JP6766504B2 - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP6766504B2
JP6766504B2 JP2016150866A JP2016150866A JP6766504B2 JP 6766504 B2 JP6766504 B2 JP 6766504B2 JP 2016150866 A JP2016150866 A JP 2016150866A JP 2016150866 A JP2016150866 A JP 2016150866A JP 6766504 B2 JP6766504 B2 JP 6766504B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
lead
positive electrode
proofing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016150866A
Other languages
Japanese (ja)
Other versions
JP2018018803A (en
Inventor
絵里子 佐々木
絵里子 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2016150866A priority Critical patent/JP6766504B2/en
Publication of JP2018018803A publication Critical patent/JP2018018803A/en
Application granted granted Critical
Publication of JP6766504B2 publication Critical patent/JP6766504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.

鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、正極板と、負極板と、正極板および負極板の間に介在するセパレータと、硫酸を含む電解液とを含む。負極板は、負極集電体と負極電極材料とを備え、正極板は、正極集電体と正極電極材料とを備える。 Lead-acid batteries are used for various purposes such as in-vehicle use and industrial use. The lead-acid battery includes a positive electrode plate, a negative electrode plate, a separator interposed between the positive electrode plate and the negative electrode plate, and an electrolytic solution containing sulfuric acid. The negative electrode plate includes a negative electrode current collector and a negative electrode material, and the positive electrode plate includes a positive electrode current collector and a positive electrode material.

負極電極材料は、酸化還元反応により容量を発現する活物質(海綿状鉛もしくは硫酸鉛)を含んでいる。負極板では、充電時に、硫酸鉛の還元反応が進行するが、硫酸鉛は海綿状鉛に還元されにくい。そのため、硫酸鉛の結晶が次第に成長するサルフェーションが進行する。また、充電時には、極板周辺の電解液の硫酸濃度が高くなり、部分的に高濃度になった硫酸溶液が電池下部に沈降する傾向がある。これらの現象は、鉛蓄電池の放電性能や寿命性能を低下させるため、以下のように様々な対策が検討されている。 The negative electrode material contains an active material (lead spongy or lead sulfate) whose capacity is developed by a redox reaction. In the negative electrode plate, the reduction reaction of lead sulfate proceeds during charging, but lead sulfate is difficult to be reduced to spongy lead. Therefore, sulfation in which lead sulfate crystals gradually grow progresses. Further, during charging, the sulfuric acid concentration of the electrolytic solution around the electrode plate becomes high, and the partially high-concentration sulfuric acid solution tends to settle in the lower part of the battery. Since these phenomena reduce the discharge performance and life performance of lead-acid batteries, various measures are being studied as follows.

特許文献1は、有機防縮剤として、ビスフェノール類縮合物を負極電極材料に含有させることを教示している。 Patent Document 1 teaches that a bisphenol condensate is contained in a negative electrode material as an organic shrinkage proofing agent.

特許文献2は、負極活物質の多孔度を0.22mL/g以上、0.4mL/g以下にすることを提案している。 Patent Document 2 proposes that the porosity of the negative electrode active material is 0.22 mL / g or more and 0.4 mL / g or less.

特許文献3は、負極板にガラスなどの材料の繊維で構成された不織布を当接させることを提案している。 Patent Document 3 proposes that a non-woven fabric made of fibers of a material such as glass is brought into contact with a negative electrode plate.

特許文献4は、密閉型鉛蓄電池において、耐酸性の無機粉体とガラス繊維を主体とする多孔質の電解液保持体の最大孔径を30μm未満とするか、比表面積を5〜80m2/gとすることを提案している。電解液保持体の希硫酸に対する接触角は30〜70度である。 Patent Document 4 describes that in a closed-type lead-acid battery, the maximum pore size of a porous electrolyte holder mainly composed of acid-resistant inorganic powder and glass fiber is less than 30 μm, or the specific surface area is 5 to 80 m 2 / g. It is proposed to be. The contact angle of the electrolyte retainer with respect to dilute sulfuric acid is 30 to 70 degrees.

国際公開第2015/181865号パンフレットInternational Publication No. 2015/181865 Pamphlet 特開2014−123525号公報Japanese Unexamined Patent Publication No. 2014-123525 国際公開第2012/157311号パンフレットInternational Publication No. 2012/157311 Pamphlet 特開平3−122966号公報JP-A-3-122966

上記のように様々な改良技術が試みられているが、鉛蓄電池の放電性能の更なる改良は次第に困難になりつつある。 Although various improvement techniques have been tried as described above, it is becoming increasingly difficult to further improve the discharge performance of lead-acid batteries.

本発明の一側面は、負極板と、正極板と、前記負極板と前記正極板との間に介在するセパレータと、電解液と、を備え、前記負極板は、負極集電体と、負極電極材料と、を備え、前記負極電極材料は、有機防縮剤を含み、前記正極板と前記セパレータとの間に、不織布マットが介在しており、前記負極電極材料の空隙比率が、0.22cm3/g以上、0.27cm3/g以下である、鉛蓄電池に関する。 One aspect of the present invention includes a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolytic solution, and the negative electrode plate includes a negative electrode current collector and a negative electrode. The negative electrode material includes an electrode material, the negative electrode material contains an organic shrinkage proofing agent, a non-woven mat is interposed between the positive electrode plate and the separator, and the void ratio of the negative electrode material is 0.22 cm. It relates to a lead storage battery which is 3 / g or more and 0.27 cm 3 / g or less.

本発明によれば、鉛蓄電池の放電性能が向上し、低率放電容量を増加させることができる。 According to the present invention, the discharge performance of the lead storage battery can be improved, and the low rate discharge capacity can be increased.

本発明の一実施形態に係る鉛蓄電池の外観と内部構造を示す、一部を切り欠いた分解斜視図である。It is an exploded perspective view which cut out a part which shows the appearance and the internal structure of the lead storage battery which concerns on one Embodiment of this invention. 有機防縮剤中の硫黄元素の含有量と、正極電極材料の脱落量と、の関係を示す図である。It is a figure which shows the relationship between the content of the sulfur element in the organic shrinkage-proofing agent, and the amount of falling off of a positive electrode material. 有機防縮剤中の硫黄元素の含有量と、負極板下部における硫酸鉛蓄積量と、の関係を示す図である。It is a figure which shows the relationship between the content of the sulfur element in the organic shrinkage-proofing agent, and the amount of lead sulfate accumulation in the lower part of a negative electrode plate. 不織布マットの有無と、5時間率放電持続時間(0.2CA放電持続時間)と、の関係を示す図である。It is a figure which shows the relationship between the presence or absence of a non-woven fabric mat, and the 5-hour rate discharge duration (0.2CA discharge duration). 負極電極材料の空隙比率と、5時間率放電持続時間(0.2CA放電持続時間)と、の関係を示す図である。It is a figure which shows the relationship between the void ratio of the negative electrode electrode material, and the 5 hour rate discharge duration (0.2CA discharge duration). 不織布マットの有無と、負極電極材料の空隙比率と、5時間率放電持続時間(0.2CA放電持続時間)と、の関係を示す図である。It is a figure which shows the relationship between the presence or absence of a non-woven fabric mat, the void ratio of a negative electrode material, and the 5-hour rate discharge duration (0.2CA discharge duration). 不織布マットに対する電解液の接触角を変化させたときの、有機防縮剤中の硫黄元素の含有量と、5時間率放電持続時間(0.2CA放電持続時間)と、の関係を示す図である。It is a figure which shows the relationship between the content of the sulfur element in an organic shrink-proofing agent, and the 5-hour rate discharge duration (0.2CA discharge duration) when the contact angle of the electrolytic solution with respect to the non-woven fabric mat is changed. ..

本発明の一側面に係る鉛蓄電池は、負極板と、正極板と、負極板と正極板との間に介在するセパレータと、電解液とを備える。負極板は、負極集電体と、負極電極材料とを備え、負極電極材料は、有機防縮剤を含み、負極電極材料の空隙比率は、0.22cm3/g以上、0.27cm3/g以下である。また、正極板とセパレータとの間には、不織布マットが介在している。不織布マットは、正極板と一体化されず、かつ正極板に当接された状態で配置されていることが好ましい。
本発明の実施形態としては、制御弁式(密閉式)鉛蓄電池よりも、液式(ベント式)鉛蓄電池が適している。
The lead-acid battery according to one aspect of the present invention includes a negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolytic solution. The negative electrode plate includes a negative electrode current collector and a negative electrode material, the negative electrode material contains an organic shrinkage proofing agent, and the void ratio of the negative electrode material is 0.22 cm 3 / g or more and 0.27 cm 3 / g. It is as follows. Further, a non-woven fabric mat is interposed between the positive electrode plate and the separator. It is preferable that the non-woven fabric mat is not integrated with the positive electrode plate and is arranged in contact with the positive electrode plate.
As an embodiment of the present invention, a liquid type (vent type) lead storage battery is more suitable than a control valve type (sealed type) lead storage battery.

正極板とセパレータとの間に不織布マットを介在させるとともに、負極電極材料の空隙比率を0.22cm3/g以上、0.27cm3/g以下にすることで、鉛蓄電池の低率放電性能が向上する。中でも、有機防縮剤中の硫黄元素の含有量が4000〜8000μmol/g(より好ましくは6000〜8000μmol/g)の場合、放電性能が顕著に向上する。空隙比率が0.22〜0.27cm3/gの負極電極材料は、電解液との接触面積が大きく、利用率が高くなることに加え、有機防縮剤の作用により、負極電極材料の比抵抗が低くなっているものと考えられる。また、正極板とセパレータとの間に不織布マットが存在することで、極板の周囲の硫酸イオンの拡散が均一になり、放電が極板の上下を問わず均一に起こりやすくなり、活物質の利用率が向上するものと考えられる。 With interposing a non-woven mat between the positive electrode plate and the separator, the void ratio of the negative electrode material 0.22 cm 3 / g or more, by the following 0.27 cm 3 / g, the low rate discharge performance of lead-acid battery improves. Above all, when the content of the sulfur element in the organic shrink-proofing agent is 4000 to 8000 μmol / g (more preferably 6000 to 8000 μmol / g), the discharge performance is remarkably improved. The negative electrode material having a void ratio of 0.22 to 0.27 cm 3 / g has a large contact area with the electrolytic solution, has a high utilization rate, and has a specific resistance of the negative electrode material due to the action of the organic shrinkage proofing agent. Is considered to be low. In addition, the presence of the non-woven fabric mat between the positive electrode plate and the separator makes the diffusion of sulfate ions around the electrode plate uniform, and discharge tends to occur uniformly regardless of the top and bottom of the electrode plate. It is thought that the utilization rate will improve.

なお、有機防縮剤中の硫黄元素の含有量がXμmol/gであるとは、有機防縮剤の1g当たりに含まれる硫黄元素の含有量がXμmolであることをいう。 The content of the sulfur element in the organic shrink-proofing agent is X μmol / g, which means that the content of the sulfur element contained in 1 g of the organic shrink-proofing agent is X μmol.

負極電極材料の空隙比率が0.22cm3/g以上、0.27cm3/g以下のとき、負極電極材料の密度は、概ね3.2g/cm3〜2.5g/cm3程度(すなわち低密度)である。このとき、体積基準の細孔径分布の中央値は、例えば0.1μm〜10μmであることが好ましい。 Void ratio of the negative electrode material is 0.22 cm 3 / g or more, when the 0.27 cm 3 / g or less, the density of the negative electrode material is roughly 3.2g / cm 3 ~2.5g / cm 3 order (i.e. low Density). At this time, the median value of the volume-based pore size distribution is preferably, for example, 0.1 μm to 10 μm.

一般に、有機防縮剤は、鉛蓄電池の低温での高率放電性能の向上、負極板の充電受入性能の向上などが期待できる。しかし、負極板に添加された有機防縮剤の一部は、電解液に溶出して、正極電極材料を軟化させる傾向があることが判明しつつある。正極電極材料が軟化すると、正極板の耐久性が低下し、正極集電体から正極電極材料が脱落しやすくなる。そして、正極電極材料の脱落は、有機防縮剤中の硫黄元素の含有量が大きいほど生じやすい傾向がある。 In general, organic shrinkage proofing agents can be expected to improve the high-rate discharge performance of lead-acid batteries at low temperatures and the charge acceptance performance of negative electrode plates. However, it is becoming clear that some of the organic shrink-proofing agents added to the negative electrode plate tend to elute into the electrolytic solution and soften the positive electrode material. When the positive electrode material is softened, the durability of the positive electrode plate is lowered, and the positive electrode material is likely to fall off from the positive electrode current collector. Then, the loss of the positive electrode material tends to occur more easily as the content of the sulfur element in the organic shrink-proofing agent increases.

正極板とセパレータとの間に介在する不織布マットは、正極板と一体化されず、かつ正極板に当接された状態で配置されていることが好ましい。これにより、不織布マットは、正極電極材料の脱落を顕著に抑制する作用も有すると考えられる。例えば、有機防縮剤中の硫黄元素の含有量が4000〜8000μmol/gの場合でも、有機防縮剤中の硫黄元素の含有量が600μmol/g程度で不織布マットを用いない場合と同等レベルにまで、正極電極材料の脱落を抑制することができる。正極板とセパレータとの間に不織布マットを介在させる場合、ガスが発生しても、正極電極材料とガスとの接触が物理的に抑制される。よって、正極電極材料がガス発生の影響を受けにくくなり、脱落しにくくなるものと考えられる。また、不織布マットは、硫酸イオンの沈降を抑制し、電解液の成層化を抑制する作用も有すると考えられる。 It is preferable that the non-woven fabric mat interposed between the positive electrode plate and the separator is not integrated with the positive electrode plate and is arranged in contact with the positive electrode plate. As a result, it is considered that the non-woven fabric mat also has an effect of remarkably suppressing the falling off of the positive electrode material. For example, even when the content of the sulfur element in the organic shrink-proofing agent is 4000 to 8000 μmol / g, the content of the sulfur element in the organic shrinkage-proofing agent is about 600 μmol / g, which is the same level as when the non-woven fabric mat is not used. It is possible to suppress the falling off of the positive electrode material. When a non-woven fabric mat is interposed between the positive electrode plate and the separator, contact between the positive electrode material and the gas is physically suppressed even if gas is generated. Therefore, it is considered that the positive electrode material is less likely to be affected by gas generation and is less likely to fall off. Further, it is considered that the non-woven fabric mat also has an effect of suppressing the precipitation of sulfate ions and suppressing the stratification of the electrolytic solution.

有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に1つ以上、好ましくは複数の芳香環を含むとともに、硫黄含有基として硫黄元素を含んでいる。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。 The organic shrinkage proofing agent is an organic polymer containing a sulfur element, and generally contains one or more, preferably a plurality of aromatic rings in the molecule, and also contains a sulfur element as a sulfur-containing group. Among the sulfur-containing groups, a sulfonic acid group or a sulfonyl group in a stable form is preferable. The sulfonic acid group may be present in the acid form or in the salt form such as the Na salt.

有機防縮剤の具体例としては、硫黄含有基を有するとともに1つ以上、好ましくは2つ以上の芳香環を有する化合物のホルムアルデヒドによる縮合物が好ましい。2つ以上の芳香環を有する化合物としては、ビスフェノール類、ビフェニル類、ナフタレン類などを用いることが好ましい。ビスフェノール類、ビフェニル類およびナフタレン類とは、それぞれビスフェノール骨格、ビフェニル骨格およびナフタレン骨格を有する化合物の総称であり、それぞれが置換基を有してもよい。これらは、有機防縮剤中に単独で含まれてもよく、複数種が含まれてもよい。ビスフェノールとしては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。中でも、ビスフェノールSは、ビスフェノール骨格内にスルホニル基(−SO2−)を有するため、硫黄元素の含有量を大きくすることが容易である。 As a specific example of the organic shrink-proofing agent, a condensation product of a compound having a sulfur-containing group and having one or more, preferably two or more aromatic rings, made of formaldehyde is preferable. As the compound having two or more aromatic rings, it is preferable to use bisphenols, biphenyls, naphthalenes and the like. Bisphenols, biphenyls and naphthalenes are a general term for compounds having a bisphenol skeleton, a biphenyl skeleton and a naphthalene skeleton, respectively, and each may have a substituent. These may be contained alone in the organic shrink proofing agent, or may contain a plurality of kinds. As the bisphenol, bisphenol A, bisphenol S, bisphenol F and the like are preferable. Above all, since bisphenol S has a sulfonyl group (−SO 2− ) in the bisphenol skeleton, it is easy to increase the content of sulfur element.

ビスフェノール類の縮合物は、常温より高い温度環境を経験しても、低温での性能が損なわれないので、常温より高い温度環境におかれる鉛蓄電池(自動車用の液式の鉛蓄電池など)に適している。ナフタレンスルホン酸の縮合物は、ビスフェノール類の縮合物に比べ、分極が小さくなりにくいので、減液特性が重要な鉛蓄電池に適している。 Condensates of bisphenols do not impair their performance at low temperatures even if they experience a temperature environment higher than room temperature, so they can be used for lead-acid batteries (such as liquid lead-acid batteries for automobiles) that are placed in a temperature environment higher than room temperature. Are suitable. The naphthalene sulfonic acid condensate is less likely to have a smaller polarization than the bisphenol condensate, and is therefore suitable for lead-acid batteries in which liquid-reducing properties are important.

硫黄含有基は、ビスフェノール類、ビフェニル類、ナフタレン類などの芳香環に直接結合していてもよく、例えば硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。また、アミノベンゼンスルホン酸もしくはアルキルアミノベンゼンスルホン酸のような単環式の化合物を、2つ以上の芳香環を有する化合物とともにホルムアルデヒドで縮合させてもよい。 The sulfur-containing group may be directly bonded to an aromatic ring of bisphenols, biphenyls, naphthalenes, etc., and may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group, for example. Further, a monocyclic compound such as aminobenzenesulfonic acid or alkylaminobenzenesulfonic acid may be condensed with formaldehyde together with a compound having two or more aromatic rings.

N,N'−(スルホニルジ−4,1−フェニレン)ビス(1,2,3,4−テトラヒドロ−6−メチル−2,4−ジオキソピリミジン−5−スルホンアミド)の縮合物などを有機防縮剤として用いてもよい。 Organic condensate of N, N'-(sulfonyldi-4,1-phenylene) bis (1,2,3,4-tetrahydro-6-methyl-2,4-dioxopyrimidine-5-sulfonamide) It may be used as a shrink-proofing agent.

負極電極材料中に含まれる有機防縮剤の含有量は、一般的な範囲であれば、有機防縮剤の作用を大きく左右するものではない。負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましく、一方、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.3質量%以下が更に好ましい。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。 The content of the organic shrink-proofing agent contained in the negative electrode electrode material does not significantly affect the action of the organic shrinkage-proofing agent within a general range. The content of the organic shrink-proofing agent contained in the negative electrode electrode material is, for example, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, further preferably 0.05% by mass or more, while 1.0. It is preferably 0% by mass or less, more preferably 0.8% by mass or less, still more preferably 0.3% by mass or less. Here, the content of the organic shrinkage-proofing agent contained in the negative electrode material is the content in the negative electrode material collected by the method described later from a prefabricated lead-acid battery in a fully charged state.

負極電極材料の比抵抗を減少させ、電極材料の利用率を高め、低率放電容量を向上させる観点からは、有機防縮剤中の硫黄元素の含有量は、2000μmol/g以上が好ましく、3000μmol/g以上がより好ましく、4000μmol/g以上が更に好ましく、6000μmol/g以上が特に好ましい。 From the viewpoint of reducing the specific resistance of the negative electrode material, increasing the utilization rate of the electrode material, and improving the low-rate discharge capacity, the content of the sulfur element in the organic shrink-proofing agent is preferably 2000 μmol / g or more, and 3000 μmol / g. It is more preferably g or more, further preferably 4000 μmol / g or more, and particularly preferably 6000 μmol / g or more.

有機防縮剤中の硫黄元素の含有量を過度に大きくすることは困難である。有機防縮剤中の硫黄元素の含有量は、10000μmol/g以下であればよく、9000μmol/g以下がより好ましく、8000μmol/g以下が更に好ましい。 It is difficult to make the content of sulfur elements in the organic shrink proofing agent excessively high. The content of the sulfur element in the organic shrink proofing agent may be 10,000 μmol / g or less, more preferably 9000 μmol / g or less, and further preferably 8000 μmol / g or less.

以下、本発明の実施形態に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
(負極板)
鉛蓄電池の負極板は、負極集電体と、負極電極材料とを具備する。負極電極材料は、負極集電体に保持されている。負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、エキスパンド加工や打ち抜き(パンチング)が挙げられる。
Hereinafter, the lead-acid battery according to the embodiment of the present invention will be described for each of the main constituent requirements, but the present invention is not limited to the following embodiments.
(Negative electrode plate)
The negative electrode plate of the lead storage battery includes a negative electrode current collector and a negative electrode material. The negative electrode material is held in the negative electrode current collector. The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include expanding processing and punching.

負極集電体に用いられる鉛合金は、Pb−Sb系合金、Pb−Ca系合金、Pb−Ca−Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種の元素を含んでもよい。負極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。 The lead alloy used in the negative electrode current collector may be any of Pb-Sb-based alloys, Pb-Ca-based alloys, and Pb-Ca-Sn-based alloys. These leads or lead alloys may further contain at least one element selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additive element. The negative electrode current collector may have lead alloy layers having different compositions, and may have a plurality of lead alloy layers.

負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)と、既に述べた合成有機防縮剤とを所定の含有量で含む。負極電極材料は、更に、カーボンブラックのような炭素質材料、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。 The negative electrode electrode material contains a negative electrode active material (lead or lead sulfate) whose capacity is developed by a redox reaction and the synthetic organic shrink-proofing agent described above in a predetermined content. The negative electrode material may further contain a carbonaceous material such as carbon black, barium sulfate, and the like, and may also contain other additives, if necessary.

充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、負極活物質の原料となる鉛粉末を用いて作製される。 The negative electrode active material in the charged state is spongy lead, but the unchemicald negative electrode plate is usually produced by using lead powder which is a raw material of the negative electrode active material.

負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と有機防縮剤と各種添加剤に、水と硫酸を加えて混練することで調製する。このとき、室温より高温かつ高湿度で熟成させることが好ましい。 The negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to prepare an unchemicald negative electrode plate, and then forming an unchemicald negative electrode plate. The negative electrode paste is prepared by adding water and sulfuric acid to lead powder, an organic shrink-proofing agent, and various additives and kneading them. At this time, it is preferable to ripen at a temperature higher than room temperature and high humidity.

化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 The chemical conversion can be carried out by charging the electrode plate group in a state where the electrode plate group including the unchemical negative electrode plate is immersed in an electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical conversion may be carried out before assembling the lead-acid battery or the electrode plate group. The chemical formation produces spongy lead.

(正極)
鉛蓄電池の正極板は、ペースト式、クラッド式などに分類できる。
ペースト式正極板は、一般に、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。正極集電体は、負極集電体と同様に形成すればよく、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。
クラッド式正極は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。
(Positive electrode)
The positive electrode plate of a lead storage battery can be classified into a paste type, a clad type and the like.
The paste-type positive electrode plate generally includes a positive electrode current collector and a positive electrode material. The positive electrode material is held in the positive electrode current collector. The positive electrode current collector may be formed in the same manner as the negative electrode current collector, and can be formed by casting lead or a lead alloy or processing a lead or a lead alloy sheet.
The clad type positive electrode has a plurality of porous tubes, a core metal inserted in each tube, a positive electrode material filled in the tube into which the core metal is inserted, and a collective punishment for connecting the plurality of tubes. Equipped.

正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb−Ca系合金、Pb−Ca−Sn系などが好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。芯金には、Pb−Sb系合金を用いることが好ましい。 As the lead alloy used for the positive electrode current collector, Pb-Ca-based alloys, Pb-Ca-Sn-based alloys and the like are preferable in terms of corrosion resistance and mechanical strength. The positive electrode current collector may have lead alloy layers having different compositions, and may have a plurality of lead alloy layers. It is preferable to use a Pb-Sb-based alloy for the core metal.

正極電極材料は、酸化還元反応により容量を発現する正極活物質(酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、正極活物質に加え、必要に応じて、硫酸錫、鉛丹など添加剤を含んでもよい。 The positive electrode material contains a positive electrode active material (lead oxide or lead sulfate) whose capacity is developed by a redox reaction. The positive electrode material may contain additives such as tin sulfate and lead tan, if necessary, in addition to the positive electrode active material.

未化成のペースト式正極板は、負極板の場合に準じて、正極集電体に、正極ペーストを充填し、熟成および乾燥することにより得られる。正極ペーストは、鉛粉、添加剤、水、硫酸を混練することで調製される。その後、未化成の正極板を化成する。クラッド式正極板は、芯金が挿入された多孔質なチューブに鉛粉またはスラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。 The unchemical paste type positive electrode plate is obtained by filling the positive electrode current collector with the positive electrode paste, aging and drying, as in the case of the negative electrode plate. The positive electrode paste is prepared by kneading lead powder, additives, water, and sulfuric acid. Then, an unchemical positive electrode plate is formed. The clad-type positive electrode plate is formed by filling a porous tube into which a core metal is inserted with lead powder or slurry-like lead powder, and connecting a plurality of tubes in a collective punishment.

(電解液)
電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。ゲル化の程度は、特に限定されない。流動性を有するゾルからゲル状態の電解液を用いてもよく、流動性を有さないゲル状態の電解質を用いてもよい。満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.10〜1.35g/cm3であり、1.20〜1.35g/cm3であることが好ましい。
(Electrolytic solution)
The electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled if necessary. The degree of gelation is not particularly limited. A gel-like electrolyte solution from a sol having fluidity may be used, or a gel-state electrolyte solution having no fluidity may be used. The specific gravity of the electrolytic solution in the fully charged lead-acid battery at 20 ° C. is, for example, 1.10 to 1.35 g / cm 3 , and preferably 1.20 to 1.35 g / cm 3 .

(不織布マット)
不織布マットは、電解液に不溶な繊維材料を織らずに絡み合わせたシートである。繊維材料としては、ガラス繊維、ポリマー繊維、パルプ繊維などを用いることができる。ポリマー繊維の中では、ポリオレフィン繊維が好ましい。不織布マットは、繊維材料以外の成分を含んでもよく、例えば耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよい。無機粉体としては、シリカ粉末、ガラス粉末、珪藻土などを用いることができる。ただし、不織布マットの細孔内に豊富な電解液を均一に拡散させる観点から、繊維材料の含有量を5質量%以上、更には10質量%以上もしくは30質量%以上とすることが好ましい。
(Non-woven mat)
The non-woven fabric mat is a sheet in which a fiber material insoluble in an electrolytic solution is entwined without weaving. As the fiber material, glass fiber, polymer fiber, pulp fiber and the like can be used. Among the polymer fibers, polyolefin fibers are preferable. The non-woven fabric mat may contain components other than the fiber material, and may contain, for example, an acid-resistant inorganic powder, a polymer as a binder, and the like. As the inorganic powder, silica powder, glass powder, diatomaceous earth and the like can be used. However, from the viewpoint of uniformly diffusing the abundant electrolytic solution in the pores of the non-woven fabric mat, the content of the fiber material is preferably 5% by mass or more, more preferably 10% by mass or more, or 30% by mass or more.

不織布マットを構成する繊維材料の平均繊維径は、例えば0.1μm〜25μmである。不織布マットを構成する無機粉体の平均粒子径は、例えば1μm〜100nmである。これらの平均値は、10本以上の繊維または10個以上の粒子を任意に選択し、選択された繊維の拡大写真から求めることができる。粒子の粒子径は、拡大写真で確認できる粒子の投影面積と同面積の相当円の直径である。 The average fiber diameter of the fiber material constituting the non-woven fabric mat is, for example, 0.1 μm to 25 μm. The average particle size of the inorganic powder constituting the non-woven fabric mat is, for example, 1 μm to 100 nm. These average values can be obtained from an enlarged photograph of 10 or more fibers or 10 or more particles arbitrarily selected and selected fibers. The particle diameter of the particles is the diameter of a corresponding circle having the same area as the projected area of the particles that can be confirmed in the enlarged photograph.

不織布マットに対する電解液の接触角θmは、0°〜40°が好ましく、30°未満がより好ましく、25°以下が更に好ましい。接触角θmを40°以下とすることで、不織布マットの細孔内への電解液の拡散性が向上し、寿命性能および低率放電性能を、より向上させやすくなる。中でも、有機防縮剤中の硫黄元素の含有量が4000〜8000μmol/g(より好ましくは6000〜8000μmol/g)の場合、接触角θmを0°〜40°とすることで、寿命性能および低率放電性能が顕著に向上する。 The contact angle θm of the electrolytic solution with respect to the non-woven fabric mat is preferably 0 ° to 40 °, more preferably less than 30 °, and even more preferably 25 ° or less. By setting the contact angle θm to 40 ° or less, the diffusibility of the electrolytic solution into the pores of the non-woven fabric mat is improved, and it becomes easier to improve the life performance and the low rate discharge performance. Above all, when the content of the sulfur element in the organic shrink-proofing agent is 4000 to 8000 μmol / g (more preferably 6000 to 8000 μmol / g), the contact angle θm is set to 0 ° to 40 °, so that the life performance and the low rate Discharge performance is significantly improved.

なお、接触角θmは、不織布マットの表面処理などにより制御することができる。例えば、不織布マットの表面を親水化処理することにより、接触角θmを40°以下に小さくすることができる。親水化処理としては、不織布マットの表面にコーティングを施したり、不織布マットの表面をプラズマ処理したりすることが挙げられる。 The contact angle θm can be controlled by surface treatment of the non-woven fabric mat or the like. For example, the contact angle θm can be reduced to 40 ° or less by hydrophilizing the surface of the non-woven fabric mat. Examples of the hydrophilization treatment include coating the surface of the non-woven fabric mat and plasma-treating the surface of the non-woven fabric mat.

不織布マットの厚さは、鉛蓄電池のサイズ、正極板と負極板の厚さなどに応じて、適宜選択すればよいが、例えば0.1mm〜2mmの範囲から選択すればよい。 The thickness of the non-woven fabric mat may be appropriately selected according to the size of the lead storage battery, the thickness of the positive electrode plate and the negative electrode plate, and the like, and may be selected from, for example, the range of 0.1 mm to 2 mm.

(セパレータ)
セパレータには、微多孔膜が用いられる。微多孔膜は、繊維材料以外を主体とするシートであり、例えば、ポリマー粉末、シリカ粉末およびオイルを含む組成物をシート状に押し出し成形した後、オイルを抽出して細孔を形成することにより得られる。セパレータを構成するポリマー成分は、耐酸性を有するものが好ましく、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。微多孔膜に微量の繊維材料を含ませてもよいが、繊維材料の含有量は20質量%以下とすることが好ましい。
(Separator)
A microporous membrane is used as the separator. The microporous membrane is a sheet mainly composed of materials other than fiber materials. For example, a composition containing polymer powder, silica powder and oil is extruded into a sheet, and then the oil is extracted to form pores. can get. The polymer component constituting the separator is preferably one having acid resistance, and preferably a polyolefin such as polyethylene or polypropylene. The microporous membrane may contain a small amount of fiber material, but the content of the fiber material is preferably 20% by mass or less.

セパレータの厚さは、鉛蓄電池のサイズ、正極板と負極板の厚さなどに応じて、適宜選択すればよいが、例えば厚さ0.4〜1.3mの範囲から選択すればよい。なお、セパレータが、表面に凹凸を有する場合には、凸部を有する部分の厚さが上記範囲内であればよい。例えば均一な厚さのベースとその主面から突出する複数のリブとを有するセパレータの場合、ベースとリブの総厚が上記範囲内であればよい。また、セパレータを2層以上積層して用いてもよく、2層以上のセパレータを接着して一体化させてもよい。 The thickness of the separator may be appropriately selected according to the size of the lead-acid battery, the thickness of the positive electrode plate and the negative electrode plate, and the like, and may be selected from, for example, a thickness of 0.4 to 1.3 m. When the separator has irregularities on the surface, the thickness of the portion having the convex portions may be within the above range. For example, in the case of a separator having a base having a uniform thickness and a plurality of ribs protruding from the main surface thereof, the total thickness of the base and the ribs may be within the above range. Further, two or more layers of separators may be laminated and used, or two or more layers of separators may be adhered and integrated.

次に、各物性の分析方法について説明する。
(1)負極電極材料の空隙比率
化成後の電池を満充電してから解体し、入手した負極板に、負極板に水洗と乾燥とを施すことにより負極板中の電解液を除く。次いで負極板から負極電極材料を分離して、未粉砕の測定試料を入手する。真空ポンプを用いて測定試料の減圧脱気を行い、測定試料の質量を電子天秤で測定した後、20℃±0.1℃で安定させたイオン交換水および/または蒸留水に浸漬させる。浸漬前後の測定試料の質量の差と、水の真密度の値より、測定試料の内部の空隙に入り込んだ水の体積を求めることができる。得られた水の体積を、浸漬前の測定試料の質量で除することにより、負極電極材料の空隙比率を求める。
Next, the analysis method of each physical property will be described.
(1) Void ratio of negative electrode material The electrolytic solution in the negative electrode plate is removed by fully charging the battery after chemical conversion, disassembling the battery, and washing and drying the obtained negative electrode plate with water. Next, the negative electrode material is separated from the negative electrode plate to obtain an unground measurement sample. The measurement sample is degassed under reduced pressure using a vacuum pump, the mass of the measurement sample is measured with an electronic balance, and then immersed in ion-exchanged water and / or distilled water stabilized at 20 ° C. ± 0.1 ° C. The volume of water that has entered the void inside the measurement sample can be determined from the difference in mass of the measurement sample before and after immersion and the value of the true density of water. The void ratio of the negative electrode material is obtained by dividing the volume of the obtained water by the mass of the measurement sample before immersion.

鉛蓄電池を満充電状態にする補充電条件は以下の通りである。
液式電池の場合、25℃、水槽中、0.2CAで2.5V/セルに達するまで定電流充電をおこなった後、さらに0.2CAで2時間、定電流充電を行う。
VRLA電池(制御弁式鉛蓄電池)の場合、25℃、気槽中、0.2CA、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が1mCA以下になった時点で充電を終了する。
この明細書における1CAは、電池の公称容量を1時間で放電する電流値であり、例えば公称容量が30Ahの電池であれば1CAは30Aであり、1mCAは30mAである。
The supplementary charging conditions for making the lead-acid battery fully charged are as follows.
In the case of a liquid battery, constant current charging is performed at 25 ° C. in a water tank at 0.2 CA until it reaches 2.5 V / cell, and then constant current charging is performed at 0.2 CA for 2 hours.
In the case of a VRLA battery (control valve type lead-acid battery), 0.2CA, 2.23V / cell constant current constant voltage charging was performed at 25 ° C. in the air tank, and the charging current during constant voltage charging became 1 mCA or less. Charging ends at that point.
In this specification, 1CA is a current value for discharging the nominal capacity of the battery in 1 hour. For example, in the case of a battery having a nominal capacity of 30Ah, 1CA is 30A and 1mCA is 30mA.

なお、負極電極材料の密度は、化成後の負極電極材料のかさ密度の値を意味し、以下のようにして測定する。
化成後の電池を満充電してから解体し、入手した負極板に、水洗と乾燥とを施すことにより負極板中の電解液を除く。次いで、負極板から負極電極材料を分離して、未粉砕の測定試料を入手する。測定容器に試料を投入し、真空排気した後、0.5〜0.55psiaの圧力で水銀を満たして、負極電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、負極電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。
The density of the negative electrode material means the value of the bulk density of the negative electrode material after chemical conversion, and is measured as follows.
The battery after chemical conversion is fully charged and then disassembled, and the obtained negative electrode plate is washed with water and dried to remove the electrolytic solution in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate to obtain an unground measurement sample. After the sample is placed in the measuring container and evacuated, the bulk volume of the negative electrode material is measured by filling mercury at a pressure of 0.5 to 0.55 psia, and the mass of the measurement sample is divided by the bulk volume. , Obtain the bulk density of the negative electrode material. The volume obtained by subtracting the mercury injection volume from the volume of the measuring container is defined as the bulk volume.

(2)不織布マットに対する電解液の接触角
上記と同様に、化成後に満充電した鉛蓄電池から不織布マットを取り出し、洗浄し、乾燥して、不織布マットの試料片を採取する。次に、採取した試料片の水平面に対し、標準的な電解液として20℃での比重1.28g/cm3の硫酸水溶液を2μL滴下し、形成された液滴の2秒後の画像を解析し、θ/2法により接触角を測定する。
(2) Contact angle of electrolytic solution with respect to the non-woven fabric mat In the same manner as described above, the non-woven fabric mat is taken out from the lead storage battery fully charged after chemical conversion, washed, dried, and a sample piece of the non-woven fabric mat is collected. Next, 2 μL of a sulfuric acid aqueous solution having a specific gravity of 1.28 g / cm 3 at 20 ° C. was dropped onto the horizontal plane of the collected sample piece as a standard electrolytic solution, and the image of the formed droplets 2 seconds later was analyzed. Then, the contact angle is measured by the θ / 2 method.

(3)有機防縮剤の分析
まず、化成後に満充電した鉛蓄電池を分解し、負極板を取り出し、水洗により硫酸を除去し、乾燥する。次に、乾燥した負極板から負極電極材料(初期試料)を採取する。以下、初期試料を下記方法で分析する。
(3) Analysis of organic shrink-proofing agent First, the lead-acid battery fully charged after chemical conversion is disassembled, the negative electrode plate is taken out, sulfuric acid is removed by washing with water, and the battery is dried. Next, the negative electrode material (initial sample) is collected from the dried negative electrode plate. Hereinafter, the initial sample is analyzed by the following method.

(3−1)負極電極材料中の有機防縮剤の定性
初期試料を1mol/LのNaOH水溶液に浸漬し、有機防縮剤を抽出する。次に、抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で取り除き、得られた濾液を脱塩した後、濃縮し、乾燥する。脱塩は、濾液を透析チューブに入れて蒸留水中に浸すことにより行えばよい。これにより有機防縮剤の粉末試料が得られる。
(3-1) Qualitativeity of Organic Shrink-Proof Agent in Negative Electrode Material The initial sample is immersed in a 1 mol / L NaOH aqueous solution to extract the organic shrink-proof agent. Next, the insoluble component is removed by filtration from the extracted aqueous NaOH solution containing the organic shrink-proofing agent, the obtained filtrate is desalted, concentrated, and dried. Desalination may be carried out by placing the filtrate in a dialysis tube and immersing it in distilled water. As a result, a powder sample of the organic shrink proofing agent can be obtained.

このようにして得た有機防縮剤の粉末試料を用いて測定した赤外分光スペクトル、さらに粉末試料を適当な溶媒で溶解し、紫外可視吸光度計で測定した紫外可視吸収スペクトルやNMRスペクトルなどから得た情報を組み合わせて用いて、有機防縮剤種を特定する。 Obtained from the infrared spectroscopic spectrum measured using the powder sample of the organic shrink-proofing agent thus obtained, and the ultraviolet-visible absorption spectrum and NMR spectrum measured by an ultraviolet-visible absorbance meter by dissolving the powder sample in an appropriate solvent. The information is used in combination to identify the species of organic shrink-proofing agent.

(3−2)負極電極材料中における有機防縮剤の含有量の定量
上記(3−1)と同様に、有機防縮剤を含むNaOH水溶液の濾液を得た後、濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と、予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量することができる。
電池を入手して有機防縮剤の含有量を測定する際に、有機防縮剤の構造式の厳密な特定ができないために検量線に同一の有機防縮剤が使用できない場合には、当該電池の負極から抽出した有機防縮剤と、紫外可視吸収スペクトル、赤外分光スペクトル、およびNMRスペクトルなどが類似の形状を示す、別途入手可能な有機防縮剤を使用して検量線を作成することで、紫外可視吸収スペクトルを用いて有機防縮剤の含有量を測定する。
(3-2) Quantification of the content of the organic shrink-proofing agent in the negative electrode material In the same manner as in (3-1) above, after obtaining a filtrate of the NaOH aqueous solution containing the organic shrinkage-proofing agent, the ultraviolet-visible absorption spectrum of the filtrate is measured. To do. The content of the organic shrink-proofing agent in the negative electrode electrode material can be quantified using the spectral intensity and the calibration curve prepared in advance.
When the battery is obtained and the content of the organic shrink-proof agent is measured, if the same organic shrink-proof agent cannot be used on the calibration curve because the structural formula of the organic shrink-proof agent cannot be specified exactly, the negative electrode of the battery is used. By creating a calibration curve using a separately available organic shrink-proofing agent that has a similar shape to the organic shrink-proofing agent extracted from UV-visible absorption spectrum, infrared spectroscopic spectrum, NMR spectrum, etc., UV-visible The content of the organic shrink-proofing agent is measured using the absorption spectrum.

(3−3)有機防縮剤中の硫黄元素の含有量
上記(3−1)と同様に、有機防縮剤の粉末試料を得た後、酸素燃焼フラスコ法によって、0.1gの有機防縮剤中の硫黄元素を硫酸に変換する。このとき、吸着液を入れたフラスコ内で粉末試料を燃焼させることで、硫酸イオンが吸着液に溶け込んだ溶出液が得られる。次に、トリン(thorin)を指示薬として、溶出液を過塩素酸バリウムで滴定することにより、0.1gの有機防縮剤中の硫黄元素の含有量(C1)を求める。次に、C1を10倍して1g当たりの有機防縮剤中の硫黄元素の含有量(μmol/g)を算出する。
(3-3) Sulfur element content in organic shrink-proofing agent In the same manner as in (3-1) above, after obtaining a powder sample of organic shrink-proofing agent, in 0.1 g of organic shrinkage-proofing agent by the oxygen combustion flask method. Converts the sulfur element of At this time, by burning the powder sample in the flask containing the adsorbent, an eluate in which sulfate ions are dissolved in the adsorbent can be obtained. Next, the content (C1) of the sulfur element in 0.1 g of the organic shrink-proofing agent is determined by titrating the eluate with barium perchlorate using thorin as an indicator. Next, C1 is multiplied by 10 to calculate the content of sulfur element (μmol / g) in the organic shrink-proofing agent per 1 g.

図1に、本発明の実施形態に係る鉛蓄電池の一例の外観を示す。
鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で密閉されている。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
FIG. 1 shows the appearance of an example of a lead storage battery according to an embodiment of the present invention.
The lead-acid battery 1 includes an electric tank 12 that houses a electrode plate group 11 and an electrolytic solution (not shown). The inside of the electric tank 12 is partitioned into a plurality of cell chambers 14 by a partition wall 13. One electrode plate group 11 is housed in each cell chamber 14. The opening of the battery case 12 is sealed with a lid 15 having a negative electrode terminal 16 and a positive electrode terminal 17. The lid 15 is provided with a liquid spout 18 for each cell chamber. At the time of rehydration, the liquid spout 18 is removed and the rehydration liquid is replenished. The liquid spout 18 may have a function of discharging the gas generated in the cell chamber 14 to the outside of the battery.

極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4sを介して積層することにより構成されている。正極板3は、一対の不織布マット4cで挟持されている。不織布マット4cは、正極板3の両面に貼り付けてある。ここでは、負極板2を収容する袋状セパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2を並列接続する負極棚6が貫通接続体8に接続され、複数の正極板3を並列接続する正極棚5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚6に負極柱9が接続され、正極棚5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。 The electrode plate group 11 is formed by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 via a separator 4s, respectively. The positive electrode plate 3 is sandwiched between a pair of non-woven fabric mats 4c. The non-woven fabric mat 4c is attached to both sides of the positive electrode plate 3. Here, the bag-shaped separator 4 accommodating the negative electrode plate 2 is shown, but the form of the separator is not particularly limited. In the cell chamber 14 located at one end of the battery case 12, a negative electrode shelf 6 for connecting a plurality of negative electrode plates 2 in parallel is connected to a through connecting body 8, and a positive electrode shelf 5 for connecting a plurality of positive electrode plates 3 in parallel is provided. It is connected to the positive electrode column 7. The positive electrode column 7 is connected to the positive electrode terminal 17 outside the lid 15. In the cell chamber 14 located at the other end of the battery case 12, the negative electrode column 9 is connected to the negative electrode shelf 6, and the through connector 8 is connected to the positive electrode shelf 5. The negative electrode column 9 is connected to the negative electrode terminal 16 outside the lid 15. Each through-connecting body 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plates 11 of the adjacent cell chambers 14 in series.

以下、本発明を実施例および比較例に基づいて更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

《実施例1》
(1)負極板の作製
原料の鉛粉と、硫酸バリウムと、カーボンブラックと、有機防縮剤とを、適量の硫酸水溶液と混合して、負極ペーストを得た。負極ペーストを、Pb−Ca−Sn合金製のエキスパンド格子の網目部に充填し、熟成乾燥し、未化成の負極板を得た。
<< Example 1 >>
(1) Preparation of Negative Electrode Plate A negative electrode paste was obtained by mixing lead powder as a raw material, barium sulfate, carbon black, and an organic shrink proofing agent with an appropriate amount of an aqueous sulfuric acid solution. The negative electrode paste was filled in the mesh portion of the expanded lattice made of Pb-Ca—Sn alloy and aged and dried to obtain an unchemicald negative electrode plate.

有機防縮剤は、化成後に満充電した鉛蓄電池の負極電極材料における有機防縮剤の含有量が0.1質量%になるように、負極ペーストに配合した。また、化成後に満充電した鉛蓄電池の負極電極材料の空隙比率が0.22cm3/g(体積基準の細孔径分布の中央値2μm)になるように、負極ペーストに配合する水量や硫酸量を制御した。 The organic shrinkage proofing agent was blended in the negative electrode paste so that the content of the organic shrinkage proofing agent in the negative electrode electrode material of the lead storage battery fully charged after chemical conversion was 0.1% by mass. In addition, the amount of water and sulfuric acid to be added to the negative electrode paste should be adjusted so that the void ratio of the negative electrode material of the lead-acid battery fully charged after chemical conversion is 0.22 cm 3 / g (median of volume-based pore size distribution 2 μm). Controlled.

有機防縮剤には、リグニンまたはスルホン酸基を導入したビスフェノール類のホルムアルデヒドによる縮合物を用いた。ここでは、有機防縮剤中の硫黄元素の含有量が2000〜8000μmol/gになるように、導入するスルホン酸基の量を制御した。また、リグニンの硫黄元素の含有量は600μmol/gであった。 As the organic shrinkage proofing agent, a condensate of lignin or a bisphenol having a sulfonic acid group introduced by formaldehyde was used. Here, the amount of the sulfonic acid group to be introduced was controlled so that the content of the sulfur element in the organic shrinkage proofing agent was 2000 to 8000 μmol / g. The sulfur element content of lignin was 600 μmol / g.

(2)正極板の作製
原料の鉛粉を硫酸水溶液と混合して、正極ペーストを得た。正極ペーストを、Pb−Ca−Sn合金製のエキスパンド格子の網目部に充填し、熟成乾燥し、未化成の正極板を得た。
(2) Preparation of Positive Electrode Plate The lead powder as a raw material was mixed with an aqueous sulfuric acid solution to obtain a positive electrode paste. The positive electrode paste was filled in the mesh portion of the expanded lattice made of Pb-Ca—Sn alloy and aged and dried to obtain an unchemicald positive electrode plate.

(3)不織布マット
不織布マットには、ガラス繊維(平均繊維径0.5μm)とシリカ粉末(平均粒子径5nm)とを混抄したシート(厚さ0.5mm)を用いた。不織布マットに対する電解液の接触角は、親水化処理により20°に制御した。
(3) Non-woven fabric mat As the non-woven fabric mat, a sheet (thickness 0.5 mm) obtained by mixing glass fiber (average fiber diameter 0.5 μm) and silica powder (average particle diameter 5 nm) was used. The contact angle of the electrolytic solution with respect to the non-woven fabric mat was controlled to 20 ° by the hydrophilic treatment.

(4)セパレータ
セパレータには、ポリエチレン粉末、シリカ粉末およびオイルを含む組成物を複数のリブを有するシート状に押し出し成形した後、オイルを抽出して細孔を形成した微多孔膜(リブを有する部分の厚さ0.5mm)を用いた。ここでは、微多孔膜を2つ折にし、折り目と交わる2辺を溶着して、袋状セパレータを作製した。
(4) Separator The separator is a microporous membrane (having ribs) in which a composition containing polyethylene powder, silica powder and oil is extruded into a sheet having a plurality of ribs, and then the oil is extracted to form pores. The thickness of the portion (0.5 mm) was used. Here, the microporous membrane was folded in half and the two sides intersecting the creases were welded to prepare a bag-shaped separator.

(5)鉛蓄電池の作製
負極板を袋状セパレータに収容した。一方、正極板の両面に不織布マットを貼り付けた。負極板5枚と正極板4枚とで極板群を形成した。
(5) Preparation of lead-acid battery The negative electrode plate was housed in a bag-shaped separator. On the other hand, non-woven fabric mats were attached to both sides of the positive electrode plate. A group of electrode plates was formed by five negative electrode plates and four positive electrode plates.

極板群をポリプロピレン製の電槽に電解液とともに収容して、電槽内で化成を施した。こうして、有機防縮剤中の硫黄元素の含有量が異なる複数種の液式の自動車用鉛蓄電池を組み立てた。鉛蓄電池の出力は12Vで、定格5時間率容量は25Ahである。化成後の電解液の比重は1.28g/cm3であった。 The electrode plates were housed in a polypropylene electric tank together with the electrolytic solution, and chemical conversion was performed in the electric tank. In this way, a plurality of types of liquid lead-acid batteries for automobiles having different sulfur element contents in the organic shrinkage proofing agent were assembled. The output of the lead-acid battery is 12V, and the rated 5-hour rate capacity is 25Ah. The specific gravity of the electrolytic solution after chemical conversion was 1.28 g / cm 3 .

《比較例1》
正極板の両面に不織布マットを貼り付けなかったこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 1 >>
Similar to Example 1, a plurality of types of lead-acid batteries having different sulfur element contents in the organic shrink-proofing agent were assembled, except that the non-woven fabric mats were not attached to both sides of the positive electrode plate.

《比較例2》
負極板の両面に不織布マットを貼り付け、正極板の両面に不織布マットを貼り付けなかったこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 2 >>
Similar to Example 1, a plurality of types of lead-acid batteries having different sulfur element contents in the organic shrink-proofing agent, except that the non-woven fabric mats are attached to both sides of the negative electrode plate and the non-woven fabric mats are not attached to both sides of the positive electrode plate. Assembled.

[評価1]
実施例1および比較例1〜2の鉛蓄電池について、以下の条件でIS寿命試験を行った。
<サイクル条件>
SBA S 0101:2006に規定されるアイドリングストップ(IS)寿命試験を行った。すなわち、満充電状態から45Aで59秒間放電後、更に300Aで1秒間放電した後、上限電流を100Aとして14Vで60秒間定電圧充電する充放電サイクルを繰り返した。また、3600サイクル毎に、40〜48時間放置して鉛蓄電池を休止させた。300A放電で1秒後の電圧が7.20V未満となった時点で試験を終了した。
[Evaluation 1]
The lead-acid batteries of Example 1 and Comparative Examples 1 and 2 were subjected to an IS life test under the following conditions.
<Cycle conditions>
The idling stop (IS) life test specified in SBA S 0101: 2006 was performed. That is, after discharging from a fully charged state at 45 A for 59 seconds, further discharging at 300 A for 1 second, a charge / discharge cycle of constant voltage charging at 14 V for 60 seconds with an upper limit current of 100 A was repeated. In addition, the lead-acid battery was allowed to rest for 40 to 48 hours every 3600 cycles. The test was terminated when the voltage after 1 second of 300 A discharge became less than 7.20 V.

以下のように、200サイクル時点での正極電極材料の脱落量を測定した。まず、化成後に満充電した鉛蓄電池を分解し、正極板を取り出し、水洗により硫酸を除去し、乾燥し、正極板の質量Aを測定した。一方、IS寿命試験の200サイクル後の鉛蓄電池から正極板を取り出し、その質量Bを同様に求めた。AとBとの差から正極電極材料(活物質)の脱落量を下記式より算出した。200サイクル時点での正極電極材料の脱落量が多いほど、正極電極材料の軟化が進行し、正極板が劣化しているといえる。
正極電極材料の脱落量(%)={(A−B)/A}×100
As described below, the amount of the positive electrode material dropped off at 200 cycles was measured. First, the lead-acid battery fully charged after chemical conversion was disassembled, the positive electrode plate was taken out, sulfuric acid was removed by washing with water, dried, and the mass A of the positive electrode plate was measured. On the other hand, the positive electrode plate was taken out from the lead storage battery after 200 cycles of the IS life test, and its mass B was obtained in the same manner. From the difference between A and B, the amount of the positive electrode material (active material) dropped out was calculated from the following formula. It can be said that the larger the amount of the positive electrode material dropped off at the time of 200 cycles, the more the positive electrode material is softened and the positive electrode plate is deteriorated.
Amount of dropout of positive electrode material (%) = {(AB) / A} × 100

また、IS寿命試験の200サイクル後の鉛蓄電池から負極板を取り出し、負極板下部から負極電極材料を採取し、硫酸鉛蓄積量を測定した。まず、採取した負極電極材料を水洗し、乾燥後、粉砕した。次に、硫黄元素分析装置(例えばLECO社製、S―200型)を用いて、粉砕された負極電極材料(粉砕試料)中の硫黄元素の含有量を測定した。次に、下記式に従い、負極電極材料中に蓄積された硫酸鉛中の硫黄元素の含有量を求めた。 Further, the negative electrode plate was taken out from the lead storage battery after 200 cycles of the IS life test, the negative electrode material was collected from the lower part of the negative electrode plate, and the amount of lead sulfate accumulated was measured. First, the collected negative electrode material was washed with water, dried, and then pulverized. Next, the content of sulfur element in the pulverized negative electrode material (crushed sample) was measured using an elemental sulfur analyzer (for example, S-200 type manufactured by LECO). Next, the content of sulfur element in lead sulfate accumulated in the negative electrode material was determined according to the following formula.

硫酸鉛中の硫黄元素の含有量
=(硫黄元素分析装置で得られた硫黄元素の含有量)−(粉砕試料の質量(g)×有機防縮剤の含有量(g/g)×有機防縮剤中の硫黄元素の含有量(g/g))
Sulfur element content in lead sulfate = (content of sulfur element obtained by sulfur element analyzer)-(mass of crushed sample (g) x content of organic shrinkage proofing agent (g / g) x organic shrinkage proofing agent Content of sulfur element in (g / g))

次に、硫酸鉛中の硫黄元素の含有量を、硫酸鉛量に換算し、粉砕試料の単位質量あたりの硫酸鉛濃度(質量%)を求めて、硫酸鉛蓄積量とした。硫酸鉛蓄積量が多いほど、サルフェーションや電解液の成層化が進行しているといえる。 Next, the content of the sulfur element in lead sulfate was converted into the amount of lead sulfate, and the lead sulfate concentration (mass%) per unit mass of the crushed sample was obtained and used as the lead sulfate accumulation amount. It can be said that the greater the amount of lead sulfate accumulated, the more the sulfation and the stratification of the electrolytic solution progress.

実施例1および比較例1〜2に関し、有機防縮剤中の硫黄元素の含有量と、正極板からの正極電極材料の脱落量との関係を表1および図2に示す。また、有機防縮剤中の硫黄元素の含有量と、負極板下部における硫酸鉛蓄積量との関係を表2および図3に示す。 Table 1 and FIG. 2 show the relationship between the content of the sulfur element in the organic shrink-proofing agent and the amount of the positive electrode material falling off from the positive electrode plate with respect to Example 1 and Comparative Examples 1 and 2. Tables 2 and 3 show the relationship between the content of the sulfur element in the organic shrinkage proofing agent and the amount of lead sulfate accumulated in the lower part of the negative electrode plate.

図2は、有機防縮剤中の硫黄元素の含有量が大きいほど、正極電極材料の脱落量が多くなることを示している。ただし、正極板の両面に不織布マットを貼り付けた実施例1では、正極板の劣化が顕著に抑制されている。 FIG. 2 shows that the larger the content of the sulfur element in the organic shrink-proofing agent, the larger the amount of the positive electrode material that falls off. However, in Example 1 in which the non-woven fabric mats are attached to both sides of the positive electrode plate, the deterioration of the positive electrode plate is remarkably suppressed.

図3は、有機防縮剤中の硫黄元素の含有量が大きいほど、硫酸鉛蓄積量が少なくなることを示している。このことは、硫黄元素の含有量が大きいほど、電解液の成層化が抑制されることを示唆している。 FIG. 3 shows that the larger the content of sulfur element in the organic shrink proofing agent, the smaller the amount of lead sulfate accumulated. This suggests that the higher the sulfur element content, the more the stratification of the electrolytic solution is suppressed.

《実施例2》
化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.14cm3/g〜0.30cm3/gの範囲で変化させたこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。不織布マットに対する電解液の接触角は20°に統一した。
<< Example 2 >>
Except that the void ratio of the negative electrode material of lead-acid battery fully charged to after chemical conversion was varied in the range of 0.14cm 3 /g~0.30cm 3 / g, in the same manner as in Example 1, the sulfur in the organic expander agent Multiple types of lead-acid batteries with different element contents were assembled. The contact angle of the electrolytic solution with respect to the non-woven fabric mat was unified to 20 °.

《比較例3》
化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.24cm3/gとしたこと以外、比較例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 3 >>
Similar to Comparative Example 1, a plurality of types of lead-acid batteries having different sulfur element contents in the organic shrinkage-proofing agent, except that the void ratio of the negative electrode material of the lead-acid battery fully charged after chemical conversion was 0.24 cm 3 / g. Assembled.

《比較例4》
化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.24cm3/gとしたこと以外、比較例2と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立てた。
<< Comparative Example 4 >>
Similar to Comparative Example 2, a plurality of types of lead-acid batteries having different sulfur element contents in the organic shrinkage-proofing agent, except that the void ratio of the negative electrode material of the lead-acid battery fully charged after chemical conversion was 0.24 cm 3 / g. Assembled.

[評価2]
実施例2および比較例3〜4で作製した鉛蓄電池に関し、以下の条件で5時間率(0.2CA)放電持続時間を測定した。
JIS D5301(SBA S 0101:2006)に規定される5時間率容量試験を行った。すなわち、中央のセル室の電解液温度が25 ℃±2 ℃であることを確認した上で、端子電圧が10.50V±0.05Vに低下するまで、5時間率電流(0.2CA)で放電し、放電持続時間(t)を記録し、容量を求めた。
[Evaluation 2]
With respect to the lead-acid batteries produced in Example 2 and Comparative Examples 3 to 4, the 5-hour rate (0.2CA) discharge duration was measured under the following conditions.
A 5-hour rate capacity test specified in JIS D5301 (SBA S 0101: 2006) was performed. That is, after confirming that the electrolyte temperature in the central cell chamber is 25 ° C ± 2 ° C, use a 5-hour rate current (0.2CA) until the terminal voltage drops to 10.50V ± 0.05V. The discharge was performed, the discharge duration (t) was recorded, and the capacity was determined.

表3および図4に、負極電極材料の空隙比率が0.24cm3/gのときの、不織布マットの有無と、0.2CA放電持続時間との関係を示す。表4および図5に、負極電極材料の空隙比率と、0.2CA放電持続時間との関係を示す。 Tables 3 and 4 show the relationship between the presence or absence of the non-woven fabric mat and the 0.2CA discharge duration when the void ratio of the negative electrode material is 0.24 cm 3 / g. Table 4 and FIG. 5 show the relationship between the void ratio of the negative electrode material and the 0.2CA discharge duration.

図4は、正極板の両面に不織布マットを貼り付けた場合に、鉛蓄電池の放電性能が向上する傾向があることを示している。 FIG. 4 shows that the discharge performance of the lead storage battery tends to be improved when the non-woven fabric mats are attached to both sides of the positive electrode plate.

図5は、負極電極材料の空隙比率が0.22cm3/g〜0.27cm3/gであり、かつ有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gである場合の放電性能における優位性を、より顕著に示している。具体的には、有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gのグラフでは、600μmol/g〜2000μmol/gのグラフには見られない変化点が存在する。このような変化点を伴う0.2CA放電持続時間の増加は、有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gの場合に特有の傾向である。 5, when the gap ratio of negative electrode material is 0.22cm 3 /g~0.27cm 3 / g, and the content of sulfur element in the organic expander agent is 4000μmol / g~8000μmol / g The superiority in discharge performance is shown more prominently. Specifically, in the graph in which the content of the sulfur element in the organic shrink proofing agent is 4000 μmol / g to 8000 μmol / g, there is a change point not seen in the graph of 600 μmol / g to 2000 μmol / g. The increase in 0.2CA discharge duration accompanied by such a change point is a tendency peculiar to the case where the content of the sulfur element in the organic shrinkage proofing agent is 4000 μmol / g to 8000 μmol / g.

《比較例5》
有機防縮剤中の硫黄元素の含有量を6000μmol/gにして、化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.14cm3/g〜0.30cm3/gの範囲で変化させたこと以外、比較例1と同様に、鉛蓄電池を組み立てた。
<< Comparative Example 5 >>
The content of elemental sulfur in the organic expander agent in the 6000μmol / g, was a void ratio of negative electrode material of lead-acid battery fully charged to after conversion varied between 0.14cm 3 /g~0.30cm 3 / g Except for the above, the lead storage battery was assembled in the same manner as in Comparative Example 1.

《比較例6》
有機防縮剤中の硫黄元素の含有量を6000μmol/gにして、化成後に満充電した鉛蓄電池の負極電極材料の空隙比率を0.14cm3/g〜0.30cm3/gの範囲で変化させたこと以外、比較例2と同様に、鉛蓄電池を組み立てた。
<< Comparative Example 6 >>
The content of elemental sulfur in the organic expander agent in the 6000μmol / g, was a void ratio of negative electrode material of lead-acid battery fully charged to after conversion varied between 0.14cm 3 /g~0.30cm 3 / g Except for this, a lead storage battery was assembled in the same manner as in Comparative Example 2.

表5および図6に、比較例5、6および実施例2の有機防縮剤中の硫黄元素の含有量が6000μmol/gの場合において、負極電極材料の空隙比率と0.2CA放電持続時間との関係を示す。図6は、正極板とセパレータとの間に不織布マットを介在させるとともに、負極電極材料の空隙比率を0.22〜0.27cm3/gにすることで、鉛蓄電池の5時間率放電持続時間が顕著に向上することを示している。 Tables 5 and 6 show the void ratio of the negative electrode material and the 0.2CA discharge duration when the content of the sulfur element in the organic shrink-proofing agent of Comparative Examples 5 and 6 and Example 2 was 6000 μmol / g. Show the relationship. In FIG. 6, a non-woven fabric mat is interposed between the positive electrode plate and the separator, and the void ratio of the negative electrode material is 0.22 to 0.27 cm 3 / g, so that the lead-acid battery has a 5-hour discharge duration. Is shown to be significantly improved.

有機防縮剤中の硫黄元素含有量:6000μmol/g Sulfur element content in organic shrink proofing agent: 6000 μmol / g

《実施例3》
不織布マットの表面処理条件を変更することにより、不織布マットに対する電解液の接触角を10°〜80°の範囲で変化させたこと以外、実施例1と同様に、有機防縮剤中の硫黄元素の含有量が異なる複数種の鉛蓄電池を組み立て、上記評価2と同様に評価した。ただし、負極電極材料の空隙比率は0.22cm3/gで統一した。
<< Example 3 >>
Similar to Example 1, the sulfur element in the organic shrink-proofing agent was changed, except that the contact angle of the electrolytic solution with respect to the non-woven fabric mat was changed in the range of 10 ° to 80 ° by changing the surface treatment conditions of the non-woven fabric mat. A plurality of types of lead-acid batteries having different contents were assembled and evaluated in the same manner as in Evaluation 2 above. However, the void ratio of the negative electrode material was unified to 0.22 cm 3 / g.

実施例3に関し、不織布マットに対する電解液の接触角を変化させたときの、有機防縮剤中の硫黄元素の含有量と、0.2CA放電持続時間との関係を表6および図7に示す。図7は、鉛蓄電池の放電性能を向上させる観点からも、不織布マットに対する電解液の接触角を40°以下(更には30°未満)とすることが有利であることを示している。特に、有機防縮剤中の硫黄元素の含有量が4000μmol/g〜8000μmol/gである場合には、上記接触角を40°以下とすることで、放電性能が顕著に向上することがわかる。 Table 6 and FIG. 7 show the relationship between the content of the sulfur element in the organic shrink-proofing agent and the 0.2CA discharge duration when the contact angle of the electrolytic solution with respect to the non-woven fabric mat was changed with respect to Example 3. FIG. 7 shows that it is advantageous to set the contact angle of the electrolytic solution with respect to the non-woven fabric mat to 40 ° or less (further, less than 30 °) from the viewpoint of improving the discharge performance of the lead storage battery. In particular, when the content of the sulfur element in the organic shrink-proofing agent is 4000 μmol / g to 8000 μmol / g, it can be seen that the discharge performance is remarkably improved by setting the contact angle to 40 ° or less.

《実施例4》
有機防縮剤として、硫黄元素の含有量が6000μmol/gのナフタレン類のホルムアルデヒドによる縮合物(ナフタレン系有機防縮剤)を用いたこと以外、実施例1と同様に、既化成の負極電極材料の空隙比率が0.22cm3/gの負極板を作製し、鉛蓄電池を組み立てた。
<< Example 4 >>
As the organic shrinkage-proofing agent, the voids of the ready-made negative electrode material are the same as in Example 1 except that a condensate of naphthalenes having a sulfur element content of 6000 μmol / g with formaldehyde (naphthalene-based organic shrinkage-proofing agent) is used. A negative electrode plate having a ratio of 0.22 cm 3 / g was prepared, and a lead storage battery was assembled.

[評価3]
実施例3で作製した鉛蓄電池と、実施例1で作製した硫黄元素の含有量が6000μmol/gのビスフェノール類のホルムアルデヒドによる縮合物(ビスフェノール系有機防縮剤)を用いた鉛蓄電池に関し、評価2と同様に、5時間率(0.2CA)放電持続時間を測定した。結果を表7に示す。
[Evaluation 3]
The lead-acid battery prepared in Example 3 and the lead-acid battery prepared in Example 1 using a formaldehyde-based condensate of bisphenols having a sulfur element content of 6000 μmol / g (bisphenol-based organic shrink-proofing agent) were evaluated as Evaluation 2. Similarly, the 5-hour rate (0.2CA) discharge duration was measured. The results are shown in Table 7.

表1より、有機防縮剤がナフタレン系である場合にも、有機防縮剤がビスフェノール系である場合と、概ね同様の結果が得られることが理解できる。 From Table 1, it can be understood that substantially the same results can be obtained when the organic shrink-proofing agent is naphthalene-based as well as when the organic shrink-proofing agent is bisphenol-based.

本発明は、例えば液式の鉛蓄電池に適用可能であり、自動車、バイク、電動車両(フォークリフトなど)などの電源として好適に用いられる。 The present invention is applicable to, for example, a liquid lead-acid battery, and is suitably used as a power source for automobiles, motorcycles, electric vehicles (forklifts, etc.) and the like.

1:鉛蓄電池、2:負極板、3:正極板、4s:セパレータ、4c:不織布マット、5:正極棚、6:負極棚、7:正極柱、8:貫通接続体、9:負極柱、11:極板群、12:電槽、13:隔壁、14:セル室、15:蓋、16:負極端子、17:正極端子、18:液口栓 1: Lead-acid battery, 2: Negative electrode plate, 3: Positive electrode plate, 4s: Separator, 4c: Non-woven mat, 5: Positive electrode shelf, 6: Negative electrode shelf, 7: Positive electrode column, 8: Through connector, 9: Negative electrode column, 11: Electrode plate group, 12: Electric tank, 13: Partition, 14: Cell chamber, 15: Lid, 16: Negative terminal, 17: Positive terminal, 18: Liquid spout

Claims (4)

負極板と、正極板と、前記負極板と前記正極板との間に介在するセパレータと、電解液と、を備え、
液式であり、
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、有機防縮剤を含み、
前記正極板と前記セパレータとの間に、不織布マットが介在しており、
前記負極電極材料の空隙比率が、0.22cm3/g以上、0.27cm3/g以下である、鉛蓄電池。
A negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolytic solution are provided.
It is a liquid type
The negative electrode plate includes a negative electrode current collector and a negative electrode material.
The negative electrode material contains an organic shrink proofing agent and contains
A non-woven fabric mat is interposed between the positive electrode plate and the separator.
The space ratio of the negative electrode material, 0.22 cm 3 / g or more, or less 0.27 cm 3 / g, lead-acid batteries.
負極板と、正極板と、前記負極板と前記正極板との間に介在するセパレータと、電解液と、を備え、
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、有機防縮剤を含み、
前記正極板と前記セパレータとの間に、不織布マットが介在しており、
前記負極電極材料の空隙比率が、0.22cm 3 /g以上、0.27cm 3 /g以下であり、
前記有機防縮剤中の硫黄元素の含有量が、4000μmol/g以上、8000μmol/g以下である、鉛蓄電池。
A negative electrode plate, a positive electrode plate, a separator interposed between the negative electrode plate and the positive electrode plate, and an electrolytic solution are provided.
The negative electrode plate includes a negative electrode current collector and a negative electrode material.
The negative electrode material contains an organic shrink proofing agent and contains
A non-woven fabric mat is interposed between the positive electrode plate and the separator.
Void ratio of the negative electrode material, 0.22 cm 3 / g or more, or less 0.27 cm 3 / g,
A lead-acid battery in which the content of sulfur elements in the organic shrink-proofing agent is 4000 μmol / g or more and 8000 μmol / g or less.
前記不織布マットに対する前記電解液の接触角が、0°以上、40°以下である、請求項1または2に記載の鉛蓄電池。 The lead-acid battery according to claim 1 or 2, wherein the contact angle of the electrolytic solution with respect to the non-woven fabric mat is 0 ° or more and 40 ° or less. 前記不織布マットに対する前記電解液の接触角が、25°以下である、請求項3に記載の鉛蓄電池。 The lead-acid battery according to claim 3, wherein the contact angle of the electrolytic solution with respect to the non-woven fabric mat is 25 ° or less.
JP2016150866A 2016-07-29 2016-07-29 Lead-acid battery Active JP6766504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150866A JP6766504B2 (en) 2016-07-29 2016-07-29 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150866A JP6766504B2 (en) 2016-07-29 2016-07-29 Lead-acid battery

Publications (2)

Publication Number Publication Date
JP2018018803A JP2018018803A (en) 2018-02-01
JP6766504B2 true JP6766504B2 (en) 2020-10-14

Family

ID=61076415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150866A Active JP6766504B2 (en) 2016-07-29 2016-07-29 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP6766504B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131625A1 (en) * 2020-03-30 2023-02-08 Asahi Kasei Kabushiki Kaisha Lead storage battery
JPWO2022113621A1 (en) * 2020-11-27 2022-06-02
WO2023210513A1 (en) * 2022-04-26 2023-11-02 株式会社Gsユアサ Lead-acid battery and method for manufacturing same, and method for use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122966A (en) * 1989-10-05 1991-05-24 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
US6406813B2 (en) * 1999-04-02 2002-06-18 Gnb Technologies, Inc. Lead-acid separators and cells and batteries using such separators
JP2006086039A (en) * 2004-09-16 2006-03-30 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP6015427B2 (en) * 2012-12-21 2016-10-26 株式会社Gsユアサ Negative electrode plate for lead acid battery and method for producing the same
JP6153072B2 (en) * 2013-08-02 2017-06-28 株式会社Gsユアサ Liquid lead-acid battery
CN106463729B (en) * 2014-05-26 2020-04-03 株式会社杰士汤浅国际 Lead-acid battery
JP6237922B2 (en) * 2014-09-29 2017-11-29 日立化成株式会社 Lead acid battery
JP6756182B2 (en) * 2016-07-29 2020-09-16 株式会社Gsユアサ Lead-acid battery

Also Published As

Publication number Publication date
JP2018018803A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP7143927B2 (en) lead acid battery
JP7380580B2 (en) lead acid battery
JP6766504B2 (en) Lead-acid battery
JP6756182B2 (en) Lead-acid battery
JP6750377B2 (en) Lead acid battery
JP7424310B2 (en) lead acid battery
JP6958034B2 (en) Lead-acid battery
JP7124828B2 (en) lead acid battery
JP7099448B2 (en) Lead-acid battery
JP7099449B2 (en) Lead-acid battery
JP7099450B2 (en) Lead-acid battery
WO2019225161A1 (en) Lead-acid battery
WO2018199207A1 (en) Lead acid battery
JP6756181B2 (en) Lead-acid battery
JP7388110B2 (en) lead acid battery
JP7363288B2 (en) Negative electrode plate for lead-acid battery, lead-acid battery, and manufacturing method of negative electrode plate for lead-acid battery
WO2022137700A1 (en) Clad positive-electrode plate for lead storage battery, and lead storage battery
JP6750376B2 (en) Lead acid battery
WO2024005041A1 (en) Lead-acid battery
WO2019198491A1 (en) Negative plate for lead-acid battery and lead-acid battery
JP6750378B2 (en) Lead acid battery
JP2024005293A (en) lead acid battery
JP2024029810A (en) Lead accumulator battery
JP2024029809A (en) Lead accumulator battery
JP2021057164A (en) Negative electrode plate for lead-acid battery and lead-acid battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150