JP2018018802A - Lead-acid battery - Google Patents
Lead-acid battery Download PDFInfo
- Publication number
- JP2018018802A JP2018018802A JP2016150865A JP2016150865A JP2018018802A JP 2018018802 A JP2018018802 A JP 2018018802A JP 2016150865 A JP2016150865 A JP 2016150865A JP 2016150865 A JP2016150865 A JP 2016150865A JP 2018018802 A JP2018018802 A JP 2018018802A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- electrode plate
- lead
- positive electrode
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、鉛蓄電池に関する。 The present invention relates to a lead-acid battery.
鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、正極板と、負極板と、正極板および負極板の間に介在するセパレータと、硫酸を含む電解液とを含む。負極板は、負極集電体と負極電極材料とを備え、正極板は、正極集電体と正極電極材料とを備える。 Lead-acid batteries are used in various applications in addition to in-vehicle and industrial applications. The lead storage battery includes a positive electrode plate, a negative electrode plate, a separator interposed between the positive electrode plate and the negative electrode plate, and an electrolytic solution containing sulfuric acid. The negative electrode plate includes a negative electrode current collector and a negative electrode material, and the positive electrode plate includes a positive electrode current collector and a positive electrode material.
負極電極材料は、酸化還元反応により容量を発現する活物質(海綿状鉛もしくは硫酸鉛)を含んでいる。負極板では、充電時に、硫酸鉛の還元反応が進行するが、硫酸鉛は海綿状鉛に還元されにくい。そのため、硫酸鉛の結晶が次第に成長するサルフェーションが進行する。また、充電時には、極板周辺の電解液の硫酸濃度が高くなり、部分的に高濃度になった硫酸溶液が電池下部に沈降する傾向がある。これらの現象は、鉛蓄電池の寿命性能を低下させるため、以下のように様々な対策が検討されている。 The negative electrode material contains an active material (cavernous lead or lead sulfate) that develops capacity by an oxidation-reduction reaction. In the negative electrode plate, the lead sulfate reduction reaction proceeds during charging, but lead sulfate is difficult to be reduced to spongy lead. Therefore, sulfation in which lead sulfate crystals grow gradually proceeds. Further, at the time of charging, the sulfuric acid concentration in the electrolyte around the electrode plate is high, and the sulfuric acid solution having a partially high concentration tends to settle to the lower part of the battery. Since these phenomena reduce the life performance of lead-acid batteries, various countermeasures have been studied as follows.
特許文献1は、有機防縮剤として、ビスフェノール類縮合物を負極電極材料に含有させることを教示している。 Patent Document 1 teaches that a negative electrode material contains a bisphenol condensate as an organic shrinking agent.
特許文献2は、負極活物質の多孔度を0.22mL/g以上、0.4mL/g以下にすることを提案している。 Patent Document 2 proposes that the porosity of the negative electrode active material be 0.22 mL / g or more and 0.4 mL / g or less.
特許文献3は、負極板にガラスなどの材料の繊維で構成された不織布を当接させることを提案している。 Patent Document 3 proposes that a non-woven fabric made of fibers of a material such as glass is brought into contact with the negative electrode plate.
特許文献4は、密閉型鉛蓄電池において、耐酸性の無機粉体とガラス繊維を主体とする多孔質の電解液保持体の最大孔径を30μm未満とするか、比表面積を5〜80m2/gとすることを提案している。電解液保持体の希硫酸に対する接触角は30〜70度である。 Patent Document 4 discloses that in a sealed lead-acid battery, the maximum pore diameter of a porous electrolyte holder mainly composed of acid-resistant inorganic powder and glass fiber is set to less than 30 μm, or the specific surface area is 5 to 80 m 2 / g. It is proposed that The contact angle of the electrolytic solution holder with respect to dilute sulfuric acid is 30 to 70 degrees.
負極板に添加された有機防縮剤の一部は、電解液に溶出して、正極電極材料を軟化させる傾向がある。正極電極材料が軟化すると、正極板の耐久性が低下し、正極集電体から正極電極材料が脱落しやすくなる。このような正極板の劣化は、鉛蓄電池の寿命性能を低下させる。 Some of the organic shrinking agent added to the negative electrode plate tends to elute into the electrolyte and soften the positive electrode material. When the positive electrode material is softened, the durability of the positive electrode plate is lowered, and the positive electrode material is easily dropped from the positive electrode current collector. Such deterioration of the positive electrode plate decreases the life performance of the lead storage battery.
本発明の一側面は、負極板と、正極板と、前記負極板と前記正極板との間に介在するセパレータと、電解液と、を備え、前記負極板は、負極集電体と、負極電極材料と、を備え、前記負極電極材料は、有機防縮剤を含み、前記負極板と前記セパレータとの間、および前記正極板と前記セパレータとの間に、それぞれ不織布マットが介在している、鉛蓄電池に関する。 One aspect of the present invention includes a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolyte solution. The negative electrode plate includes a negative electrode current collector, a negative electrode, An electrode material, and the negative electrode material contains an organic shrinkage agent, and a nonwoven fabric mat is interposed between the negative electrode plate and the separator and between the positive electrode plate and the separator, It relates to a lead-acid battery.
本発明によれば、正極板の耐久性が向上することで、寿命性能に優れた鉛蓄電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the lead storage battery excellent in lifetime performance can be provided because durability of a positive electrode plate improves.
本発明の一側面に係る鉛蓄電池は、負極板と、正極板と、負極板と正極板との間に介在するセパレータと、電解液とを備える。負極板は、負極集電体と、負極電極材料とを備え、負極電極材料は、有機防縮剤を含む。負極板とセパレータとの間、および、正極板とセパレータとの間には、それぞれ不織布マットが介在している。不織布マットは、正極板および負極板と一体化されず、かつ正極板および負極板にそれぞれ当接された状態で配置されていることが好ましい。
本発明の実施形態としては、制御弁式(密閉式)鉛蓄電池よりも、液式(ベント式)鉛蓄電池が適している。
A lead storage battery according to one aspect of the present invention includes a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolytic solution. The negative electrode plate includes a negative electrode current collector and a negative electrode material, and the negative electrode material includes an organic anti-shrink agent. Nonwoven fabric mats are interposed between the negative electrode plate and the separator and between the positive electrode plate and the separator, respectively. It is preferable that the nonwoven fabric mat is not integrated with the positive electrode plate and the negative electrode plate and is disposed in contact with the positive electrode plate and the negative electrode plate, respectively.
As an embodiment of the present invention, a liquid (vented) lead acid battery is more suitable than a control valve (sealed) lead acid battery.
有機防縮剤は、負極電極材料の比抵抗を減少させるため、鉛蓄電池の低温での高率放電性能の向上、負極板の充電受入性能の向上などが期待できる。 Since the organic shrunk agent reduces the specific resistance of the negative electrode material, it can be expected to improve the high-rate discharge performance of the lead-acid battery at a low temperature and the charge acceptance performance of the negative electrode plate.
有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に1つ以上、好ましくは複数の芳香環を含むとともに、硫黄含有基として硫黄元素を含んでいる。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。 The organic shrunk agent is an organic polymer containing elemental sulfur, and generally contains one or more, preferably a plurality of aromatic rings in the molecule, and elemental sulfur as a sulfur-containing group. Among the sulfur-containing groups, a sulfonic acid group or a sulfonyl group which is a stable form is preferable. The sulfonic acid group may exist in an acid form, or may exist in a salt form such as a Na salt.
有機防縮剤の具体例としては、硫黄含有基を有するとともに1つ以上、好ましくは2つ以上の芳香環を有する化合物のホルムアルデヒドによる縮合物が好ましい。2つ以上の芳香環を有する化合物としては、ビスフェノール類、ビフェニル類、ナフタレン類などを用いることが好ましい。ビスフェノール類、ビフェニル類およびナフタレン類とは、それぞれビスフェノール骨格、ビフェニル骨格およびナフタレン骨格を有する化合物の総称であり、それぞれが置換基を有してもよい。これらは、有機防縮剤中に単独で含まれてもよく、複数種が含まれてもよい。ビスフェノールとしては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。中でも、ビスフェノールSは、ビスフェノール骨格内にスルホニル基(−SO2−)を有するため、硫黄元素の含有量を大きくすることが容易である。 As a specific example of the organic shrinking agent, a condensate of formaldehyde with a compound having a sulfur-containing group and one or more, preferably two or more aromatic rings is preferable. As the compound having two or more aromatic rings, bisphenols, biphenyls, naphthalenes and the like are preferably used. Bisphenols, biphenyls and naphthalenes are generic names for compounds having a bisphenol skeleton, biphenyl skeleton and naphthalene skeleton, respectively, and each may have a substituent. These may be contained alone in the organic shrinking agent, or a plurality of types may be contained. As bisphenol, bisphenol A, bisphenol S, bisphenol F and the like are preferable. Among them, since bisphenol S has a sulfonyl group (—SO 2 —) in the bisphenol skeleton, it is easy to increase the content of elemental sulfur.
ビスフェノール類の縮合物は、常温より高い温度環境を経験しても、低温での性能が損なわれないので、常温より高い温度環境におかれる鉛蓄電池(自動車用の液式の鉛蓄電池など)に適している。ナフタレンスルホン酸の縮合物は、ビスフェノール類の縮合物に比べ、分極が小さくなりにくいので、減液特性が重要な鉛蓄電池に適している。 Even if the condensate of bisphenols experiences a temperature environment higher than normal temperature, its performance at low temperature is not impaired, so it can be used for lead-acid batteries (such as liquid lead-acid batteries for automobiles) placed in a temperature environment higher than normal temperature. Is suitable. The condensate of naphthalene sulfonic acid is less likely to have a smaller polarization than the condensate of bisphenols, and is therefore suitable for a lead storage battery in which liquid reduction characteristics are important.
硫黄含有基は、ビスフェノール類、ビフェニル類、ナフタレン類などの芳香環に直接結合していてもよく、例えば硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。また、アミノベンゼンスルホン酸もしくはアルキルアミノベンゼンスルホン酸のような単環式の化合物を、2つ以上の芳香環を有する化合物とともにホルムアルデヒドで縮合させてもよい。 The sulfur-containing group may be directly bonded to an aromatic ring such as bisphenols, biphenyls, and naphthalenes. For example, the sulfur-containing group may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group. A monocyclic compound such as aminobenzenesulfonic acid or alkylaminobenzenesulfonic acid may be condensed with formaldehyde together with a compound having two or more aromatic rings.
N,N'−(スルホニルジ−4,1−フェニレン)ビス(1,2,3,4−テトラヒドロ−6−メチル−2,4−ジオキソピリミジン−5−スルホンアミド)の縮合物などを有機防縮剤として用いてもよい。 Condensates of N, N ′-(sulfonyldi-4,1-phenylene) bis (1,2,3,4-tetrahydro-6-methyl-2,4-dioxopyrimidine-5-sulfonamide) and the like are organic It may be used as an anti-shrink agent.
負極電極材料中に含まれる有機防縮剤の含有量は、一般的な範囲であれば、有機防縮剤の作用を大きく左右するものではない。負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましく、一方、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.3質量%以下が更に好ましい。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。 If the content of the organic shrunk agent contained in the negative electrode material is within a general range, the action of the organic shrunk agent does not greatly influence. The content of the organic shrinking agent contained in the negative electrode material is, for example, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.05% by mass or more, while 1.0% % By mass or less is preferred, 0.8% by mass or less is more preferred, and 0.3% by mass or less is still more preferred. Here, the content of the organic shrinking agent contained in the negative electrode material is a content in the negative electrode material collected by a method described later from a lead-acid battery in a fully formed state.
負極電極材料の比抵抗を減少させ、電極材料の利用率を高め、低率放電容量を向上させる作用を高める観点からは、有機防縮剤中の硫黄元素の含有量は、2000μmol/g以上が好ましく、3000μmol/g以上がより好ましく、4000μmol/g以上が更に好ましく、6000μmol/g以上が特に好ましい。ただし、有機防縮剤中の硫黄元素の含有量を過度に大きくすることは困難である。有機防縮剤中の硫黄元素の含有量は、10000μmol/g以下であればよく、9000μmol/g以下が好ましく、8000μmol/g以下がより好ましい。なお、有機防縮剤中の硫黄元素の含有量がXμmol/gであるとは、有機防縮剤の1g当たりに含まれる硫黄元素の含有量がXμmolであることをいう。 From the viewpoint of reducing the specific resistance of the negative electrode material, increasing the utilization of the electrode material, and enhancing the effect of improving the low rate discharge capacity, the content of the sulfur element in the organic shrinkage agent is preferably 2000 μmol / g or more. More preferably, it is 3000 μmol / g or more, more preferably 4000 μmol / g or more, and particularly preferably 6000 μmol / g or more. However, it is difficult to excessively increase the content of elemental sulfur in the organic shrinking agent. The content of elemental sulfur in the organic shrinking agent may be 10000 μmol / g or less, preferably 9000 μmol / g or less, and more preferably 8000 μmol / g or less. In addition, the content of the elemental sulfur in the organic shrinking agent being X μmol / g means that the content of the elemental sulfur contained in 1 g of the organic shrinking agent is X μmol.
一方、有機防縮剤の一部は、電解液に溶出して、正極電極材料を軟化させる傾向がある。正極電極材料の軟化による正極集電体からの脱落量は、有機防縮剤中の硫黄元素の含有量が大きいほど増量しやすい。 On the other hand, a part of the organic anti-shrink agent tends to elute into the electrolyte and soften the positive electrode material. The amount of dropping from the positive electrode current collector due to the softening of the positive electrode material is more likely to increase as the content of the elemental sulfur in the organic anti-shrink agent increases.
これに対し、負極板とセパレータとの間、および、正極板とセパレータとの間に、それぞれ不織布マットを介在させる場合、正極電極材料の正極集電体からの脱落が顕著に抑制される。正極電極材料の脱落が抑制される理由の一つは、正極板とセパレータとの間に介在する不織布マットにより、正極電極材料がガス発生の影響を受けにくくなるためであると考えられる。例えば、不織布マットにより、発生したガスが正極電極材料に接触することが物理的に抑制される。これにより、正極電極材料の軟化が抑制される。 On the other hand, when a nonwoven fabric mat is interposed between the negative electrode plate and the separator and between the positive electrode plate and the separator, the falling of the positive electrode material from the positive electrode current collector is remarkably suppressed. One reason why the positive electrode material is prevented from falling off is considered to be that the non-woven mat interposed between the positive electrode plate and the separator makes the positive electrode material less susceptible to gas generation. For example, the nonwoven fabric mat physically suppresses the generated gas from contacting the positive electrode material. Thereby, softening of the positive electrode material is suppressed.
ここで、理由は明らかではないが、正極電極材料の脱落を抑制する効果は、正極板とセパレータとの間だけでなく、負極板とセパレータとの間にも不織布マットを介在させることで顕著に高められる。一方、同様に理由は明らかではないが、負極板とセパレータとの間だけに不織布マットを介在させても、正極電極材料の脱落を抑制する効果は、ほとんど得られない。 Here, although the reason is not clear, the effect of suppressing the loss of the positive electrode material is notable between the positive electrode plate and the separator, but also by interposing the nonwoven fabric mat between the negative electrode plate and the separator. Enhanced. On the other hand, for the same reason, although the reason is not clear, even if a non-woven mat is interposed only between the negative electrode plate and the separator, the effect of suppressing the loss of the positive electrode material is hardly obtained.
負極板とセパレータとの間に介在する不織布マットは、正極電極材料の脱落を抑制する効果を高めるだけでなく、負極板から充電時に生成する硫酸イオンの沈降を抑制し、電解液の成層化を抑制する作用も有すると考えられる。これにより、負極板の下部における充電受入性能が向上し、サルフェーションが抑制される。これらの効果が相乗的に作用することで、鉛蓄電池の寿命性能が顕著に向上するものと考えられる。 The nonwoven fabric mat interposed between the negative electrode plate and the separator not only enhances the effect of suppressing the detachment of the positive electrode material, but also suppresses the precipitation of sulfate ions generated during charging from the negative electrode plate, thereby stratifying the electrolyte. It is also considered to have an inhibitory effect. Thereby, the charge acceptance performance in the lower part of a negative electrode plate improves, and sulfation is suppressed. It is considered that the life performance of the lead storage battery is remarkably improved by the synergistic action of these effects.
寿命性能を向上させる効果は、負極板とセパレータとの間および正極板とセパレータとの間にそれぞれ不織布マットを介在させるとともに、負極電極材料の空隙比率を0.15cm3/g以上、0.22cm3/g以下にすることで、更に高められる。このとき、負極電極材料の密度は、概ね4.0g/cm3〜3.2g/cm3程度である。中でも、有機防縮剤中の硫黄元素の含有量が4000〜8000μmol/g(より好ましくは6000〜8000μmol/g)の場合、寿命性能は顕著に向上する。空隙比率が0.15〜0.22cm3/gの負極電極材料は、比抵抗が低くなることに加え、有機防縮剤の作用によっても負極電極材料の比抵抗が低減されている。よって、寿命性能が向上しやすくなるものと考えられる。 The effect of improving the life performance is that a nonwoven fabric mat is interposed between the negative electrode plate and the separator and between the positive electrode plate and the separator, respectively, and the void ratio of the negative electrode material is 0.15 cm 3 / g or more and 0.22 cm. It can be further increased by setting it to 3 / g or less. In this case, the density of the negative electrode material is approximately 4.0g / cm 3 ~3.2g / cm 3 order. Among these, when the content of the elemental sulfur in the organic shrinking agent is 4000 to 8000 μmol / g (more preferably 6000 to 8000 μmol / g), the life performance is remarkably improved. The negative electrode material having a void ratio of 0.15 to 0.22 cm 3 / g has a lower specific resistance, and the specific resistance of the negative electrode material is also reduced by the action of the organic shrinking agent. Therefore, it is considered that the life performance is easily improved.
一方、負極電極材料の空隙比率を0.22cm3/g以上、0.27cm3/g以下にする場合には、低率放電性能(5時間率での放電持続時間など)が顕著に向上する。このとき、負極電極材料の密度は、概ね3.2g/cm3〜2.5g/cm3程度である。中でも、有機防縮剤中の硫黄元素の含有量が4000〜8000μmol/g(より好ましくは6000〜8000μmol/g)の場合、低率放電性能が特に顕著に向上する。高多孔度の負極電極材料は利用率が高くなるため、低率放電性能が向上することに加え、有機防縮剤の作用により負極電極材料の比抵抗も低くなっている。これにより、低率放電性能が向上しやすくなるものと考えられる。 On the other hand, the void ratio of the negative electrode material 0.22 cm 3 / g or more, in the case of below 0.27 cm 3 / g, the low-rate discharge performance (such as discharge duration at 5 hour rate) is significantly improved . In this case, the density of the negative electrode material is approximately 3.2g / cm 3 ~2.5g / cm 3 order. In particular, when the content of the elemental sulfur in the organic shrinking agent is 4000 to 8000 μmol / g (more preferably 6000 to 8000 μmol / g), the low rate discharge performance is particularly remarkably improved. Since the high-porosity negative electrode material has a high utilization factor, the low-rate discharge performance is improved, and the specific resistance of the negative electrode material is also lowered by the action of the organic shrinking agent. Thereby, it is considered that the low-rate discharge performance is easily improved.
負極電極材料の空隙比率が0.15cm3/g以上、0.27cm3/g以下のとき、体積基準の細孔径分布の中央値は、例えば0.1μm〜10μmであることが好ましい。 Void ratio of the negative electrode material is 0.15 cm 3 / g or more, when following 0.27 cm 3 / g, median pore diameter distribution based on volume is preferably, for example, 0.1 m to 10 m.
以下、本発明の実施形態に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
(負極板)
鉛蓄電池の負極板は、負極集電体と、負極電極材料とを具備する。負極電極材料は、負極集電体に保持されている。負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、エキスパンド加工や打ち抜き(パンチング)が挙げられる。
Hereinafter, although the lead storage battery which concerns on embodiment of this invention is demonstrated for every main component requirement, this invention is not limited to the following embodiment.
(Negative electrode plate)
A negative electrode plate of a lead storage battery includes a negative electrode current collector and a negative electrode material. The negative electrode material is held on the negative electrode current collector. The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include expanding processing and punching.
負極集電体に用いられる鉛合金は、Pb−Sb系合金、Pb−Ca系合金、Pb−Ca−Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種の元素を含んでもよい。負極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。 The lead alloy used for the negative electrode current collector may be any of a Pb—Sb alloy, a Pb—Ca alloy, and a Pb—Ca—Sn alloy. These lead or lead alloy may further contain at least one element selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additive element. The negative electrode current collector may have lead alloy layers having different compositions, and a plurality of lead alloy layers may be provided.
負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)と、既に述べた合成有機防縮剤、もしくは硫黄元素を4000μmol/g以上含有する有機防縮剤とを所定の含有量で含む。負極電極材料は、更に、カーボンブラックのような炭素質材料、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。 The negative electrode material contains a predetermined amount of a negative electrode active material (lead or lead sulfate) that develops capacity by an oxidation-reduction reaction, and the above-described synthetic organic shrinkage agent or an organic shrinkage agent containing 4000 μmol / g or more of elemental sulfur. Include in quantity. The negative electrode material may further contain a carbonaceous material such as carbon black, barium sulfate, and the like, and may contain other additives as necessary.
充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、負極活物質の原料となる鉛粉末を用いて作製される。 The negative electrode active material in a charged state is spongy lead, but the unformed negative electrode plate is usually produced using lead powder as a raw material for the negative electrode active material.
負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と有機防縮剤と各種添加剤に、水と硫酸を加えて混練することで調製する。このとき、室温より高温かつ高湿度で熟成させることが好ましい。 The negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to produce an unformed negative electrode plate, and then forming an unformed negative electrode plate. The negative electrode paste is prepared by adding and kneading water and sulfuric acid to lead powder, an organic anti-shrink agent, and various additives. At this time, it is preferable to age at room temperature and high humidity.
化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 The chemical conversion can be performed by charging the electrode plate group in a state in which the electrode plate group including the unformed negative electrode plate is immersed in an electrolytic solution containing sulfuric acid in the battery case of the lead storage battery. However, the chemical conversion may be performed before the assembly of the lead storage battery or the electrode plate group. Sponge-like lead is generated by chemical conversion.
(正極)
鉛蓄電池の正極板は、ペースト式、クラッド式などに分類できる。
ペースト式正極板は、一般に、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。正極集電体は、負極集電体と同様に形成すればよく、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。
クラッド式正極は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。
(Positive electrode)
The positive electrode plate of the lead storage battery can be classified into a paste type, a clad type and the like.
The paste type positive electrode plate generally includes a positive electrode current collector and a positive electrode material. The positive electrode material is held by the positive electrode current collector. The positive electrode current collector may be formed in the same manner as the negative electrode current collector, and can be formed by casting lead or a lead alloy or processing a lead or lead alloy sheet.
The clad positive electrode includes a plurality of porous tubes, a core metal inserted into each tube, a positive electrode material filled in the tube in which the core metal is inserted, and a joint that connects the plurality of tubes. It has.
正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb−Ca系合金、Pb−Ca−Sn系などが好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。芯金には、Pb−Sb系合金を用いることが好ましい。 As a lead alloy used for the positive electrode current collector, a Pb—Ca alloy, a Pb—Ca—Sn alloy, or the like is preferable in terms of corrosion resistance and mechanical strength. The positive electrode current collector may have lead alloy layers having different compositions, and a plurality of lead alloy layers may be provided. It is preferable to use a Pb—Sb alloy for the cored bar.
正極電極材料は、酸化還元反応により容量を発現する正極活物質(酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、正極活物質に加え、必要に応じて、硫酸錫、鉛丹などの添加剤を含んでもよい。 The positive electrode material includes a positive electrode active material (lead oxide or lead sulfate) that develops capacity by an oxidation-reduction reaction. In addition to the positive electrode active material, the positive electrode material may include additives such as tin sulfate and red lead as necessary.
未化成のペースト式正極板は、負極板の場合に準じて、正極集電体に、正極ペーストを充填し、熟成および乾燥することにより得られる。その後、未化成の正極板を化成する。正極ペーストは、鉛粉、添加剤、水、硫酸を混練することで調製される。クラッド式正極板は、芯金が挿入された多孔質なチューブに鉛粉またはスラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。 The unformed paste-type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying in the same manner as in the case of the negative electrode plate. Thereafter, an unformed positive electrode plate is formed. The positive electrode paste is prepared by kneading lead powder, additives, water, and sulfuric acid. The clad positive electrode plate is formed by filling a porous tube into which a core metal is inserted with lead powder or slurry-like lead powder, and joining a plurality of tubes together.
(電解液)
電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。ゲル化の程度は、特に限定されない。流動性を有するゾルからゲル状態の電解液を用いてもよく、流動性を有さないゲル状態の電解質を用いてもよい。満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.10〜1.35g/cm3であり、1.20〜1.35g/cm3であることが好ましい。
(Electrolyte)
The electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled as necessary. The degree of gelation is not particularly limited. A gel electrolyte may be used from a fluid sol, or a gel electrolyte without fluid may be used. The specific gravity at 20 ° C. of the electrolyte in a fully charged lead-acid battery is, for example, 1.10 to 1.35 g / cm 3 , and preferably 1.20 to 1.35 g / cm 3 .
(不織布マット)
不織布マットは、電解液に不溶な繊維材料を織らずに絡み合わせたシートである。繊維材料としては、ガラス繊維、ポリマー繊維、パルプ繊維などを用いることができる。ポリマー繊維の中では、ポリオレフィン繊維が好ましい。不織布マットは、繊維材料以外の成分を含んでもよく、例えば耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよい。無機粉体としては、シリカ粉末、ガラス粉末、珪藻土などを用いることができる。ただし、不織布マットの細孔内に豊富な電解液を均一に拡散させる観点から、繊維材料の含有量を5質量%以上、更には10質量%以上もしくは30質量%以上とすることが好ましい。
(Nonwoven fabric mat)
The nonwoven fabric mat is a sheet in which fiber materials that are insoluble in the electrolytic solution are intertwined without being woven. As the fiber material, glass fiber, polymer fiber, pulp fiber, or the like can be used. Of the polymer fibers, polyolefin fibers are preferred. The nonwoven fabric mat may contain components other than the fiber material, for example, an acid-resistant inorganic powder, a polymer as a binder, and the like. As the inorganic powder, silica powder, glass powder, diatomaceous earth, or the like can be used. However, the content of the fiber material is preferably 5% by mass or more, more preferably 10% by mass or more, or 30% by mass or more from the viewpoint of uniformly diffusing an abundant electrolyte in the pores of the nonwoven fabric mat.
不織布マットを構成する繊維材料の平均繊維径は、例えば0.1μm〜25μmである。不織布マットを構成する無機粉体の平均粒子径は、例えば1μm〜100nmである。これらの平均値は、10本以上の繊維または10個以上の粒子を任意に選択し、選択された繊維の拡大写真から求めることができる。粒子の粒子径は、拡大写真で確認できる粒子の投影面積と同面積の相当円の直径である。 The average fiber diameter of the fiber material which comprises a nonwoven fabric mat is 0.1 micrometer-25 micrometers, for example. The average particle diameter of the inorganic powder constituting the nonwoven fabric mat is, for example, 1 μm to 100 nm. These average values can be obtained from an enlarged photograph of the selected fiber by arbitrarily selecting 10 or more fibers or 10 or more particles. The particle diameter of the particle is the diameter of an equivalent circle having the same area as the projected area of the particle that can be confirmed by an enlarged photograph.
不織布マットに対する電解液の接触角θmは、0°〜40°が好ましく、30°未満がより好ましく、25°以下が更に好ましい。接触角θmを40°以下とすることで、不織布マットの細孔内への電解液の拡散性が向上し、寿命性能および低率放電性能を、より向上させやすくなる。中でも、有機防縮剤中の硫黄元素の含有量が4000〜8000μmol/g(より好ましくは6000〜8000μmol/g)の場合、接触角θmを0°〜40°とすることで、寿命性能および低率放電性能が顕著に向上する。 The contact angle θm of the electrolyte solution with respect to the nonwoven fabric mat is preferably 0 ° to 40 °, more preferably less than 30 °, and still more preferably 25 ° or less. By setting the contact angle θm to 40 ° or less, the diffusibility of the electrolytic solution into the pores of the nonwoven fabric mat is improved, and the life performance and the low rate discharge performance are more easily improved. In particular, when the content of the elemental sulfur in the organic shrinking agent is 4000 to 8000 μmol / g (more preferably 6000 to 8000 μmol / g), the contact angle θm is set to 0 ° to 40 °, so that the life performance and the low rate are achieved. Discharge performance is significantly improved.
なお、接触角θmは、不織布マットの表面処理などにより制御することができる。例えば、不織布マットの表面を親水化処理することにより、接触角θmを40°以下に小さくすることができる。親水化処理としては、不織布マットの表面にコーティングを施したり、不織布マットの表面をプラズマ処理したりすることが挙げられる。 The contact angle θm can be controlled by surface treatment of the nonwoven fabric mat. For example, the contact angle θm can be reduced to 40 ° or less by hydrophilizing the surface of the nonwoven fabric mat. Examples of the hydrophilization treatment include applying a coating to the surface of the non-woven mat or plasma-treating the surface of the non-woven mat.
不織布マットの厚さは、鉛蓄電池のサイズ、正極板と負極板の厚さなどに応じて、適宜選択すればよいが、例えば0.1mm〜2mmの範囲から選択すればよい。 The thickness of the nonwoven fabric mat may be appropriately selected according to the size of the lead storage battery, the thickness of the positive electrode plate and the negative electrode plate, and may be selected from a range of 0.1 mm to 2 mm, for example.
(セパレータ)
セパレータには、微多孔膜が用いられる。微多孔膜は、繊維材料以外を主体とするシートであり、例えば、ポリマー粉末、シリカ粉末およびオイルを含む組成物をシート状に押し出し成形した後、オイルを抽出して細孔を形成することにより得られる。セパレータを構成するポリマー成分は、耐酸性を有するものが好ましく、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。微多孔膜に微量の繊維材料を含ませてもよいが、繊維材料の含有量は20質量%以下とすることが好ましい。
(Separator)
A microporous membrane is used for the separator. The microporous membrane is a sheet mainly composed of materials other than the fiber material, for example, by extruding a composition containing polymer powder, silica powder and oil into a sheet shape, and then extracting the oil to form pores. can get. The polymer component constituting the separator preferably has acid resistance, and polyolefins such as polyethylene and polypropylene are preferred. Although a trace amount of fiber material may be included in the microporous membrane, the content of the fiber material is preferably 20% by mass or less.
セパレータの厚さは、鉛蓄電池のサイズ、正極板と負極板の厚さなどに応じて、適宜選択すればよいが、例えば厚さ0.4mm〜1.3mmの範囲から選択すればよい。なお、セパレータが、表面に凹凸を有する場合には、凸部を有する部分の厚さが上記範囲内であればよい。例えば均一な厚さのベースとその主面から突出する複数のリブとを有するセパレータの場合、ベースとリブの総厚が上記範囲内であればよい。また、セパレータを2層以上積層して用いてもよく、2層以上のセパレータを接着して一体化させてもよい。 The thickness of the separator may be appropriately selected according to the size of the lead storage battery, the thickness of the positive electrode plate and the negative electrode plate, and may be selected from a range of thickness of 0.4 mm to 1.3 mm, for example. In addition, when a separator has an unevenness | corrugation on the surface, the thickness of the part which has a convex part should just be in the said range. For example, in the case of a separator having a base having a uniform thickness and a plurality of ribs protruding from the main surface, the total thickness of the base and ribs may be within the above range. Two or more separators may be laminated and used, or two or more separators may be bonded and integrated.
次に、各物性の分析方法について説明する。
(1)負極電極材料の空隙比率
化成後の電池を満充電してから解体し、入手した負極板に、負極板に水洗と乾燥とを施すことにより負極板中の電解液を除く。次いで負極板から負極電極材料を分離して、未粉砕の測定試料を入手する。真空ポンプを用いて測定試料の減圧脱気を行い、測定試料の質量を電子天秤で測定した後、20℃±0.1℃で安定させたイオン交換水および/または蒸留水に浸漬させる。浸漬前後の測定試料の質量の差と、水の真密度の値より、測定試料の内部の空隙に入り込んだ水の体積を求めることができる。得られた水の体積を、浸漬前の測定試料の質量で除することにより、負極電極材料の空隙比率を求める。
Next, a method for analyzing each physical property will be described.
(1) Void ratio of negative electrode material The battery after chemical conversion is fully charged and disassembled, and the obtained negative electrode plate is washed with water and dried to remove the electrolyte in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate to obtain an unground measurement sample. The measurement sample is degassed using a vacuum pump, and the mass of the measurement sample is measured with an electronic balance and then immersed in ion-exchanged water and / or distilled water stabilized at 20 ° C. ± 0.1 ° C. From the difference in mass of the measurement sample before and after immersion and the value of the true density of water, the volume of water that has entered the void inside the measurement sample can be determined. The void ratio of the negative electrode material is obtained by dividing the volume of the obtained water by the mass of the measurement sample before immersion.
鉛蓄電池を満充電状態にする補充電条件は以下の通りである。
液式電池の場合、25℃、水槽中、0.2CAで2.5V/セルに達するまで定電流充電をおこなった後、さらに0.2CAで2時間、定電流充電を行う。
VRLA電池(制御弁式鉛蓄電池)の場合、25℃、気槽中、0.2CA、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が1mCA以下になった時点で充電を終了する。
この明細書における1CAは、電池の公称容量を1時間で放電する電流値であり、例えば公称容量が30Ahの電池であれば1CAは30Aであり、1mCAは30mAである。
The auxiliary charging conditions for fully charging the lead storage battery are as follows.
In the case of a liquid battery, constant current charging is performed until reaching 2.5 V / cell at 0.2 CA in a water bath at 25 ° C., and then constant current charging is further performed at 0.2 CA for 2 hours.
In the case of a VRLA battery (control valve type lead-acid battery), constant current / constant voltage charging at 25 ° C., 0.2 CA, 2.23 V / cell in an air tank was performed, and the charging current during constant voltage charging became 1 mCA or less. End charging at that time.
1CA in this specification is a current value for discharging the nominal capacity of the battery in one hour. For example, if the battery has a nominal capacity of 30 Ah, 1CA is 30 A, and 1 mCA is 30 mA.
なお、負極電極材料の密度は、化成後の負極電極材料のかさ密度の値を意味し、以下のようにして測定する。
化成後の電池を満充電してから解体し、入手した負極板に、水洗と乾燥とを施すことにより負極板中の電解液を除く。次いで、負極板から負極電極材料を分離して、未粉砕の測定試料を入手する。測定容器に試料を投入し、真空排気した後、0.5〜0.55psiaの圧力で水銀を満たして、負極電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、負極電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。
The density of the negative electrode material means the value of the bulk density of the negative electrode material after chemical conversion and is measured as follows.
The battery after chemical conversion is fully charged and disassembled, and the obtained negative electrode plate is washed with water and dried to remove the electrolyte in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate to obtain an unground measurement sample. After putting the sample into the measurement container and evacuating it, filling the mercury with a pressure of 0.5 to 0.55 psia, measuring the bulk volume of the negative electrode material, and dividing the mass of the measurement sample by the bulk volume The bulk density of the negative electrode material is obtained. The volume obtained by subtracting the injection volume of mercury from the volume of the measurement container is defined as the bulk volume.
(2)不織布マットに対する電解液の接触角
上記と同様に、既化成の満充電状態の鉛蓄電池から不織布マットを取り出し、洗浄し、乾燥して、不織布マットの試料片を採取する。次に、採取した試料片の水平面に対し、標準的な電解液として20℃での比重1.28g/cm3の硫酸水溶液を2μL滴下し、形成された液滴の2秒後の画像を解析し、θ/2法により接触角を測定する。
(2) Contact angle of electrolyte solution to non-woven mat In the same manner as described above, a non-woven mat is taken out from a fully charged lead-acid battery, washed and dried, and a sample piece of the non-woven mat is collected. Next, 2 μL of a sulfuric acid aqueous solution having a specific gravity of 1.28 g / cm 3 at 20 ° C. is dropped as a standard electrolyte on the horizontal surface of the collected sample piece, and the image of the formed droplet after 2 seconds is analyzed. Then, the contact angle is measured by the θ / 2 method.
(3)有機防縮剤の分析
まず、既化成の満充電状態の鉛蓄電池を分解し、負極板を取り出し、水洗により硫酸を除去し、乾燥する。次に、乾燥した負極板から負極電極材料(初期試料)を採取する。以下、初期試料を下記方法で分析する。
(3) Analysis of Organic Shrinkage Agent First, an already formed lead-acid battery in a fully charged state is disassembled, the negative electrode plate is taken out, sulfuric acid is removed by washing with water, and dried. Next, a negative electrode material (initial sample) is collected from the dried negative electrode plate. Hereinafter, the initial sample is analyzed by the following method.
(3−1)負極電極材料中の有機防縮剤の定性
初期試料を1mol/LのNaOH水溶液に浸漬し、有機防縮剤を抽出する。次に、抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で取り除き、得られた濾液を脱塩した後、濃縮し、乾燥する。脱塩は、濾液を透析チューブに入れて蒸留水中に浸すことにより行えばよい。これにより有機防縮剤の粉末試料が得られる。
(3-1) Qualitative property of organic shrinkage agent in negative electrode material The initial sample is immersed in a 1 mol / L NaOH aqueous solution to extract the organic shrinkage agent. Next, insoluble components are removed by filtration from the extracted aqueous NaOH solution containing the organic shrinking agent, and the resulting filtrate is desalted and then concentrated and dried. Desalting may be performed by placing the filtrate in a dialysis tube and immersing it in distilled water. Thereby, a powder sample of the organic shrinking agent is obtained.
このようにして得た有機防縮剤の粉末試料を用いて測定した赤外分光スペクトル、さらに粉末試料を適当な溶媒で溶解し、紫外可視吸光度計で測定した紫外可視吸収スペクトルやNMRスペクトルなどから得た情報を組み合わせて用いて、有機防縮剤種を特定する。 Obtained from the infrared spectroscopic spectrum measured using a powder sample of the organic shrinkage agent thus obtained, and the UV-visible absorption spectrum and NMR spectrum measured with an ultraviolet-visible absorptiometer after the powder sample was dissolved in an appropriate solvent. Information is used in combination to identify the organic pre-shrinking agent species.
(3−2)負極電極材料中における有機防縮剤の含有量の定量
上記(3−1)と同様に、有機防縮剤を含むNaOH水溶液の濾液を得た後、濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と、予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量することができる。
電池を入手して有機防縮剤の含有量を測定する際に、有機防縮剤の構造式の厳密な特定ができないために検量線に同一の有機防縮剤が使用できない場合には、当該電池の負極から抽出した有機防縮剤と、紫外可視吸収スペクトル、赤外分光スペクトル、およびNMRスペクトルなどが類似の形状を示す、別途入手可能な有機防縮剤を使用して検量線を作成することで、紫外可視吸収スペクトルを用いて有機防縮剤の含有量を測定する。
(3-2) Quantification of Content of Organic Shrinkage Agent in Negative Electrode Material After obtaining a filtrate of NaOH aqueous solution containing organic shrinkage agent as in (3-1) above, the UV-visible absorption spectrum of the filtrate is measured. To do. Using the spectrum intensity and a calibration curve prepared in advance, the content of the organic shrinking agent in the negative electrode material can be quantified.
When obtaining the battery and measuring the content of the organic shrinkage agent, if the same organic shrinkage agent cannot be used in the calibration curve because the structural formula of the organic shrinkage agent cannot be strictly specified, the negative electrode of the battery By creating a calibration curve using a separately available organic shrinkage agent that shows similar shapes in the UV-visible absorption spectrum, infrared spectrum, and NMR spectrum of the organic shrinkage agent extracted from The content of the organic shrinking agent is measured using the absorption spectrum.
(3−3)有機防縮剤中の硫黄元素の含有量
上記(3−1)と同様に、有機防縮剤の粉末試料を得た後、酸素燃焼フラスコ法によって、0.1gの有機防縮剤中の硫黄元素を硫酸に変換する。このとき、吸着液を入れたフラスコ内で粉末試料を燃焼させることで、硫酸イオンが吸着液に溶け込んだ溶出液が得られる。次に、トリン(thorin)を指示薬として、溶出液を過塩素酸バリウムで滴定することにより、0.1gの有機防縮剤中の硫黄元素の含有量(C1)を求める。次に、C1を10倍して1g当たりの有機防縮剤中の硫黄元素の含有量(μmol/g)を算出する。
(3-3) Content of Sulfur Element in Organic Shrinkage Agent In the same manner as in (3-1) above, after obtaining a powder sample of the organic shrunk agent, 0.1 g of the organic shrunk agent was obtained by the oxygen combustion flask method The elemental sulfur is converted to sulfuric acid. At this time, an eluate in which sulfate ions are dissolved in the adsorbent is obtained by burning the powder sample in the flask containing the adsorbent. Next, the eluate is titrated with barium perchlorate using thorin as an indicator to determine the content (C1) of elemental sulfur in 0.1 g of the organic shrinking agent. Next, C1 is multiplied by 10, and the content (μmol / g) of elemental sulfur in the organic shrinkage agent per gram is calculated.
図1に、本発明の実施形態に係る鉛蓄電池の一例の外観を示す。
鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で密閉されている。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
In FIG. 1, the external appearance of an example of the lead acid battery which concerns on embodiment of this invention is shown.
The lead storage battery 1 includes a battery case 12 that houses an electrode plate group 11 and an electrolytic solution (not shown). The battery case 12 is partitioned into a plurality of cell chambers 14 by partition walls 13. Each cell chamber 14 accommodates one electrode group 11. The opening of the battery case 12 is sealed with a lid 15 having a negative electrode terminal 16 and a positive electrode terminal 17. The lid 15 is provided with a liquid plug 18 for each cell chamber. At the time of refilling, the refilling liquid is replenished by removing the liquid stopper 18. The liquid spout 18 may have a function of discharging gas generated in the cell chamber 14 to the outside of the battery.
極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4s、負極側不織布マット4aおよび正極側不織布マット4cを介して積層することにより構成されている。負極側不織布マット4aは、負極板2の両面に貼り付けてあり、正極側不織布マット4cは、正極板3の両面に貼り付けてある。ここでは、負極板2を収容する袋状セパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2を並列接続する負極棚6が貫通接続体8に接続され、複数の正極板3を並列接続する正極棚5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚6に負極柱9が接続され、正極棚5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。 The electrode plate group 11 is configured by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 with a separator 4s, a negative electrode-side nonwoven fabric mat 4a, and a positive electrode-side nonwoven fabric mat 4c, respectively. The negative electrode side nonwoven fabric mat 4 a is attached to both surfaces of the negative electrode plate 2, and the positive electrode side nonwoven fabric mat 4 c is attached to both surfaces of the positive electrode plate 3. Here, although the bag-shaped separator 4 which accommodates the negative electrode plate 2 is shown, the form of a separator is not specifically limited. In the cell chamber 14 located at one end of the battery case 12, the negative electrode shelf 6 connecting the plurality of negative electrode plates 2 in parallel is connected to the through connection body 8, and the positive electrode shelf 5 connecting the plurality of positive electrode plates 3 in parallel is provided. Connected to the positive pole 7. The positive pole 7 is connected to a positive terminal 17 outside the lid 15. In the cell chamber 14 located at the other end of the battery case 12, the negative electrode column 9 is connected to the negative electrode shelf 6, and the through connector 8 is connected to the positive electrode shelf 5. The negative pole 9 is connected to the negative terminal 16 outside the lid 15. Each through-connector 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plate groups 11 of the adjacent cell chambers 14 in series.
以下、本発明を実施例および比較例に基づいて更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to a following example.
《実施例1》
(1)負極板の作製
原料の鉛粉と、硫酸バリウムと、カーボンブラックと、有機防縮剤とを、適量の硫酸水溶液と混合して、負極ペーストを得た。負極ペーストを、Pb−Ca−Sn合金製のエキスパンド格子の網目部に充填し、熟成乾燥し、未化成の負極板を得た。
Example 1
(1) Production of negative electrode plate The raw material lead powder, barium sulfate, carbon black, and organic anti-shrink agent were mixed with an appropriate amount of sulfuric acid aqueous solution to obtain a negative electrode paste. The negative electrode paste was filled in a network part of an expanded lattice made of a Pb—Ca—Sn alloy and aged and dried to obtain an unformed negative electrode plate.
有機防縮剤は、化成後に満充電した鉛蓄電池の負極電極材料における有機防縮剤の含有量が0.10質量%になるように、負極ペーストに配合した。また、化成後に満充電した鉛蓄電池の負極電極材料の空隙比率が0.22cm3/g(体積基準の細孔径分布の中央値2μm)になるように、負極ペーストに配合する水量や硫酸量を制御した。 The organic shrunk agent was blended in the negative electrode paste so that the content of the organic shrunk agent in the negative electrode material of the lead-acid battery fully charged after chemical conversion was 0.10% by mass. In addition, the amount of water and sulfuric acid to be mixed in the negative electrode paste is adjusted so that the void ratio of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 0.22 cm 3 / g (median value of volume-based pore diameter distribution is 2 μm). Controlled.
有機防縮剤には、リグニンまたはスルホン酸基を導入したビスフェノール類のホルムアルデヒドによる縮合物を用いた。ここでは、有機防縮剤中の硫黄元素の含有量が2000〜8000μmol/gになるように、導入するスルホン酸基の量を制御した。また、リグニンの硫黄元素の含有量は600μmol/gであった。 As the organic shrinking agent, a condensate of bisphenols introduced with lignin or sulfonic acid groups with formaldehyde was used. Here, the amount of sulfonic acid groups to be introduced was controlled so that the content of elemental sulfur in the organic shrinking agent was 2000 to 8000 μmol / g. The content of sulfur element in lignin was 600 μmol / g.
(2)正極板の作製
原料の鉛粉と硫酸水溶液と混合して、正極ペーストを得た。正極ペーストを、Pb−Ca−Sn合金製のエキスパンド格子の網目部に充填し、熟成乾燥し、未化成の正極板を得た。
(2) Production of positive electrode plate The raw material lead powder and sulfuric acid aqueous solution were mixed to obtain a positive electrode paste. The positive electrode paste was filled in a network part of an expanded lattice made of a Pb—Ca—Sn alloy and aged and dried to obtain an unformed positive electrode plate.
(3)不織布マット
不織布マットには、ガラス繊維(平均繊維径0.5μm)とシリカ粉末(平均粒子径5nm)とを混抄したシート(厚さ0.5mm)を用いた。不織布マットに対する電解液の接触角は、親水化処理により20°に制御した。
(3) Nonwoven fabric mat As the nonwoven fabric mat, a sheet (thickness 0.5 mm) in which glass fibers (average fiber diameter 0.5 μm) and silica powder (average particle diameter 5 nm) were mixed was used. The contact angle of the electrolyte solution with respect to the nonwoven fabric mat was controlled to 20 ° by a hydrophilic treatment.
(4)セパレータ
セパレータには、ポリエチレン粉末、シリカ粉末およびオイルを含む組成物を複数のリブを有するシート状に押し出し成形した後、オイルを抽出して細孔を形成した微多孔膜(リブを有する部分の厚さ0.5mm)を用いた。ここでは、微多孔膜を2つ折にし、折り目と交わる2辺を溶着して、袋状セパレータを作製した。
(4) Separator The separator is a microporous membrane (having ribs) formed by extruding a composition containing polyethylene powder, silica powder and oil into a sheet having a plurality of ribs and then extracting the oil to form pores. Part thickness 0.5 mm) was used. Here, the microporous membrane was folded in two, and two sides intersecting with the crease were welded to produce a bag-shaped separator.
(5)鉛蓄電池の作製
負極板の両面に不織布マットを貼り付け、更に、袋状セパレータに収容した。また、正極板の両面に不織布マットを貼り付けた。負極板5枚と正極板4枚とで極板群を形成した。
(5) Preparation of lead acid battery The nonwoven fabric mat was affixed on both surfaces of the negative electrode plate, and was further accommodated in a bag-like separator. Moreover, the nonwoven fabric mat was affixed on both surfaces of the positive electrode plate. An electrode plate group was formed by five negative electrode plates and four positive electrode plates.
極板群をポリプロピレン製の電槽に電解液とともに収容して、電槽内で化成を施した。こうして、有機防縮剤中の硫黄元素の含有量が異なる複数種の液式の自動車用鉛蓄電池を組み立てた。鉛蓄電池の出力は12Vで、定格5時間率容量は25Ahである。化成後の電解液の比重は1.28g/cm3であった。 The electrode plate group was accommodated in a polypropylene battery case together with the electrolytic solution, and chemical conversion was performed in the battery case. Thus, a plurality of types of liquid lead-acid batteries for automobiles having different contents of elemental sulfur in the organic shrinking agent were assembled. The output of the lead storage battery is 12V, and the rated 5-hour rate capacity is 25 Ah. The specific gravity of the electrolytic solution after the formation was 1.28 g / cm 3 .
《比較例1》
正極板および負極板のいずれにも不織布マットを貼り付けなかったこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 1 >>
In the same manner as in Example 1, except that the nonwoven fabric mat was not attached to either the positive electrode plate or the negative electrode plate, a plurality of types of lead storage batteries having different sulfur element contents in the organic antishrink agent were assembled.
《比較例2》
正極板の両面のみに不織布マットを貼り付け、負極板に不織布マットを貼り付けなかったこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 2 >>
A plurality of types of lead-acid batteries having different sulfur element contents in the organic anti-shrink agent, as in Example 1, except that the nonwoven fabric mat was attached only to both surfaces of the positive electrode plate and the nonwoven fabric mat was not attached to the negative electrode plate. Assembled.
《比較例3》
負極板の両面のみに不織布マットを貼り付け、正極板に不織布マットを貼り付けなかったこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 3 >>
A plurality of types of lead-acid batteries having different sulfur element contents in the organic anti-shrink agent, as in Example 1, except that the nonwoven fabric mat was attached only to both surfaces of the negative electrode plate and the nonwoven fabric mat was not attached to the positive electrode plate. Assembled.
[評価1]
実施例1および比較例1〜3の鉛蓄電池について、以下の条件でIS寿命試験を行った。
<サイクル条件>
SBA S 0101:2006に規定されるアイドリングストップ(IS)寿命試験を行った。すなわち、満充電状態から45Aで59秒間放電後、更に300Aで1秒間放電した後、上限電流を100Aとして14Vで60秒間定電圧充電する充放電サイクルを繰り返した。また、3600サイクル毎に、40〜48時間放置して鉛蓄電池を休止させた。300A放電で1秒後の電圧が7.20V未満となった時点で試験を終了した。
[Evaluation 1]
About the lead acid battery of Example 1 and Comparative Examples 1-3, IS life test was done on condition of the following.
<Cycle conditions>
An idling stop (IS) life test defined in SBA S 0101: 2006 was conducted. That is, after discharging for 59 seconds at 45 A from the fully charged state, and further discharging for 1 second at 300 A, a charge / discharge cycle in which the upper limit current was 100 A and constant voltage charging at 14 V for 60 seconds was repeated. In addition, every 3600 cycles, the lead storage battery was suspended by leaving it for 40 to 48 hours. The test was terminated when the voltage after 1 second at 300 A discharge became less than 7.20V.
以下のように、200サイクル時点での正極電極材料の脱落量を測定した。まず、初期の化成後に満充電した鉛蓄電池を分解し、正極板を取り出し、水洗により硫酸を除去し、乾燥し、正極板の質量Aを測定した。一方、IS寿命試験の200サイクル後の鉛蓄電池から正極板を取り出し、その質量Bを同様に求めた。AとBとの差から正極電極材料(活物質)の脱落量を下記式より算出した。200サイクル時点での正極電極材料の脱落量が多いほど、正極電極材料の軟化が進行し、正極板が劣化しているといえる。
正極電極材料の脱落量(%)={(A−B)/A}×100
As described below, the amount of the positive electrode material falling off at the time of 200 cycles was measured. First, a fully charged lead storage battery after initial chemical conversion was disassembled, the positive electrode plate was taken out, sulfuric acid was removed by washing with water, and the mass A of the positive electrode plate was measured. On the other hand, the positive electrode plate was taken out from the lead storage battery after 200 cycles of the IS life test, and the mass B thereof was determined in the same manner. From the difference between A and B, the amount of the positive electrode material (active material) falling off was calculated from the following formula. It can be said that the more the amount of the positive electrode material dropped off at the 200th cycle, the more the positive electrode material is softened and the positive electrode plate is deteriorated.
Dropout amount of positive electrode material (%) = {(A−B) / A} × 100
また、IS寿命試験の200サイクル後の鉛蓄電池から負極板を取り出し、負極板下部から負極電極材料を採取し、硫酸鉛蓄積量を測定した。まず、採取した負極電極材料を水洗し、乾燥後、粉砕した。次に、硫黄元素分析装置(例えばLECO社製、S―200型)を用いて、粉砕された負極電極材料(粉砕試料)中の硫黄元素の含有量を測定した。次に、下記式に従い、負極電極材料中に蓄積された硫酸鉛中の硫黄元素の含有量を求めた。 Moreover, the negative electrode plate was taken out from the lead storage battery after 200 cycles of the IS life test, the negative electrode material was collected from the lower part of the negative electrode plate, and the amount of lead sulfate accumulation was measured. First, the collected negative electrode material was washed with water, dried and pulverized. Next, the content of sulfur element in the pulverized negative electrode material (ground sample) was measured using a sulfur element analyzer (for example, S-200 type manufactured by LECO). Next, the content of elemental sulfur in lead sulfate accumulated in the negative electrode material was determined according to the following formula.
硫酸鉛中の硫黄元素の含有量
=(硫黄元素分析装置で得られた硫黄元素の含有量)−(粉砕試料の質量(g)×有機防縮剤の含有量(g/g)×有機防縮剤中の硫黄元素の含有量(g/g))
Content of elemental sulfur in lead sulfate = (content of elemental sulfur obtained by elemental sulfur analyzer)-(mass of crushed sample (g) x content of organic shrinkage agent (g / g) x organic shrinkage agent Elemental sulfur content (g / g))
次に、硫酸鉛中の硫黄元素の含有量を、硫酸鉛量に換算し、粉砕試料の単位質量あたりの硫酸鉛濃度(質量%)を求めて、硫酸鉛蓄積量とした。硫酸鉛蓄積量が多いほど、サルフェーションや電解液の成層化が進行しているといえる。 Next, the content of elemental sulfur in the lead sulfate was converted to the amount of lead sulfate, and the lead sulfate concentration (% by mass) per unit mass of the pulverized sample was determined to obtain the lead sulfate accumulation amount. It can be said that sulfation and stratification of electrolyte progressed as the amount of lead sulfate accumulation increased.
実施例1および比較例1〜3に関し、有機防縮剤中の硫黄元素の含有量と、正極板からの正極電極材料の脱落量との関係を表1および図2に示す。また、有機防縮剤中の硫黄元素の含有量と、負極板下部における硫酸鉛蓄積量との関係を表2および図3に示す。 Regarding Example 1 and Comparative Examples 1 to 3, the relationship between the content of the elemental sulfur in the organic shrinking agent and the amount of the positive electrode material falling off from the positive electrode plate is shown in Table 1 and FIG. Table 2 and FIG. 3 show the relationship between the content of elemental sulfur in the organic shrinking agent and the amount of lead sulfate accumulated in the lower part of the negative electrode plate.
図2は、有機防縮剤中の硫黄元素の含有量が大きいほど、正極電極材料の脱落量が多くなることを示している。一方、図3は、有機防縮剤中の硫黄元素の含有量が大きいほど、硫酸鉛蓄積量が少なくなることを示している。そして、負極板の両面に不織布マットを貼り付け、更に、正極板の両面に不織布マットを貼り付けた実施例1では、正極板および負極板の少なくとも一方に不織布マットを貼り付けなかった比較例1〜3に比べて、正極電極材料の脱落が顕著に抑制され、かつ負極板下部における硫酸鉛の蓄積が抑制されることが理解できる。 FIG. 2 shows that the larger the content of the elemental sulfur in the organic shrinking agent, the more the positive electrode material is dropped. On the other hand, FIG. 3 shows that the amount of lead sulfate accumulation decreases as the content of sulfur element in the organic shrinkage agent increases. And in Example 1 which stuck the nonwoven fabric mat on both surfaces of the negative electrode plate, and further stuck the nonwoven fabric mat on both surfaces of the positive electrode plate, Comparative Example 1 where no nonwoven fabric mat was stuck on at least one of the positive electrode plate and the negative electrode plate It can be understood that the falling of the positive electrode material is remarkably suppressed and the accumulation of lead sulfate in the lower part of the negative electrode plate is suppressed as compared with ˜3.
更に、図2より、正極板のみに不織布マットを貼り付けた比較例2では、正極電極材料の脱落を抑制する一定の効果が見られるが、負極板のみに不織布マットを貼り付けた比較例3には、正極電極材料の脱落を抑制する効果がほとんど得られないことが理解できる。その一方で、負極板および正極板の両方にそれぞれ不織布マットを貼り付けることで、正極電極材料の脱落を抑制する効果が、比較例2に対して顕著に大きくなることが理解できる。 Furthermore, from FIG. 2, in Comparative Example 2 in which the nonwoven fabric mat is attached only to the positive electrode plate, there is a certain effect of suppressing the falling off of the positive electrode material, but Comparative Example 3 in which the nonwoven fabric mat is attached only to the negative electrode plate. Therefore, it can be understood that the effect of suppressing the dropping of the positive electrode material is hardly obtained. On the other hand, it can be understood that the effect of suppressing the loss of the positive electrode material is significantly increased with respect to Comparative Example 2 by pasting the nonwoven fabric mat on both the negative electrode plate and the positive electrode plate.
《実施例2》
化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.14cm3/g〜0.30cm3/gの範囲で変化させたこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。不織布マットに対する電解液の接触角は20°に統一した。
Example 2
Except that the void ratio of the negative electrode material of lead-acid battery fully charged to after chemical conversion was varied in the range of 0.14cm 3 /g~0.30cm 3 / g, in the same manner as in Example 1, the sulfur in the organic expander agent Several types of lead acid batteries with different element contents were assembled. The contact angle of the electrolyte solution with respect to the nonwoven fabric mat was unified to 20 °.
《比較例4》
化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.20cm3/gまたは0.24cm3/gとしたこと以外、比較例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 4 >>
Similar to Comparative Example 1, the content of elemental sulfur in the organic shrinkage agent, except that the void ratio of the negative electrode material of the lead-acid battery fully charged after the formation was 0.20 cm 3 / g or 0.24 cm 3 / g We assembled several types of lead acid batteries.
《比較例5》
化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.20cm3/gまたは0.24cm3/gとしたこと以外、比較例2と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 5 >>
Similar to Comparative Example 2, the content of elemental sulfur in the organic shrinkage agent, except that the void ratio of the negative electrode material of the lead-acid battery fully charged after conversion was 0.20 cm 3 / g or 0.24 cm 3 / g We assembled several types of lead acid batteries.
《比較例6》
化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.20cm3/gまたは0.24cm3/gとしたこと以外、比較例3と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 6 >>
Similar to Comparative Example 3, the content of elemental sulfur in the organic shrinkage agent, except that the void ratio of the negative electrode material of the lead-acid battery fully charged after conversion was 0.20 cm 3 / g or 0.24 cm 3 / g We assembled several types of lead acid batteries.
[評価2]
実施例2および比較例4〜6で作製した鉛蓄電池に関し、上記と同じ条件でIS寿命サイクル数を測定した。
[Evaluation 2]
Regarding the lead storage batteries prepared in Example 2 and Comparative Examples 4 to 6, the IS life cycle number was measured under the same conditions as described above.
表3および図4に、実施例2に関し、有機防縮剤中の硫黄元素の含有量と、寿命サイクル数との関係を示す。また、表4および図5に、負極電極材料の空隙比率が0.20cm3/gのときの、不織布マットの有無と、寿命サイクル数との関係を示す。更に、図6に、負極電極材料の空隙比率と、寿命サイクル数との関係を示す。 In Table 3 and FIG. 4, regarding Example 2, the relationship between the content of elemental sulfur in the organic shrinking agent and the number of life cycles is shown. Table 4 and FIG. 5 show the relationship between the presence / absence of the nonwoven fabric mat and the number of life cycles when the void ratio of the negative electrode material is 0.20 cm 3 / g. FIG. 6 shows the relationship between the void ratio of the negative electrode material and the number of life cycles.
図4は、鉛蓄電池の寿命性能を向上させる観点からは、負極電極材料の空隙比率が小さく、かつ硫黄元素の含有量の大きい有機防縮剤を大きくすることが有利であることを示している。中でも、硫黄元素の含有量が4000μmol/g以上の有機防縮剤を用いると、安定的に、より優れた寿命性能が得られることがわかる。ただし、空隙比率が0.14cm3/gにまで小さくなると、低多孔度の場合の優位性が損なわれるため、空隙比率は0.15cm3/g以上が好ましい。 FIG. 4 shows that from the viewpoint of improving the life performance of the lead-acid battery, it is advantageous to increase the organic shrinkage agent having a small void ratio in the negative electrode material and a large sulfur element content. In particular, it can be seen that when an organic shrinkage agent having a sulfur element content of 4000 μmol / g or more is used, more excellent life performance can be obtained. However, when the void ratio is reduced to 0.14 cm 3 / g, the superiority in the case of low porosity is impaired, so the void ratio is preferably 0.15 cm 3 / g or more.
図5は、鉛蓄電池の寿命性能を向上させる効果が、負極板とセパレータとの間および正極板とセパレータとの間の両方に不織布マットが存在する場合に、特別に高くなる傾向があることを示している。また、その傾向は、硫黄元素の含有量が4000μmol/g以上の有機防縮剤を用いる場合に顕著となっている。 FIG. 5 shows that the effect of improving the life performance of lead-acid batteries tends to be particularly high when nonwoven mats are present both between the negative electrode plate and the separator and between the positive electrode plate and the separator. Show. Moreover, the tendency is remarkable when using an organic shrinkage | condensation agent whose content of a sulfur element is 4000 micromol / g or more.
図6は、負極電極材料の空隙比率が0.15cm3/g〜0.22cm3/gであり、かつ有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gである場合の寿命性能における優位性を、より顕著に示している。 6, when the void ratio of the negative electrode material is 0.15cm 3 /g~0.22cm 3 / g, and the content of sulfur element in the organic expander agent is 4000μmol / g~8000μmol / g The superiority in life performance is shown more prominently.
[評価3]
実施例2および比較例4〜6で作製した鉛蓄電池に関し、以下の条件で5時間率(0.2CA)放電持続時間を測定した。
JIS D5301(SBA S 0101:2006)に規定される5時間率容量試験を行った。すなわち、中央のセル室の電解液温度が25 ℃±2 ℃であることを確認した上で、端子電圧が10.50V±0.05Vに低下するまで、5時間率電流(0.2CA)で放電し、放電持続時間(t)を記録し、容量を求めた。
[Evaluation 3]
Regarding the lead storage batteries prepared in Example 2 and Comparative Examples 4 to 6, the 5-hour rate (0.2 CA) discharge duration was measured under the following conditions.
The 5-hour rate capacity test specified in JIS D5301 (SBA S 0101: 2006) was conducted. That is, after confirming that the temperature of the electrolyte in the central cell chamber is 25 ° C. ± 2 ° C., the terminal voltage is reduced to 10.50 V ± 0.05 V at a current rate of 5 hours (0.2 CA). The battery was discharged, the discharge duration (t) was recorded, and the capacity was determined.
表5および図7に、実施例2に関し、有機防縮剤中の硫黄元素の含有量と、0.2CA放電持続時間との関係を示す。また、表6および図8に、負極電極材料の空隙比率が0.24cm3/gのときの、不織布マットの有無と、0.2CA放電持続時間との関係を示す。更に、図9に、負極電極材料の空隙比率と、0.2CA放電持続時間との関係を示す。 In Table 5 and FIG. 7, regarding Example 2, the relationship between the content of elemental sulfur in the organic shrinking agent and the 0.2CA discharge duration is shown. Table 6 and FIG. 8 show the relationship between the presence / absence of the nonwoven fabric mat and the 0.2CA discharge duration when the void ratio of the negative electrode material is 0.24 cm 3 / g. Further, FIG. 9 shows the relationship between the void ratio of the negative electrode material and the 0.2 CA discharge duration.
図7は、鉛蓄電池の低率放電性能(0.2CA放電持続時間)を向上させる観点からは、負極電極材料の空隙比率が大きく、かつ硫黄元素の含有量の大きい有機防縮剤を大きくすることが有利であることを示している。中でも、硫黄元素の含有量が4000μmol/g以上の有機防縮剤を用いると、安定的に、より優れた低率放電性能が得られることがわかる。ただし、空隙比率が0.30cm3/gにまで大きくなると、高多孔度の場合の優位性が損なわれるため、空隙比率は0.27cm3/g以下が好ましい。 FIG. 7 shows that, from the viewpoint of improving the low rate discharge performance (0.2 CA discharge duration) of the lead storage battery, the organic shrinkage agent having a large void ratio in the negative electrode material and a large sulfur element content is increased. Is advantageous. In particular, it can be seen that when an organic shrinking agent having a sulfur element content of 4000 μmol / g or more is used, more excellent low-rate discharge performance can be obtained. However, when the void ratio is increased to 0.30 cm 3 / g, the superiority in the case of high porosity is impaired, so the void ratio is preferably 0.27 cm 3 / g or less.
図8は、鉛蓄電池の低率放電性能を向上させる効果が、負極板とセパレータとの間および正極板とセパレータとの間の両方に不織布マットが存在する場合に、特別に高くなる傾向があることを示している。また、その傾向は、硫黄元素の含有量が4000μmol/g以上の有機防縮剤を用いる場合に顕著である。 FIG. 8 shows that the effect of improving the low rate discharge performance of the lead-acid battery tends to be particularly high when the nonwoven fabric mat is present both between the negative electrode plate and the separator and between the positive electrode plate and the separator. It is shown that. In addition, this tendency is remarkable when an organic shrinkage agent having a sulfur element content of 4000 μmol / g or more is used.
図9は、負極電極材料の空隙比率が0.22cm3/g〜0.27cm3/gであり、かつ有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gである場合の低率放電性能における優位性を、より顕著に示している。具体的には、有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gのグラフでは、600μmol/g〜2000μmol/gのグラフには見られない変化点が存在する。このような変化点を伴う0.2CA放電持続時間の増加は、有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gの場合に特有の傾向である。 9, when the gap ratio of negative electrode material is 0.22cm 3 /g~0.27cm 3 / g, and the content of sulfur element in the organic expander agent is 4000μmol / g~8000μmol / g The superiority in low rate discharge performance is shown more remarkably. Specifically, in the graph in which the content of the elemental sulfur in the organic shrinking agent is 4000 μmol / g to 8000 μmol / g, there is a change point that is not found in the graph of 600 μmol / g to 2000 μmol / g. The increase in the 0.2CA discharge duration accompanied by such a change point is a characteristic tendency when the content of elemental sulfur in the organic shrinking agent is 4000 μmol / g to 8000 μmol / g.
《実施例3》
不織布マットの表面処理条件を変更することにより、不織布マットに対する電解液の接触角を10°〜80°の範囲で変化させたこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立て、上記評価2、3と同様に評価した。ただし、負極電極材料の空隙比率は0.22cm3/gで統一した。
Example 3
Similar to Example 1 except that the contact angle of the electrolyte solution to the nonwoven fabric mat was changed in the range of 10 ° to 80 ° by changing the surface treatment conditions of the nonwoven fabric mat. Plural kinds of lead storage batteries having different contents were assembled and evaluated in the same manner as in the above evaluations 2 and 3. However, the void ratio of the negative electrode material was unified at 0.22 cm 3 / g.
実施例3に関し、不織布マットに対する電解液の接触角を変化させたときの、有機防縮剤中の硫黄元素の含有量と、寿命サイクル数との関係を表7および図10に示す。また、不織布マットに対する電解液の接触角を変化させたときの、有機防縮剤中の硫黄元素の含有量と、0.2CA放電持続時間との関係を表8および図11に示す。 Regarding Example 3, Table 7 and FIG. 10 show the relationship between the content of elemental sulfur in the organic anti-shrink agent and the number of life cycles when the contact angle of the electrolytic solution with respect to the nonwoven fabric mat is changed. Table 8 and FIG. 11 show the relationship between the content of sulfur element in the organic shrinkage agent and the 0.2CA discharge duration when the contact angle of the electrolytic solution with respect to the nonwoven fabric mat is changed.
図10は、鉛蓄電池の寿命性能を向上させる観点からは、不織布マットに対する電解液の接触角を40°以下とし、かつ硫黄元素の含有量の大きい有機防縮剤を大きくすることが有利であることを示している。また、図11は、鉛蓄電池の低率放電性能を向上させる観点からも、不織布マットに対する電解液の接触角を40°以下とすることが有利であることを示している。特に、有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gである場合には、上記接触角を40°以下とすることで、寿命性能が顕著に向上することがわかる。 FIG. 10 shows that from the viewpoint of improving the life performance of the lead-acid battery, it is advantageous to increase the contact angle of the electrolytic solution with respect to the nonwoven fabric mat to 40 ° or less and to increase the organic shrinkage agent having a large sulfur element content. Is shown. Moreover, FIG. 11 has shown that it is advantageous to make the contact angle of the electrolyte solution with respect to a nonwoven fabric mat into 40 degrees or less also from a viewpoint of improving the low rate discharge performance of a lead acid battery. In particular, when the content of elemental sulfur in the organic anti-shrinkage agent is 4000 μmol / g to 8000 μmol / g, it can be seen that the life performance is significantly improved by setting the contact angle to 40 ° or less.
《実施例4》
有機防縮剤として、硫黄元素の含有量が6000μmol/gのナフタレン類のホルムアルデヒドによる縮合物(ナフタレン系有機防縮剤)を用いたこと以外、実施例1と同様に、化成後に満充電した鉛蓄電池の負極電極材料の空隙比率が0.22cm3/gの負極板を作製し、鉛蓄電池を組み立てた。
Example 4
A lead-acid battery fully charged after chemical conversion was formed in the same manner as in Example 1 except that a condensate of naphthalene having a content of elemental sulfur of 6000 μmol / g with formaldehyde (a naphthalene-based organic preservative) was used as the organic preservative. A negative electrode plate having a void ratio of the negative electrode material of 0.22 cm 3 / g was produced, and a lead storage battery was assembled.
[評価4]
実施例3で作製した鉛蓄電池と、実施例1で作製した硫黄元素の含有量が6000μmol/gのビスフェノール類のホルムアルデヒドによる縮合物(ビスフェノール系有機防縮剤)を用いた鉛蓄電池に関し、評価2、3と同様に、IS寿命サイクル数および5時間率(0.2CA)放電持続時間を測定した。結果を表1に示す。
[Evaluation 4]
Regarding the lead storage battery prepared in Example 3 and the lead storage battery using the formaldehyde condensate of bisphenols (bisphenol-based organic shrinking agent) having a content of elemental sulfur of 6000 μmol / g prepared in Example 1, Evaluation 2, Similarly to 3, the number of IS life cycles and the 5-hour rate (0.2 CA) discharge duration were measured. The results are shown in Table 1.
表1より、有機防縮剤がナフタレン系である場合にも、有機防縮剤がビスフェノール系である場合と、概ね同様の結果が得られることが理解できる。 From Table 1, it can be understood that when the organic shrinkage agent is naphthalene-based, substantially the same results are obtained as when the organic shrinkage-proofing agent is bisphenol-based.
本発明は、例えば液式の鉛蓄電池に適用可能であり、自動車、バイク、電動車両(フォークリフトなど)などの電源として好適に用いられる。 The present invention is applicable to, for example, a liquid lead-acid battery, and is suitably used as a power source for automobiles, motorcycles, electric vehicles (forklifts, etc.), and the like.
1:鉛蓄電池、2:負極板、3:正極板、4s:セパレータ、4a:負極側不織布マット、4c:正極側不織布マット、5:正極棚、6:負極棚、7:正極柱、8:貫通接続体、9:負極柱、11:極板群、12:電槽、13:隔壁、14:セル室、15:蓋、16:負極端子、17:正極端子、18:液口栓 1: lead storage battery, 2: negative electrode plate, 3: positive electrode plate, 4s: separator, 4a: negative electrode side non-woven fabric mat, 4c: positive electrode side non-woven fabric mat, 5: positive electrode shelf, 6: negative electrode shelf, 7: positive electrode column, 8: Through connection body, 9: negative pole, 11: electrode plate group, 12: battery case, 13: partition, 14: cell chamber, 15: lid, 16: negative terminal, 17: positive terminal, 18: liquid plug
Claims (6)
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、有機防縮剤を含み、
前記負極板と前記セパレータとの間、および、前記正極板と前記セパレータとの間に、それぞれ不織布マットが介在している、鉛蓄電池。 A negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolyte solution,
The negative electrode plate includes a negative electrode current collector and a negative electrode material,
The negative electrode material includes an organic shrinking agent,
The lead acid battery in which the nonwoven fabric mat is interposing between the said negative electrode plate and the said separator, and between the said positive electrode plate and the said separator, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150865A JP6756182B2 (en) | 2016-07-29 | 2016-07-29 | Lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150865A JP6756182B2 (en) | 2016-07-29 | 2016-07-29 | Lead-acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018018802A true JP2018018802A (en) | 2018-02-01 |
JP6756182B2 JP6756182B2 (en) | 2020-09-16 |
Family
ID=61076404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016150865A Active JP6756182B2 (en) | 2016-07-29 | 2016-07-29 | Lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6756182B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018018803A (en) * | 2016-07-29 | 2018-02-01 | 株式会社Gsユアサ | Lead-acid battery |
CN112385070A (en) * | 2018-04-20 | 2021-02-19 | 达拉米克有限责任公司 | Acid battery with fiber mat |
JPWO2021200290A1 (en) * | 2020-03-30 | 2021-10-07 | ||
EP4037023A4 (en) * | 2019-09-27 | 2024-07-31 | Gs Yuasa Int Ltd | Lead acid storage battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0251872A (en) * | 1988-08-11 | 1990-02-21 | Japan Storage Battery Co Ltd | Sealed lead-acid battery |
JP2000030734A (en) * | 1998-07-09 | 2000-01-28 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery |
JP2001068086A (en) * | 1999-08-25 | 2001-03-16 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery |
JP2005044675A (en) * | 2003-07-23 | 2005-02-17 | Furukawa Battery Co Ltd:The | Sealed type lead-acid storage battery |
WO2012157311A1 (en) * | 2011-05-13 | 2012-11-22 | 新神戸電機株式会社 | Lead battery |
WO2015181865A1 (en) * | 2014-05-26 | 2015-12-03 | 株式会社Gsユアサ | Lead storage cell |
JP2016103422A (en) * | 2014-11-28 | 2016-06-02 | 株式会社Gsユアサ | Lead storage battery and negative electrode plate thereof |
-
2016
- 2016-07-29 JP JP2016150865A patent/JP6756182B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0251872A (en) * | 1988-08-11 | 1990-02-21 | Japan Storage Battery Co Ltd | Sealed lead-acid battery |
JP2000030734A (en) * | 1998-07-09 | 2000-01-28 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery |
JP2001068086A (en) * | 1999-08-25 | 2001-03-16 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery |
JP2005044675A (en) * | 2003-07-23 | 2005-02-17 | Furukawa Battery Co Ltd:The | Sealed type lead-acid storage battery |
WO2012157311A1 (en) * | 2011-05-13 | 2012-11-22 | 新神戸電機株式会社 | Lead battery |
WO2015181865A1 (en) * | 2014-05-26 | 2015-12-03 | 株式会社Gsユアサ | Lead storage cell |
JP2016103422A (en) * | 2014-11-28 | 2016-06-02 | 株式会社Gsユアサ | Lead storage battery and negative electrode plate thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018018803A (en) * | 2016-07-29 | 2018-02-01 | 株式会社Gsユアサ | Lead-acid battery |
CN112385070A (en) * | 2018-04-20 | 2021-02-19 | 达拉米克有限责任公司 | Acid battery with fiber mat |
JP2022502813A (en) * | 2018-04-20 | 2022-01-11 | ダラミック エルエルシー | Lead acid battery containing fibrous mat |
JP7471231B2 (en) | 2018-04-20 | 2024-04-19 | ダラミック エルエルシー | Lead acid battery containing fibrous mat |
EP4037023A4 (en) * | 2019-09-27 | 2024-07-31 | Gs Yuasa Int Ltd | Lead acid storage battery |
JPWO2021200290A1 (en) * | 2020-03-30 | 2021-10-07 | ||
WO2021200290A1 (en) * | 2020-03-30 | 2021-10-07 | 旭化成株式会社 | Lead storage battery |
JP7314405B2 (en) | 2020-03-30 | 2023-07-25 | 旭化成株式会社 | lead acid battery |
Also Published As
Publication number | Publication date |
---|---|
JP6756182B2 (en) | 2020-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101139665B1 (en) | Lead storage battery | |
JP7380580B2 (en) | lead acid battery | |
JP6756182B2 (en) | Lead-acid battery | |
WO2019087686A1 (en) | Lead storage battery | |
JP7143927B2 (en) | lead acid battery | |
JP6766504B2 (en) | Lead-acid battery | |
WO2019087683A1 (en) | Lead storage battery | |
WO2019087680A1 (en) | Lead storage battery | |
WO2019087682A1 (en) | Lead storage battery | |
WO2018199124A1 (en) | Lead acid storage battery | |
JP7363288B2 (en) | Negative electrode plate for lead-acid battery, lead-acid battery, and manufacturing method of negative electrode plate for lead-acid battery | |
JP7124828B2 (en) | lead acid battery | |
JP2018018800A (en) | Lead-acid battery | |
WO2018199053A1 (en) | Lead acid battery | |
WO2020105484A1 (en) | Lead storage battery | |
WO2019225161A1 (en) | Lead-acid battery | |
JP6958034B2 (en) | Lead-acid battery | |
JP6750376B2 (en) | Lead acid battery | |
WO2019087679A1 (en) | Lead storage battery | |
WO2018199207A1 (en) | Lead acid battery | |
WO2023210635A1 (en) | Lead storage battery | |
WO2024005041A1 (en) | Lead-acid battery | |
WO2018020937A1 (en) | Lead storage cell | |
JP2024104758A (en) | Lead-acid battery | |
JP2024005293A (en) | lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200303 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200728 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6756182 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |