JP2006134697A - Lithium-ion rechargeable battery - Google Patents

Lithium-ion rechargeable battery Download PDF

Info

Publication number
JP2006134697A
JP2006134697A JP2004321900A JP2004321900A JP2006134697A JP 2006134697 A JP2006134697 A JP 2006134697A JP 2004321900 A JP2004321900 A JP 2004321900A JP 2004321900 A JP2004321900 A JP 2004321900A JP 2006134697 A JP2006134697 A JP 2006134697A
Authority
JP
Japan
Prior art keywords
electrode
type
active material
current collector
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004321900A
Other languages
Japanese (ja)
Inventor
Masayoshi Ri
公良 李
Hideki Uematsu
秀樹 上松
Shigetaka Kasuya
成孝 糟谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004321900A priority Critical patent/JP2006134697A/en
Publication of JP2006134697A publication Critical patent/JP2006134697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion rechargeable battery capable of reducing its thickness without impairing an electric capacity. <P>SOLUTION: In a lithium-ion rechargeable battery 1, sheet-like negative electrodes 10, 10 and positive electrodes 7', 7 are laminated in order, and the first type positive electrode 7' is sandwitched by the a pair of the negative electrodes 10, 10 with a separator 3 in between respective adjoining electrodes, and a pair of the second type positive electrodes 7, 7 are disposed on the other side of the first type positive electrode 7' across the negative electrodes 10, 10 respectively. The battery 1 is provided with a cell 20 which is symmetric upward/downward in the thickness direction with a symmetry plane of an only-one current collector 5' the first type positive electrode 7', and comprises one or more repetition of the cell 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池に関する。特に、シート状の正極および負極を順番に積み重ねた方式のセルを最小の単位構造として有するリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery. In particular, the present invention relates to a lithium ion secondary battery having, as a minimum unit structure, a cell in which sheet-like positive electrodes and negative electrodes are sequentially stacked.

今日、移動体通信機器や携帯型コンピュータなど、様々な電子機器の電源として、リチウムイオン二次電池が広く普及している。リチウムイオン二次電池は、小型軽量でありながら大きい電気エネルギーが得られること、充放電サイクル特性に優れること、急速充電可能なこと等の利点を有する。   Today, lithium ion secondary batteries are widely used as power sources for various electronic devices such as mobile communication devices and portable computers. Lithium ion secondary batteries have advantages such as being able to obtain large electric energy while being small and light, having excellent charge / discharge cycle characteristics, and being capable of rapid charging.

最も単純なリチウムイオン二次電池のセルは、たとえば特許文献1に開示されているように、一層の正極と、一層の負極と、それらを互いに絶縁するセパレータとからなる。また、電子の授受を行なう集電体に金属メッシュを使用すれば、図4(a)に示すセル80も実現できる。セル80は、正極81、負極83およびセパレータ85で構成されている。正極81(または負極83)は、電気化学反応を起こす正極活物質層81a(負極活物質層83a)と、正極活物質層81aとの間で電子の授受を行なう正極集電体81c(負極集電体83c)とを備える。   The simplest lithium ion secondary battery cell comprises, for example, a single positive electrode, a single negative electrode, and a separator that insulates them from each other as disclosed in Patent Document 1. If a metal mesh is used as a current collector for exchanging electrons, the cell 80 shown in FIG. 4A can be realized. The cell 80 includes a positive electrode 81, a negative electrode 83, and a separator 85. The positive electrode 81 (or the negative electrode 83) includes a positive electrode current collector 81c (negative electrode collector) that transfers electrons between the positive electrode active material layer 81a (negative electrode active material layer 83a) that causes an electrochemical reaction and the positive electrode active material layer 81a. Electric body 83c).

ところで、リチウムイオン二次電池を設計する上で、必要とされる電気容量を如何にして確保するかという技術課題がある。電気容量を増やすためには、単純に活物質のモル量を増やせばよいとも考えられる。しかしながら、活物質のモル量の増加は、その活物質を含む活物質層の厚さ増を意味する。活物質層の厚さが大きくなり過ぎると、正極、負極間の見かけの電流密度が大きくなり、大電流での充放電効率の低下といった問題が生じる。そのため、図4(a)に示す単一のセルでは、大きい電気容量を確保しづらい。   By the way, when designing a lithium ion secondary battery, there is a technical problem of how to secure a required electric capacity. In order to increase the electric capacity, it is considered that the molar amount of the active material may be simply increased. However, an increase in the molar amount of the active material means an increase in the thickness of the active material layer containing the active material. When the thickness of the active material layer becomes too large, the apparent current density between the positive electrode and the negative electrode becomes large, which causes a problem that the charge / discharge efficiency is reduced at a large current. Therefore, it is difficult to secure a large electric capacity in the single cell shown in FIG.

上述した問題を回避しつつ電気容量を稼ぐための一つの解決案として、渦巻き式のセルがある。渦巻き式のセルは、電極面積を簡単に大きくでき生産性にも優れる反面、形状の制約があること、薄型化を実現しづらいこと等の不利もある。   One solution for avoiding the above-described problems while increasing electric capacity is a spiral cell. While the spiral cell can easily increase the electrode area and is excellent in productivity, it has disadvantages such as a limitation in shape and difficulty in realizing a reduction in thickness.

電気容量を稼ぐための他の解決案として、図4(b)に示すごとく、図4(a)に示したセル80を複数積み重ねる構造がある。ただし、単純にセル80を積み重ねただけでは、正極81と負極83が短絡してしまう。そのため、図4(b)に示すように、絶縁層87を介在させる必要がある。この絶縁層87は、発電そのものには寄与しないので、エネルギー密度を低下させる。セパレータ85と同一の材料で絶縁層87を構成する考えもあるが、そのようにすると、中央の正極81と負極83との間でリチウムイオンの吸蔵・放出を行なう可能性がある。その場合、両サイドの電極に、大電流での充放電効率の低下といった問題を招くことが予想される。   As another solution for increasing electric capacity, there is a structure in which a plurality of cells 80 shown in FIG. 4A are stacked as shown in FIG. 4B. However, if the cells 80 are simply stacked, the positive electrode 81 and the negative electrode 83 are short-circuited. Therefore, it is necessary to interpose an insulating layer 87 as shown in FIG. Since this insulating layer 87 does not contribute to the power generation itself, the energy density is reduced. Although there is an idea that the insulating layer 87 is made of the same material as that of the separator 85, there is a possibility that lithium ions are occluded / released between the central positive electrode 81 and the negative electrode 83. In that case, it is expected that the both-side electrodes will cause a problem such as a decrease in charge / discharge efficiency at a large current.

そこで、一般に採用されているのが、図5に示す構造のセル、いわゆるバイセル90である。バイセル90は、特許文献2にも開示されているように、中央の負極93(負極活物質層93aと負極集電体93cを含む)を両サイドの正極91,91(正極活物質層91aと正極集電体91cを含む)で挟んだ構造を有する。バイセル90を積み重ねることで、積層数に応じた電気容量を得ることができる。また、隣り合うバイセル間を絶縁する必要もなく、正極と負極との間の容量バランスもバイセル単位で考慮すれば済む。
特開2002−260739号公報 特開2000−311718号公報
Therefore, a cell having a structure shown in FIG. 5, that is, a so-called bicell 90 is generally employed. As disclosed in Patent Document 2, the bicell 90 includes a central negative electrode 93 (including a negative electrode active material layer 93a and a negative electrode current collector 93c) as positive electrodes 91 and 91 (positive electrode active material layer 91a) on both sides. And a positive electrode current collector 91c). By stacking the bicells 90, an electric capacity corresponding to the number of layers can be obtained. Further, it is not necessary to insulate adjacent bicelles, and the capacity balance between the positive electrode and the negative electrode can be considered in units of bicelles.
JP 2002-260739 A JP 2000-311718 A

ところで、昨今は、リチウムイオン二次電池の薄型化、高容量化および低コスト化に対する要請が、より強くなってきている。そこで、本発明は、電気容量を犠牲にすることなく厚さを減じることが可能であるとともに、低コスト化を図ることが可能な構造を持ったリチウムイオン二次電池を提供することを課題とする。   By the way, recently, demands for thinning, high capacity, and low cost of lithium ion secondary batteries have become stronger. Accordingly, an object of the present invention is to provide a lithium ion secondary battery having a structure capable of reducing the thickness without sacrificing the electric capacity and reducing the cost. To do.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明は、極性が互いに異なる第一電極と第二電極との間でリチウムイオンの吸蔵・放出を行なうことによって充放電可能であり、シート状の第一電極および第二電極を順番に積み重ねた形態を有するリチウムイオン二次電池であって、第二電極が、セパレータを介して1組の第一電極の間に配置された第一類第二電極と、第一電極を挟んで第一類第二電極とは反対側に配置された1組の第二類第二電極とからなり、第一類第二電極が持つ唯一の集電体を対称面として厚さ方向の上下に対称である単位構造を備え、その単位構造の一または繰り返しによって構成されていることを主要な特徴とする。   In order to solve the above-mentioned problems, the present invention can charge and discharge by inserting and extracting lithium ions between a first electrode and a second electrode having different polarities. A lithium ion secondary battery having a form in which two electrodes are stacked in order, wherein the second electrode is a first type second electrode disposed between a pair of first electrodes via a separator, It consists of a pair of second-type second electrodes arranged on the opposite side of the first-type second electrode across the electrode, and has a thickness with the only current collector of the first-type second electrode as the symmetry plane The main feature is that it has a unit structure that is symmetrical in the vertical direction and is constituted by one or a repetition of the unit structure.

他の一つの視点において、本発明は、極性が互いに異なる第一電極と第二電極との間でリチウムイオンの吸蔵・放出を行なうことによって充放電可能であり、シート状の第一電極および第二電極を順番に積み重ねた形態を有するリチウムイオン二次電池であって、第二電極は、電気容量が互いに相違する第一類第二電極と、第二類第二電極とで構成され、第一類第二電極集電体と、第一類第二電極集電体の両面に配置された第一類第二電極活物質層とを含む第一類第二電極が、1組の第一電極の間に配置され、第二類第二電極集電体と、第二類第二電極集電体の両面に配置された第二類第二電極活物質層とを含む第二類第二電極が、第一電極を挟んで第一類第二電極とは反対側に配置され、第一類第二電極と第一電極、ならびに第二類第二電極と第一電極とがセパレータによって隔離されてなり、第一類第二電極を構成する集電体を対称面として、厚さ方向の上下に対称である単位構造を備え、その単位構造の一または繰り返しによって構成されていることを主要な特徴とする。   In another aspect, the present invention is capable of charging / discharging by inserting and extracting lithium ions between a first electrode and a second electrode having different polarities from each other. A lithium ion secondary battery having a configuration in which two electrodes are stacked in order, wherein the second electrode is composed of a first type second electrode and a second type second electrode having different electric capacities, A first type second electrode including a first type second electrode current collector and a first type second electrode active material layer disposed on both surfaces of the first type second electrode current collector is a set of first A second type second electrode second electrode current collector disposed between the electrodes and including a second type second electrode current collector and a second type second electrode active material layer disposed on both surfaces of the second type second electrode current collector The electrode is disposed on the opposite side of the first type second electrode across the first electrode, the first type second electrode and the first electrode, and the second type second electrode. And the first electrode are separated by a separator, and the current collector constituting the first and second electrodes is used as a symmetry plane, and has a unit structure that is symmetrical vertically in the thickness direction. The main feature is that it is configured by repetition.

具体的には、第一電極を負極、第二電極を正極とすることができる。   Specifically, the first electrode can be a negative electrode and the second electrode can be a positive electrode.

電池の薄型化と高容量化を両立させるには、エネルギー密度の向上が不可欠である。本発明にかかるリチウムイオン二次電池の単位構造(図1参照)は、図5に示す従来のバイセルを2つ積み重ねた構造に相当する。図5から分かるように、2つのバイセル90,90を積み重ねると、積み重ね体の中央部は、正極91,91で構成されることになる。正極91,91は、各々独立して正極集電体91cを備えている。他方、本発明にかかるリチウムイオン二次電池の単位構造では、単位構造の中央部が正極(第二電極)で構成されることには変わりないが、中央の正極集電体が上下対称面を含むように単位構造を構成することができる。すなわち、1組のバイセル90,90の積み重ね体よりも、集電体を1枚分減じることができる。発電に直接寄与しない集電体を減じることにより、エネルギー密度が大きくなる。また、部品点数が減少するので、部品コストを削減できる。また、リチウムイオン二次電池を組立てる際に、同一極性の集電体のタブ(電力取出部)を溶接等で一つに束ねる工程を行なう必要があるが、集電体の使用枚数が減ると、その工程が容易化するという利点もある。また、バイセル90を用いてリチウムイオン二次電池を製造する場合に比べ、セル同士を重ねる工程が半減する。   Improvement of energy density is indispensable for achieving both thinning and high capacity of the battery. The unit structure (see FIG. 1) of the lithium ion secondary battery according to the present invention corresponds to a structure in which two conventional bicells shown in FIG. 5 are stacked. As can be seen from FIG. 5, when the two bicells 90 and 90 are stacked, the central portion of the stacked body is constituted by the positive electrodes 91 and 91. The positive electrodes 91 and 91 each independently include a positive electrode current collector 91c. On the other hand, in the unit structure of the lithium ion secondary battery according to the present invention, the central part of the unit structure is constituted by the positive electrode (second electrode), but the central positive electrode current collector has a vertically symmetrical surface. The unit structure can be configured to include. That is, the current collector can be reduced by one sheet as compared with the stacked body of the pair of bicells 90 and 90. By reducing the current collector that does not directly contribute to power generation, the energy density is increased. Further, since the number of parts is reduced, the parts cost can be reduced. In addition, when assembling a lithium ion secondary battery, it is necessary to perform a process of bundling the current collector tabs (power extraction parts) of the same polarity together by welding or the like, but if the number of current collectors used decreases There is also an advantage that the process is facilitated. Moreover, the process of stacking cells is halved compared to the case of manufacturing a lithium ion secondary battery using the bicell 90.

正極集電体の使用枚数を減らすことにより、電池の特性に影響が及ぶ懸念もある。しかし、後述する実験結果からも明らかなように、それは杞憂である。たとえば、リチウムイオン二次電池の充放電は、正極と負極との間のリチウムイオンの拡散に律速される。つまり、単純に大電流放電を考えた場合には、電極(正極および負極)が薄いこと、具体的にはリチウムイオンの移動距離が短いことが望ましい。この点を本発明に当てはめてみると、確かに集電体の使用枚数は減るが、活物質層自体が厚くなるわけではない。そのため、本発明のリチウムイオン二次電池と、従来品とを比較したとき、電池の特性に相違が無いと考えられる。集電体の邪魔が無くなってリチウムイオンの拡散面積が大きくなり、むしろ大電流放電に有利である。   There is also a concern that the battery characteristics may be affected by reducing the number of positive electrode current collectors used. However, as is clear from the experimental results described later, it is a melancholy. For example, charge / discharge of a lithium ion secondary battery is limited by diffusion of lithium ions between the positive electrode and the negative electrode. That is, when a large current discharge is simply considered, it is desirable that the electrodes (positive electrode and negative electrode) are thin, specifically, the movement distance of lithium ions is short. If this point is applied to the present invention, the number of current collectors used is certainly reduced, but the active material layer itself is not thickened. Therefore, when the lithium ion secondary battery of the present invention is compared with the conventional product, it is considered that there is no difference in battery characteristics. This obstructs the current collector and increases the diffusion area of lithium ions, which is rather advantageous for large current discharge.

以下、添付の図面を参照しつつ本発明の実施形態について説明する。
図1(a)は、本発明のリチウムイオン二次電池1(以下、単に電池1ともいう)の要部をなすセル20(単位構造)の断面模式図であり、図1(b)は、その電池1の断面模式図である。図1(b)に示すように、電池1は、複数のセル20を積み重ねてなるセルスタック2が、電池容器4の中に密封された構造を有する。セル20は、実際には薄い平板状に設計されるので、セルスタック2および電池1は板状の形をなす。また、セル20の形状は方形状を想定しているが、方形以外の多角形状、円状、楕円状など種々の形状を採用できる。こうした形状の自由度の高さは、積み重ね方式のリチウムイオン二次電池1の有利な特徴の一つである。また、図1では、複数のセル20を用いて電池1を構成しているが、セル20を一つのみ備えたリチウムイオン二次電池も作製できる。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1A is a schematic cross-sectional view of a cell 20 (unit structure) that forms a main part of a lithium ion secondary battery 1 (hereinafter also simply referred to as a battery 1) of the present invention. 2 is a schematic sectional view of the battery 1. FIG. As shown in FIG. 1 (b), the battery 1 has a structure in which a cell stack 2 formed by stacking a plurality of cells 20 is sealed in a battery container 4. Since the cell 20 is actually designed in a thin flat plate shape, the cell stack 2 and the battery 1 have a plate shape. Moreover, although the shape of the cell 20 is assumed to be a square shape, various shapes such as a polygonal shape other than the rectangular shape, a circular shape, and an elliptical shape can be employed. Such a high degree of freedom in shape is one of the advantageous features of the stacked lithium ion secondary battery 1. Further, in FIG. 1, the battery 1 is configured using a plurality of cells 20, but a lithium ion secondary battery including only one cell 20 can also be manufactured.

図1(a)に示すように、セル20は、シート状に成形された複数の正極7’,7と、同じくシート状の複数の負極10,10と、それら正極7’,7と負極10,10とを隔離する複数枚のセパレータ3と順番に積み重ねた形態を有する。正極7’,7および負極10,10におけるリチウムイオンの吸蔵・放出により、電池1の充放電が行なわれる。一つのセル20につき、3層の正極7’,7と、2層の負極10,10と、4枚のセパレータ3が設けられる。   As shown in FIG. 1A, the cell 20 includes a plurality of positive electrodes 7 ′ and 7 formed into a sheet shape, a plurality of negative electrodes 10 and 10 that are also in the form of a sheet, and the positive electrodes 7 ′ and 7 and the negative electrode 10. , 10 and a plurality of separators 3 that are separated from each other. The battery 1 is charged / discharged by occlusion / release of lithium ions in the positive electrodes 7 ′ and 7 and the negative electrodes 10 and 10. For each cell 20, three layers of positive electrodes 7 ', 7, two layers of negative electrodes 10, 10, and four separators 3 are provided.

正極7’,7は、電気容量が互いに相違する、第一類正極7’と、1組の第二類正極7,7とで構成されている。電気容量の相違は、活物質のモル量の相違を意味する。第一類正極7’は、1組の負極10,10の間に配置されている、つまりセル20の中央に位置しており、第二類正極7,7よりも厚く調整されている。第二類正極7,7は、各負極10,10の第一類正極7’が位置する側とは反対側に配置されている、つまりセル20の両端に位置している。正極7,7’,7の厚さ調整により、負極10,10とのバランスを図り、活物質の余剰が生じないようにしている。   The positive electrodes 7 ′ and 7 are composed of a first type positive electrode 7 ′ and a pair of second type positive electrodes 7 and 7 having different electric capacities. The difference in electric capacity means a difference in the molar amount of the active material. The first type positive electrode 7 ′ is disposed between the pair of negative electrodes 10, 10, that is, located in the center of the cell 20, and is adjusted to be thicker than the second type positive electrode 7, 7. The second type positive electrodes 7, 7 are arranged on the opposite side of the negative electrodes 10, 10 from the side where the first type positive electrode 7 ′ is located, that is, are located at both ends of the cell 20. By adjusting the thickness of the positive electrodes 7, 7 ′ and 7, a balance with the negative electrodes 10, 10 is achieved so that no surplus of active material is generated.

第一類正極7’は、第一類正極集電体5’と、その第一類正極集電体5’の両面に配置された第一類正極活物質層6’,6’とを備える。同様に、第二類正極7は、第二類正極集電体5と、その第二類正極集電体5の両面に配置された第二類正極活物質層6,6とを備える。第一類正極活物質層6’の電気容量は、第二類正極活物質層6の電気容量のおよそ2倍に調整されている。電池1の面内方向における面積は、第一類正極活物質層6’と、第二類正極活物質層6とで等しいため、層厚がおよそ2倍と考えてよい。また、第一類正極集電体5’と、第二類正極集電体5は、実際には同一の部品である。また、負極10は、負極集電体8と、その負極集電体8の両面に配置された負極活物質層9,9とを備える。図1(a)から分かるように、セル20は、第一類第二正極集電体5’を対称面として、厚さ方向における上下に対称となっている。   The first type positive electrode 7 ′ includes a first type positive electrode current collector 5 ′ and first type positive electrode active material layers 6 ′ and 6 ′ disposed on both surfaces of the first type positive electrode current collector 5 ′. . Similarly, the second type positive electrode 7 includes a second type positive electrode current collector 5 and second type positive electrode active material layers 6 and 6 disposed on both surfaces of the second type positive electrode current collector 5. The electric capacity of the first type positive electrode active material layer 6 ′ is adjusted to approximately twice the electric capacity of the second type positive electrode active material layer 6. Since the area in the in-plane direction of the battery 1 is the same for the first type positive electrode active material layer 6 ′ and the second type positive electrode active material layer 6, the layer thickness may be considered to be about twice. The first type positive electrode current collector 5 ′ and the second type positive electrode current collector 5 are actually the same parts. The negative electrode 10 includes a negative electrode current collector 8 and negative electrode active material layers 9 and 9 disposed on both surfaces of the negative electrode current collector 8. As can be seen from FIG. 1A, the cell 20 is symmetrical in the vertical direction in the thickness direction with the first-type second positive-electrode current collector 5 'as a symmetry plane.

セル20には、図5のバイセル90の2つ分に相当する電気容量を持たせることができる。その一方で、第一類第二正極7’が、第一類第二正極集電体5’を一枚のみ備える点で、バイセル90を2つ重ね合わせたものとは相違する構造をなす。つまり、同一容量を確保しつつ、集電体の使用枚数を減じることができる。第一類第二正極集電体5’が一枚のみとは、電池1の厚さ方向における実質的な数を指す。たとえば、同一面内に二枚並んでいても、それは実質的に一枚であるとみなす。   The cell 20 can have an electric capacity corresponding to two of the bicell 90 of FIG. On the other hand, the first-type second positive electrode 7 'has a structure different from that obtained by superimposing two bicells 90 in that it includes only one first-type second positive-electrode current collector 5'. That is, it is possible to reduce the number of current collectors used while ensuring the same capacity. The fact that the number of the first-type second positive electrode current collector 5 ′ is only one means a substantial number in the thickness direction of the battery 1. For example, even if two sheets are arranged in the same plane, it is regarded as substantially one sheet.

なお、正極7’,7および負極10の配置は、相互に入れ替わってもよい。すなわち、3層の負極と2層の正極とで、図1(a)に類似する構造のセルを実現することも可能である。しかしながら、正極と負極の配置は、以下の理由で本実施形態(図1(a))のようにするのが好ましい。一般に、アルミニウム製の正極集電体の電子導電性は、Cu製の負極集電体の電子導電性よりも低い。そのため、図1(a)のような3層の正極と2層の負極の構造は、電池全体の電子導電性のバランスがよい。また、通常の正極の厚さは、同じ容量を持つ負極よりも厚いことから、図1(a)のような構造の電池は、活物質層となるべきフィルムの製造工程が容易であるという利点がある。   The arrangement of the positive electrodes 7 ′ and 7 and the negative electrode 10 may be interchanged. That is, a cell having a structure similar to that shown in FIG. 1A can be realized with a three-layer negative electrode and a two-layer positive electrode. However, it is preferable to arrange the positive electrode and the negative electrode as in the present embodiment (FIG. 1A) for the following reason. In general, the electronic conductivity of a positive electrode current collector made of aluminum is lower than the electronic conductivity of a negative electrode current collector made of Cu. Therefore, the structure of the three-layer positive electrode and the two-layer negative electrode as shown in FIG. 1A has a good balance of the electronic conductivity of the entire battery. Further, since the thickness of the normal positive electrode is thicker than that of the negative electrode having the same capacity, the battery having the structure as shown in FIG. 1 (a) has an advantage that the manufacturing process of the film to be the active material layer is easy. There is.

また、他の一つの理由として、リチウムイオン二次電池では、充放電に伴う電極体積の膨張・収縮が、正極よりも負極の方が大であることを挙げられる。図1(a)の配置は、各負極10,10が両端から正極7’,7で保持される構造なっているので、膨張・収縮を繰り返したときの負極活物質層9,9と負極集電体8との密着性を保ちやすい。このことは、優れた充放電サイクル特性を得るために重要である。   Another reason is that in a lithium ion secondary battery, the expansion and contraction of the electrode volume accompanying charge / discharge is larger in the negative electrode than in the positive electrode. 1A has a structure in which the negative electrodes 10 and 10 are held by the positive electrodes 7 ′ and 7 from both ends. Therefore, when the expansion and contraction are repeated, the negative electrode active material layers 9 and 9 and the negative electrode collection are arranged. It is easy to maintain adhesion with the electric body 8. This is important for obtaining excellent charge / discharge cycle characteristics.

また、外側に位置する正極は、正極集電体の両面に配置された第二類正極活物質層同士の厚さ、つまり電気容量を異ならせてもよい。具体的には、図1(c)に示すセル20Kを示せる。セル20Kは、第二類正極集電体5の両面に配置された第二類正極活物質層6S,6Lのうち、セパレータ3に隣接する側の第二類正極活物質層6Lの電気容量が、他方の第二類正極活物質層6Sの電気容量よりも大に調整されている。このセル20Kを、図1(a)のセル20に代えて使用することが可能である。その場合、電池1は、大電流の放電特性が向上する。なお、中央の第一類正極7’の電気容量が、両サイドの第二類正極7,7または第二類正極7K,7Kの合計容量に等しい点は、セル20とセル20Kに共通する。   Moreover, the positive electrode located on the outer side may have different thicknesses, that is, electric capacities, of the second type positive electrode active material layers disposed on both surfaces of the positive electrode current collector. Specifically, the cell 20K shown in FIG. The cell 20K has an electric capacity of the second type positive electrode active material layer 6L on the side adjacent to the separator 3 out of the second type positive electrode active material layers 6S and 6L arranged on both surfaces of the second type positive electrode current collector 5. The electric capacity of the other second type positive electrode active material layer 6S is adjusted to be larger. This cell 20K can be used in place of the cell 20 in FIG. In that case, the battery 1 has improved large-current discharge characteristics. The cell 20 and the cell 20K are common in that the electric capacity of the central first-type positive electrode 7 'is equal to the total capacity of the second-type positive electrodes 7, 7 on both sides or the second-type positive electrodes 7K, 7K.

次に、各部品の具体的な材料等について説明する。正極活物質層6,6’は、正極活物質、導電助剤および高分子基質を含んで構成される。負極活物質層9は、負極活物質、導電助剤および高分子基質を含んで構成される。セパレータ3、正極活物質層6,6’および負極活物質層9は多孔質形態を有し、LiPFなどのリチウム塩を、エチレンカーボネート、プロピレンカーボネートのような有機溶媒に溶解させた非水電解液が含浸されている。つまり、電池1は、リチウムイオンポリマー二次電池として構成されている。 Next, specific materials for each component will be described. The positive electrode active material layers 6 and 6 ′ are configured to include a positive electrode active material, a conductive additive, and a polymer substrate. The negative electrode active material layer 9 includes a negative electrode active material, a conductive additive, and a polymer substrate. The separator 3, the positive electrode active material layers 6, 6 ′ and the negative electrode active material layer 9 have a porous form, and nonaqueous electrolysis in which a lithium salt such as LiPF 6 is dissolved in an organic solvent such as ethylene carbonate or propylene carbonate. The liquid is impregnated. That is, the battery 1 is configured as a lithium ion polymer secondary battery.

正極活物質層6,6’および負極活物質層9の高分子基質としては、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン(HFP)、ポリテトラフルオロエチレン(PTEF)などのフッ素樹脂や、あるいはこれらのフッ素樹脂の共重合体を使用することができる。   Examples of the polymer substrate of the positive electrode active material layers 6 and 6 ′ and the negative electrode active material layer 9 include fluorine resins such as polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), and polytetrafluoroethylene (PTEF), or these A copolymer of fluororesin can be used.

正極活物質層6,6’を構成する正極活物質としては、LiMnO、LiCoO、LiNiOなど、遷移金属あるいは典型金属を含むリチウム複合酸化物を使用できる。負極活物質層9を構成する負極活物質としては、メソフューズカーボン材などの黒鉛系炭素材料が好適である。また、導電助剤(導電性物質)としてはアセチレンブラックなどの導電性カーボンを使用できる。 As the positive electrode active material constituting the positive electrode active material layers 6 and 6 ′, a lithium composite oxide containing a transition metal or a typical metal such as LiMnO 2 , LiCoO 2 , or LiNiO 2 can be used. As the negative electrode active material constituting the negative electrode active material layer 9, a graphite-based carbon material such as a mesofuse carbon material is suitable. In addition, conductive carbon such as acetylene black can be used as the conductive auxiliary agent (conductive substance).

正極集電体5’,5は、AlまたはAl合金からなる箔、あるいは金属メッシュで構成することができる。第二類正極集電体5については、最も外側の正極活物質層6,6にリチウムイオンの吸蔵・放出を行なわせるために、金属メッシュであることが重要である。負極集電体8は、CuまたはCu合金からなる箔、あるいは金属メッシュで構成することができる。中でも、活物質層との密着性保持、活物質層の体積確保、リチウムイオンの拡散性などの観点から、金属メッシュを使用することが好ましい。金属メッシュとしては、エキスパンドメタル、エッチングメタルおよびパンチングメタルのいずれも使用できる。   The positive electrode current collectors 5 'and 5 can be made of a foil made of Al or an Al alloy, or a metal mesh. The second type positive electrode current collector 5 is important to be a metal mesh so that the outermost positive electrode active material layers 6 and 6 can store and release lithium ions. The negative electrode current collector 8 can be composed of a foil made of Cu or a Cu alloy, or a metal mesh. Among these, it is preferable to use a metal mesh from the viewpoints of maintaining adhesion with the active material layer, securing the volume of the active material layer, diffusibility of lithium ions, and the like. As the metal mesh, any of expanded metal, etching metal and punching metal can be used.

セパレータ3は、ポリエチレンやポリプロピレンなどの絶縁性樹脂の微多孔膜で構成することができる。また、正極活物質層6’,6および負極活物質層9に含まれる高分子基質と同様の材料、たとえばPVDFやHFP、あるいはそれらの共重合体により構成することも可能である(SiOなどのフィラーを混入させてもよい)。さらには、ポリエチレンをポリプロピレンで挟んだ複数層構造を持つ微多孔膜、ポリエチレンやポリプロピレンなどの樹脂層と、PVDFやHFP、あるいはそれらの共重合体からなる樹脂層とを有する微多孔膜などを、セパレータ3の素材として使用することもできる。 The separator 3 can be composed of a microporous film of an insulating resin such as polyethylene or polypropylene. It is also possible to use a material similar to the polymer substrate contained in the positive electrode active material layers 6 'and 6 and the negative electrode active material layer 9, such as PVDF, HFP, or a copolymer thereof (SiO 2 or the like). May be mixed). Furthermore, a microporous membrane having a multi-layer structure in which polyethylene is sandwiched between polypropylene, a microporous membrane having a resin layer such as polyethylene or polypropylene, and a resin layer made of PVDF, HFP, or a copolymer thereof, etc. It can also be used as a material for the separator 3.

また、図1(b)に示すように、セルスタック2には、帯状のリード端子12,13の一端が接続されている。リード端子12,13の他端は、電池容器4の融着代11(封口部)を経て外側に延び出ている。具体的には、正極集電体5’,5の電力取出部50が一つに束ねられて正極用のリード端子12の一端が接続されている。負極集電体8の電力取出部80が一つに束ねられて、負極用のリード端子13の一端が接続されている。このようにして、セル20同士が並列に接続される。正極用のリード端子12は、たとえばアルミニウムまたはアルミニウム合金にて構成するとよい。負極用のリード端子13は、銅、銅合金、ニッケル、ニッケル合金、ニッケルメッキを施した銅またはニッケルメッキを施した銅合金にて構成するとよい。   As shown in FIG. 1B, one end of strip-like lead terminals 12 and 13 is connected to the cell stack 2. The other ends of the lead terminals 12 and 13 extend outward through the fusion allowance 11 (sealing portion) of the battery container 4. Specifically, the power extraction portions 50 of the positive electrode current collectors 5 ′ and 5 are bundled together and one end of the positive lead terminal 12 is connected. The power extraction portion 80 of the negative electrode current collector 8 is bundled together, and one end of the negative electrode lead terminal 13 is connected. In this way, the cells 20 are connected in parallel. The positive lead terminal 12 may be made of, for example, aluminum or an aluminum alloy. The lead terminal 13 for the negative electrode is preferably composed of copper, copper alloy, nickel, nickel alloy, nickel-plated copper, or nickel-plated copper alloy.

電池容器4は、アルミニウムなどの金属箔の両面に樹脂層を設けた可撓性を有するシート状の外装材で構成されている。電池容器4の外側に露出する樹脂層としては、たとえばポリエチレンテレフタラートや2軸延伸ナイロンなどが使用され、内側の樹脂層には、ポリエチレンやポリプロピレンなど、熱融着性、電解液に対する耐性および低水蒸気透過性を備えた材料が使用されている。内側の樹脂層を溶融させ、溶融樹脂を接着剤として機能させることにより、封口部11(融着代)が形成されている。   The battery container 4 is composed of a flexible sheet-like exterior material in which resin layers are provided on both surfaces of a metal foil such as aluminum. As the resin layer exposed to the outside of the battery container 4, for example, polyethylene terephthalate or biaxially stretched nylon is used, and for the inner resin layer, polyethylene, polypropylene, or the like is heat-fusible, resistant to electrolytes, and low in resistance. Materials with water vapor permeability are used. By sealing the inner resin layer and allowing the molten resin to function as an adhesive, the sealing portion 11 (fusing allowance) is formed.

実験例Experimental example

まず、下記の手順により本発明のリチウムイオン二次電池(本発明品)と、図5に示したバイセル90を2つ重ね合わせたリチウムイオン二次電池(従来品)を作製した。   First, a lithium ion secondary battery (conventional product) in which the lithium ion secondary battery of the present invention (product of the present invention) and two bicells 90 shown in FIG.

(正極活物質フィルムの作製)
各材料を総質量が100gとなるように下記の質量比で秤量し、正極用混合粉末を調製した。この正極用混合粉末にアセトン100gを加えて30分間混錬して、正極用スラリーを得た。この正極用スラリーをPETフィルム上に塗布および乾燥させて正極活物質フィルムを得た。正極活物質フィルムの厚さは、本発明品用が120μmと60μm、従来品用が60μmとした。
・LiCoO/アセチレンブラック/バインダ(PVDF+HFP)/可塑剤(ジブチルフタレート)=70/5/8/17
(Preparation of positive electrode active material film)
Each material was weighed at the following mass ratio so that the total mass was 100 g, to prepare a positive electrode mixed powder. To this mixed powder for positive electrode, 100 g of acetone was added and kneaded for 30 minutes to obtain a slurry for positive electrode. This positive electrode slurry was applied onto a PET film and dried to obtain a positive electrode active material film. The thickness of the positive electrode active material film was 120 μm and 60 μm for the present product, and 60 μm for the conventional product.
LiCoO 2 / acetylene black / binder (PVDF + HFP) / plasticizer (dibutyl phthalate) = 70/5/8/17

(負極活物質フィルムの作製)
各材料を総質量が100gとなるように下記の質量比で秤量し、負極用混合粉末を調製した。この負極用混合粉末にアセトン100gを加えて30分間混錬して、負極用スラリーを得た。この負極用スラリーをPETフィルム上に塗布および乾燥させ、本発明品と従来品に共通である、厚さ70μmの負極活物質フィルムを得た。
・メソカーボンマイクロビーズ/アセチレンブラック/バインダ(PVDF+HFP)/可塑剤(ジブチルフタレート)=70/2/9/19
(Preparation of negative electrode active material film)
Each material was weighed at the following mass ratio so that the total mass was 100 g to prepare a negative electrode mixed powder. To this mixed powder for negative electrode, 100 g of acetone was added and kneaded for 30 minutes to obtain a slurry for negative electrode. This negative electrode slurry was applied onto a PET film and dried to obtain a negative electrode active material film having a thickness of 70 μm, which is common to the product of the present invention and the conventional product.
Mesocarbon microbead / acetylene black / binder (PVDF + HFP) / plasticizer (dibutyl phthalate) = 70/2/9/19

(電極の作製)
正極集電体5’,5として、厚さ30μm、開口率50%のアルミニウム製パンチングメタルを準備した。負極集電体8として、厚さ30μm、開口率50%の銅製パンチングメタルを準備した。これらの集電体上に、予め作製した活物質フィルムを配置し、カレンダロール装置により熱ラミネートを行なうことにより、電解質を含浸させる前段階の電極を作製した。電極は、本発明品用および従来品用のそれぞれについて作製した。
(Production of electrodes)
An aluminum punching metal having a thickness of 30 μm and an aperture ratio of 50% was prepared as the positive electrode current collectors 5 ′ and 5. A copper punching metal having a thickness of 30 μm and an aperture ratio of 50% was prepared as the negative electrode current collector 8. An active material film prepared in advance was placed on these current collectors, and thermal lamination was performed with a calender roll device, so that an electrode in the previous stage to be impregnated with the electrolyte was produced. Electrodes were produced for the products of the present invention and the conventional products.

(電池の組立)
次に、セパレータとしてポリエチレン製微多孔膜を準備し、正極、負極およびセパレータを熱ラミネートして、図1(a)に示す構造のセルを得た。このセルを試薬1級メチルアルコール中に1時間浸漬して、可塑剤を抽出した後、アルミラミネート包材(厚さ110μm)製の容器に入れ、先に抽出した可塑剤とほぼ同体積の電解液を、露点−55℃のドライボックス内で含浸させた。電解液は、エチルカーボネートとエチルメチルカーボネートとを1:1の体積比で混合した溶媒に、LiPFを1mol/リットルの濃度で加えたものを使用した。そして、ドライボックス内で容器を仮封口して、公称容量38mAhの本発明のリチウムイオン二次電池を得た。なお、リチウムイオン二次電池は、大気中で化成処理を行なった後、さらに1週間エージングを行ない、容器内に発生したガスを真空ポンプでガス抜きするとともに、容器内を減圧した後、最終封口を行なって完成品とした。同様の手順で、図5のバイセル90を2つ重ね合わせた電池も作製した。表1に、本発明にかかる電池(本発明品)と従来の電池(従来品)の寸法およびエネルギー密度を対比して示す。
(Battery assembly)
Next, a polyethylene microporous membrane was prepared as a separator, and a positive electrode, a negative electrode, and a separator were heat-laminated to obtain a cell having a structure shown in FIG. This cell is immersed in the reagent primary methyl alcohol for 1 hour to extract the plasticizer, and then placed in a container made of aluminum laminate packaging material (thickness 110 μm). The liquid was impregnated in a dry box with a dew point of −55 ° C. As the electrolytic solution, a solution obtained by adding LiPF 6 at a concentration of 1 mol / liter to a solvent in which ethyl carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. And the container was temporarily sealed in the dry box, and the lithium ion secondary battery of this invention with a nominal capacity of 38 mAh was obtained. In addition, the lithium ion secondary battery is subjected to chemical conversion treatment in the atmosphere and then subjected to aging for another week, and the gas generated in the container is vented with a vacuum pump, and the inside of the container is decompressed, and then the final sealing To make a finished product. A battery in which two bicells 90 of FIG. Table 1 compares the dimensions and energy density of the battery according to the present invention (the product of the present invention) and the conventional battery (the conventional product).

Figure 2006134697
Figure 2006134697

表1に示すように、同じ公称容量のリチウムイオン二次電池を、従来のバイセルを用いて作製した場合と、本発明の構造を採用した場合とでは、本発明品の方が厚さが小さくなる。もちろん、エネルギー密度も本発明品の方が高い。   As shown in Table 1, when the lithium ion secondary battery having the same nominal capacity is manufactured using a conventional bicelle and when the structure of the present invention is adopted, the product of the present invention has a smaller thickness. Become. Of course, the product of the present invention also has a higher energy density.

(負荷特性試験)
表1に示す本発明品と従来品について、放電負荷特性を調べた。具体的には、4.2V、1CmAの定電流定電圧で充電を行なった後、3Vの定電圧で1C、2Cの放電を行なったときの放電負荷特性を、0.2C放電時の放電容量を100%として調べた。試験は、25℃の一定温度下にて行なった。試験結果を図2に示す。図2(a)が本発明品の結果を示すグラフであり、図2(b)が従来品の結果を示すグラフである。3Vカットオフでの放電効率を、図2(c)にまとめて記す。図2に示す結果から分かるように、本発明品と従来品との間に、放電負荷特性の差異はなかった。
(Load characteristic test)
The discharge load characteristics of the product of the present invention and the conventional product shown in Table 1 were examined. Specifically, after charging at a constant current and a constant voltage of 4.2 V and 1 CmA, and discharging 1 C and 2 C at a constant voltage of 3 V, the discharge load characteristics at the time of 0.2 C discharge Was taken as 100%. The test was performed at a constant temperature of 25 ° C. The test results are shown in FIG. FIG. 2A is a graph showing the result of the product of the present invention, and FIG. 2B is a graph showing the result of the conventional product. The discharge efficiency at the 3V cutoff is collectively shown in FIG. As can be seen from the results shown in FIG. 2, there was no difference in discharge load characteristics between the product of the present invention and the conventional product.

次に、本発明品と従来品の充放電サイクル特性を調べた。具体的には、4.2V、1CmAの定電流定電圧で充電を行なった後、3Vの定電圧で1C放電(3Vカットオフ)を繰り返したときの放電率を、1回目の放電容量を100%として調べた。試験は、25℃の一定温度下にて行なった。試験結果を図3に示す。図3に示す結果から分かるように、本発明品と従来品との間に、充放電サイクル特性の差異はなかった。   Next, the charge / discharge cycle characteristics of the product of the present invention and the conventional product were examined. Specifically, after charging with a constant current and a constant voltage of 4.2 V and 1 CmA, a discharge rate when a 1 C discharge (3 V cut-off) is repeated with a constant voltage of 3 V is set to 100 for the first discharge capacity. Investigated as%. The test was performed at a constant temperature of 25 ° C. The test results are shown in FIG. As can be seen from the results shown in FIG. 3, there was no difference in charge / discharge cycle characteristics between the product of the present invention and the conventional product.

なお、実験例では、モバイル機器、コンピュータ、ICカード等の小型電子機器向けの小容量品を例示したが、自動車用などの大容量のリチウムイオン二次電池に、本発明のリチウムイオン二次電池の構造を好適に採用できることはもちろんである。   In the experimental examples, small-capacity products for small electronic devices such as mobile devices, computers, IC cards, etc. have been exemplified. Of course, this structure can be suitably employed.

以上、本発明によれば、電気容量を犠牲にすることなく集電体の使用枚数を減じ、これにより電池の薄型化を図ることが可能である。また、図1(b)に示すごとく、電池1を組立てる際に、正極集電体5’,5の電力取出部50を一つに束ねる工程も容易化する。集電体の使用枚数を減じることにより、部品コスト減が望める。   As described above, according to the present invention, it is possible to reduce the number of current collectors used without sacrificing electric capacity, thereby reducing the thickness of the battery. Further, as shown in FIG. 1B, when the battery 1 is assembled, the process of bundling the power extraction portions 50 of the positive electrode current collectors 5 ′ and 5 is facilitated. By reducing the number of current collectors used, parts costs can be reduced.

本発明にかかるリチウムイオン二次電池のセル構造の断面模式図。The cross-sectional schematic diagram of the cell structure of the lithium ion secondary battery concerning this invention. 本発明品と従来品の負荷特性のグラフ。The graph of the load characteristic of this invention product and a conventional product. 本発明品と従来品の充放電サイクル特性のグラフ。The graph of the charge / discharge cycle characteristics of the present product and the conventional product. セル構造を単純に積み重ねることができない理由を説明する図。The figure explaining the reason why a cell structure cannot be simply stacked. 従来のリチウムイオン二次電池のセル構造の断面模式図。The cross-sectional schematic diagram of the cell structure of the conventional lithium ion secondary battery.

Claims (6)

極性が互いに異なる第一電極(10)と第二電極(7’,7)との間でリチウムイオンの吸蔵・放出を行なうことによって充放電可能であり、シート状の前記第一電極(10)および前記第二電極(7’,7)を順番に積み重ねた形態を有するリチウムイオン二次電池(1)であって、前記第二電極(7’,7)が、セパレータ(3)を介して1組の前記第一電極(10,10)の間に配置された第一類第二電極(7’)と、前記第一電極(10)を挟んで前記第一類第二電極(7’)とは反対側に配置された1組の第二類第二電極(7,7)とからなり、前記第一類第二電極(7’)が持つ唯一の集電体(5’)を対称面として厚さ方向の上下に対称である単位構造(20)を備え、その単位構造(20)の一または繰り返しによって構成されていることを特徴とするリチウムイオン二次電池(1)。   The sheet-like first electrode (10) can be charged and discharged by inserting and extracting lithium ions between the first electrode (10) and the second electrode (7 ', 7) having different polarities. And a lithium ion secondary battery (1) having a form in which the second electrodes (7 ', 7) are sequentially stacked, wherein the second electrodes (7', 7) are interposed via a separator (3). A first-type second electrode (7 ′) disposed between a pair of the first electrodes (10, 10) and the first-type second electrode (7 ′) with the first electrode (10) interposed therebetween ) And a pair of second-type second electrodes (7, 7) arranged on the opposite side, and the only current collector (5 ') of the first-type second electrode (7') is provided. A unit structure (20) that is symmetrical in the vertical direction in the thickness direction is provided as a symmetry plane, and the unit structure (20) is constituted by one or a repetition Lithium ion secondary battery, characterized by being (1). 極性が互いに異なる第一電極(10)と第二電極(7’,7)との間でリチウムイオンの吸蔵・放出を行なうことによって充放電可能であり、シート状の前記第一電極(10)および前記第二電極(7’,7)を順番に積み重ねた形態を有するリチウムイオン二次電池(1)であって、
前記第二電極(7’,7)は、電気容量が互いに相違する第一類第二電極(7’)と、第二類第二電極(7)とで構成され、
第一類第二電極集電体(5’)と、前記第一類第二電極集電体(5’)の両面に配置された第一類第二電極活物質層(6’,6’)とを含む前記第一類第二電極(7’)が、1組の前記第一電極(10,10)の間に配置され、
第二類第二電極集電体(5)と、前記第二類第二電極集電体(5)の両面に配置された第二類第二電極活物質層(6,6)(6S,6L)とを含む前記第二類第二電極(7)(7K)が、前記第一電極(10)を挟んで前記第一類第二電極(7’)とは反対側に配置され、
前記第一類第二電極(7’)と前記第一電極(10)、ならびに前記第二類第二電極(7)と前記第一電極(10)とがセパレータ(3)によって隔離されてなり、
前記第一類第二電極(7’)を構成する集電体(5’)を対称面として、厚さ方向の上下に対称である単位構造(20)(20K)を備え、
その単位構造(20)(20K)の一または繰り返しによって構成されていることを特徴とするリチウムイオン二次電池(1)。
The sheet-like first electrode (10) can be charged and discharged by inserting and extracting lithium ions between the first electrode (10) and the second electrode (7 ', 7) having different polarities. And a lithium ion secondary battery (1) having a form in which the second electrodes (7 ', 7) are sequentially stacked,
The second electrode (7 ', 7) is composed of a first type second electrode (7') and a second type second electrode (7) having different electric capacities,
First type second electrode current collector (5 ′) and first type second electrode active material layer (6 ′, 6 ′) disposed on both sides of first type second electrode current collector (5 ′) And the first type second electrode (7 ′) including a pair of first electrodes (10, 10),
Second type second electrode current collector (5) and second type second electrode active material layer (6, 6) (6S, 6) disposed on both sides of said second type second electrode current collector (5) 6L) is disposed on the opposite side of the first second electrode (7 ′) across the first electrode (10), the second second electrode (7) (7K) including
The first second electrode (7 ') and the first electrode (10), and the second second electrode (7) and the first electrode (10) are separated by a separator (3). ,
The current collector (5 ′) constituting the first-type second electrode (7 ′) has a symmetrical structure and a unit structure (20) (20K) that is symmetrical vertically in the thickness direction,
A lithium ion secondary battery (1) comprising one or a repetition of the unit structure (20) (20K).
前記第一類第二電極活物質層(6’,6’)の電気容量が、実質的に、前記第二類第二電極活物質層(6,6)(6S,6L)の電気容量の2倍に調整されている請求項2記載のリチウムイオン二次電池(1)。   The capacitance of the first-type second electrode active material layer (6 ′, 6 ′) is substantially equal to the capacitance of the second-type second electrode active material layer (6, 6) (6S, 6L). The lithium ion secondary battery (1) according to claim 2, wherein the lithium ion secondary battery is adjusted to be doubled. 前記第一電極(10)が負極であり、前記第二電極(7’,7)が正極である請求項1ないし請求項3のいずれか1項に記載のリチウムイオン二次電池(1)。   The lithium ion secondary battery (1) according to any one of claims 1 to 3, wherein the first electrode (10) is a negative electrode and the second electrode (7 ', 7) is a positive electrode. 前記第二類第二電極集電体(5)が金属メッシュで構成されている請求項2ないし請求項4のいずれか1項に記載のリチウムイオン二次電池(1)。   The lithium ion secondary battery (1) according to any one of claims 2 to 4, wherein the second type second electrode current collector (5) is formed of a metal mesh. 前記第二類第二電極集電体(5)の両面に配置された前記第二類第二電極活物質層(6S,6L)のうち、前記セパレータ(3)に隣接する側の前記第二類第二電極活物質層(6L)の電気容量が、他方の前記第二類第二電極活物質層(6S)の電気容量よりも大に調整されている請求項5記載のリチウムイオン二次電池(1)。   Of the second type second electrode active material layers (6S, 6L) disposed on both surfaces of the second type second electrode current collector (5), the second side on the side adjacent to the separator (3). The lithium ion secondary according to claim 5, wherein the electric capacity of the second electrode active material layer (6L) is adjusted to be larger than the electric capacity of the other second type second electrode active material layer (6S). Battery (1).
JP2004321900A 2004-11-05 2004-11-05 Lithium-ion rechargeable battery Pending JP2006134697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321900A JP2006134697A (en) 2004-11-05 2004-11-05 Lithium-ion rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321900A JP2006134697A (en) 2004-11-05 2004-11-05 Lithium-ion rechargeable battery

Publications (1)

Publication Number Publication Date
JP2006134697A true JP2006134697A (en) 2006-05-25

Family

ID=36728041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321900A Pending JP2006134697A (en) 2004-11-05 2004-11-05 Lithium-ion rechargeable battery

Country Status (1)

Country Link
JP (1) JP2006134697A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017911A1 (en) 2007-07-17 2009-01-21 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device
JP2010135226A (en) * 2008-12-05 2010-06-17 Aoi Electronics Co Ltd Polymer electrolyte laminated lithium secondary cell with improved output performance, and method for improving output performance
EP2631962A1 (en) * 2011-08-29 2013-08-28 Panasonic Corporation Thin battery
WO2018004893A1 (en) * 2016-07-01 2018-01-04 Intel Corporation Systems, methods and devices for creating a li-metal edge-wise cell
CN114447274A (en) * 2022-02-11 2022-05-06 珠海冠宇电池股份有限公司 Pole piece and battery
CN117276637A (en) * 2023-11-15 2023-12-22 珠海冠宇电池股份有限公司 Battery cell and battery
JP7429722B2 (en) 2022-01-25 2024-02-08 プライムプラネットエナジー&ソリューションズ株式会社 Method for identifying foil position of electricity storage device and method for calculating distance between foils of electricity storage device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017911A1 (en) 2007-07-17 2009-01-21 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device
JP2010135226A (en) * 2008-12-05 2010-06-17 Aoi Electronics Co Ltd Polymer electrolyte laminated lithium secondary cell with improved output performance, and method for improving output performance
EP2631962A1 (en) * 2011-08-29 2013-08-28 Panasonic Corporation Thin battery
EP2631962A4 (en) * 2011-08-29 2015-03-18 Thin battery
WO2018004893A1 (en) * 2016-07-01 2018-01-04 Intel Corporation Systems, methods and devices for creating a li-metal edge-wise cell
US10249908B2 (en) 2016-07-01 2019-04-02 Intel Corporation Systems, methods and devices for creating a Li-metal edge-wise cell
JP7429722B2 (en) 2022-01-25 2024-02-08 プライムプラネットエナジー&ソリューションズ株式会社 Method for identifying foil position of electricity storage device and method for calculating distance between foils of electricity storage device
CN114447274A (en) * 2022-02-11 2022-05-06 珠海冠宇电池股份有限公司 Pole piece and battery
CN114447274B (en) * 2022-02-11 2024-05-28 珠海冠宇电池股份有限公司 Pole piece and battery
CN117276637A (en) * 2023-11-15 2023-12-22 珠海冠宇电池股份有限公司 Battery cell and battery
CN117276637B (en) * 2023-11-15 2024-05-17 珠海冠宇电池股份有限公司 Battery cell and battery

Similar Documents

Publication Publication Date Title
KR101395016B1 (en) A Stepwise Electrode Assembly, and Battery Cell, Battery Pack and Device Comprising the Same
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP5779828B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
KR101575984B1 (en) Electrode assembly having a good bondability of tab, battery cell and device comprising thereof
KR101387424B1 (en) Electrode assembly composed of electrode units with equal widths and different lengths, battery cell and device including the same
KR101379958B1 (en) Lectrode assembly, battery cell, manufacturing mathod of electrode assembly and manufacturing mathod of battery cell
KR20130118716A (en) Electrode assembly, battery cell and device comprising the same
KR101590259B1 (en) Electrode assembly, battery and device comprising the same
KR20130133640A (en) A stepwise electrode assembly having corner of various shape and a battery cell, battery pack and device comprising the same
KR20180106408A (en) Electrode assembly and the manufacturing method
JP2006134697A (en) Lithium-ion rechargeable battery
KR101650860B1 (en) Battery Cell Having Separation Film of Suppressed Thermal Shrinkage
KR101476040B1 (en) Pouch-typed lithium secondary battery comprising a separator coated with a gas-adsorbent, large-sized battery module employed with the same
KR101746628B1 (en) Battery Cell Providing Suppressed Exposure of Electrode and Method for Manufacturing the Same
KR101666433B1 (en) Secondary battery and manufacturing method thereof
KR20190075381A (en) Electrode assembly and rechargeable battery comprising the same