2005044675A (en) 2003-07-23 2003-07-23 Sealed type lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2005044675A true JP2005044675A (en) 2005-02-17

Family

ID=34265007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278662A Pending JP2005044675A (en) 2003-07-23 2003-07-23 Sealed type lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2005044675A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021786B2 (en) 2007-03-29 2011-09-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
WO2013054467A1 (en) * 2011-10-14 2013-04-18 株式会社Gsユアサ Valve-regulated lead-acid battery
JP2018018802A (en) * 2016-07-29 2018-02-01 株式会社Gsユアサ Lead-acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021786B2 (en) 2007-03-29 2011-09-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
WO2013054467A1 (en) * 2011-10-14 2013-04-18 株式会社Gsユアサ Valve-regulated lead-acid battery
JPWO2013054467A1 (en) * 2011-10-14 2015-03-30 株式会社Gsユアサ Control valve type lead acid battery
JP2018018802A (en) * 2016-07-29 2018-02-01 株式会社Gsユアサ Lead-acid battery

Similar Documents

Publication Publication Date Title
KR101163053B1 (en) Improved stack-type cell and Bi-cell, electrode assembly for secondary battery utilizing the same and manufacturing method thereof
KR101103499B1 (en) Electrode assembly for battery and manufacturing thereof
TW201711264A (en) Longitudinal constraints for energy storage devices
KR102143558B1 (en) Electrode assembly and the manufacturing method
KR101799570B1 (en) Electrode Assembly Folded in the Bi-Direction and Lithium Secondary Battery Comprising the Same
WO2018155468A1 (en) Electrochemical device
JP6951002B2 (en) Electrolyte for secondary batteries, batteries containing it and flexible batteries
CN111525082B (en) Composite separator, battery and battery pack
JP2021512465A5 (en)
WO2017047054A1 (en) Lead storage battery
JP2003323878A (en) Composite sheet, its manufacturing method, and nonaqueous electrolyte secondary battery using its composite sheet
JP2017188477A (en) Lead storage battery
KR102256438B1 (en) Stack-folding Type Electrode Assembly Comprising Two Kinds of Separators
KR101090684B1 (en) Electrode assembly for battery and manufacturing thereof
JP7037858B2 (en) Active material holding tubes, electrodes and lead-acid batteries
JP2005044675A (en) Sealed type lead-acid storage battery
JP2014530470A (en) A flooded lead acid battery with an electrode having a pasting substrate
JP2003036831A (en) Sealed lead storage battery having gel electrolyte
JP2006134697A (en) Lithium-ion rechargeable battery
JPH11297299A (en) Thin secondary battery
KR20150035079A (en) Battery Cell Having Separation Film of Suppressed Thermal Shrinkage
US20220344670A1 (en) Electrode current collector and secondary battery
WO2023190871A1 (en) Secondary battery
JP2012216460A (en) Nonaqueous electrolyte secondary battery
JP2018142607A (en) Electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208