WO2022137700A1 - Clad positive-electrode plate for lead storage battery, and lead storage battery - Google Patents

Clad positive-electrode plate for lead storage battery, and lead storage battery Download PDF

Info

Publication number
WO2022137700A1
WO2022137700A1 PCT/JP2021/035798 JP2021035798W WO2022137700A1 WO 2022137700 A1 WO2022137700 A1 WO 2022137700A1 JP 2021035798 W JP2021035798 W JP 2021035798W WO 2022137700 A1 WO2022137700 A1 WO 2022137700A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode plate
electrode material
lead
fiber
Prior art date
Application number
PCT/JP2021/035798
Other languages
French (fr)
Japanese (ja)
Inventor
文也 杉村
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2022571060A priority Critical patent/JPWO2022137700A1/ja
Publication of WO2022137700A1 publication Critical patent/WO2022137700A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a clad type positive electrode plate for a lead storage battery and a lead storage battery.
  • Lead-acid batteries are used for various purposes such as in-vehicle use, industrial use, and so on.
  • the lead-acid battery includes a positive electrode plate, a negative electrode plate, and an electrolytic solution.
  • As the positive electrode plate a paste type positive electrode plate, a clad type positive electrode plate, or the like is used.
  • Each electrode plate contains a current collector and an electrode material. From the viewpoint of imparting various functions, an additive may be added to a constituent member (for example, an electrode material) of a lead storage battery.
  • Patent Document 1 describes that the positive electrode material is a lead-acid battery having a density of 3.1 g / cm 3 or more and containing Sb element, and the organic shrinkage barrier of the negative electrode material contains S element of 3800 ⁇ mol / g or more.
  • the positive electrode material is a lead-acid battery having a density of 3.1 g / cm 3 or more and containing Sb element, and the organic shrinkage barrier of the negative electrode material contains S element of 3800 ⁇ mol / g or more.
  • the negative electrode electrode material is gelled, held in a separator, or held in granular silica with a negative electrode plate containing an organic shrink-proofing agent having an S element content of 3500 ⁇ mol / g or more.
  • a lead-acid battery equipped with one or more of the electrolytes.
  • Patent Document 3 is characterized in that, in a positive electrode plate for a lead storage battery in which a positive electrode active material containing lead powder as a main component is filled in a positive electrode lattice, organic or glass short fibers and antimony are contained in the positive electrode active material.
  • a positive electrode plate for lead-acid batteries we are proposing a positive electrode plate for lead-acid batteries.
  • Patent Document 4 includes a positive electrode plate, a negative electrode plate, and an electrolytic solution, and the negative electrode electrode material of the negative electrode plate contains graphite or carbon fiber and a barium element of 1.1 mass% or more in terms of barium sulfate.
  • a lead storage battery characterized by containing tin element as the positive electrode material of the positive electrode plate.
  • Patent Document 5 includes a positive electrode and a negative electrode, wherein the positive electrode has a positive electrode current collector and a positive electrode material held by the positive electrode current collector, and the negative electrode is a negative electrode current collector and the negative electrode. Proposed a lead storage battery having a negative electrode material held by a current collector, the positive electrode material having a specific surface area of 10 m 2 / g or more, and the positive electrode material having a density of 3.8 g / cm 3 or more. is doing.
  • Patent Document 6 describes a positive electrode in which a positive electrode active material having a density of 3.8 to 5.0 g / cm 3 is held in a lattice body made of a lead alloy containing no antimony, and a positive electrode having a density of 1.20 to 1.28 g.
  • a sealed lead-acid battery with a sulfuric acid electrolyte of / cm3 was proposed.
  • the first aspect of the present invention is a clad type positive electrode plate for a lead storage battery.
  • the positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
  • the positive electrode material contains organic fibers and contains The density of the positive electrode material is 3.75 g / cm 3 or less.
  • the present invention relates to a clad type positive electrode plate for a lead storage battery, wherein the number of the organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more and 15,000 or less.
  • the second aspect of the present invention is a clad type positive electrode plate for a lead storage battery.
  • the positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
  • the positive electrode material contains organic fibers and contains The density of the positive electrode material is 3.75 g / cm 3 or less.
  • the present invention relates to a clad type positive electrode plate for a lead storage battery, wherein the ratio of the organic fiber to the positive electrode electrode material is 0.013% by volume or more and 0.5% by volume or less.
  • the third aspect of the present invention is a lead storage battery.
  • the lead-acid battery comprises at least one group of plates and an electrolytic solution.
  • the electrode plate group relates to a lead storage battery including at least one clad type positive electrode plate, at least one negative electrode plate, and a separator interposed between the clad type positive electrode plate and the negative electrode plate.
  • FIG. 1A It is a perspective view schematically showing an example which removed the lid of the lead storage battery which concerns on embodiment of this invention. It is a front view of the lead storage battery of FIG. It is a schematic cross-sectional view when the cross section in the IIB-IIB line of FIG. 1A is seen from the direction of an arrow. It is a graph which shows the relationship between the voltage rise occurrence rate of Table 1 and the density of a positive electrode material. It is a graph which shows the relationship between the voltage rise occurrence rate of Table 2 and the number of organic fibers. It is a graph which shows the relationship between the voltage rise occurrence rate of Table 2 and the ratio of an organic fiber. It is a graph which shows the relationship between the voltage rise occurrence rate of Table 3 and the specific gravity of an organic fiber.
  • the temperature of the battery becomes high (for example, a temperature of 75 ° C or higher) when charging / discharging is repeated for a long time. This is because, during charging, it tends to be in an overcharged state, which causes heat generation, and also during discharging, the resistance increases with deep discharge, so that heat generation increases.
  • the clad type positive electrode plate includes, for example, a plurality of porous tubes, a core metal housed in the tube, and a positive electrode material filled in the tube.
  • Lead-acid batteries may be charged by the semi-constant voltage method.
  • charging is performed while detecting the voltage of the lead storage battery (specifically, the terminal voltage). More specifically, when the battery voltage at the initial stage of charging is low, the charging current is large, charging proceeds, and when the battery voltage rises, the charging current decreases, and when the battery voltage reaches the set value, charging ends.
  • the above-mentioned sudden voltage rise occurs during charging, it is mistakenly recognized that the battery voltage has reached the set value even though the charging has not actually progressed, and the charging is completed. May be done. Since the lead-acid battery that has been charged is actually in an insufficient charge state, it is difficult to operate the lead-acid battery for a long time even if it is mounted on a device or equipment.
  • the lead-acid battery according to each of the first side surface and the second side surface of the present invention includes at least one electrode plate group and an electrolytic solution.
  • the electrode plate group includes at least one clad type positive electrode plate, at least one negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate.
  • the positive electrode plate is formed by a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and one end of a plurality of core metal pieces arranged in a row in the length direction. It is equipped with a current collector for connecting the above.
  • the positive electrode material contains organic fibers. The density of the positive electrode material is 3.75 g / cm 3 or less.
  • the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more and 15,000 or less.
  • the ratio of organic fibers to the positive electrode material is 0.013% by volume or more and 0.5% by volume or less.
  • the lead-acid battery according to the first side surface and the second side surface even if the density of the positive electrode material is 3.75 g / cm 3 or less, charging is performed at a high temperature (for example, 75 ° C.) in a charge / discharge cycle including deep discharge. It is possible to reduce the voltage rise at the time. Therefore, the rate of occurrence of voltage rise in the lead storage battery can be significantly reduced.
  • Such an effect can be obtained by containing organic fibers in the positive electrode material so as to satisfy the above conditions (a) or (b), and even if the density of the positive electrode material is low, the organic fibers can be used. This is probably because the movement of ions in the positive electrode material is hindered.
  • the voltage increase during charging when charging / discharging in a charge / discharge cycle including deep discharge at a high temperature is simply referred to as “voltage increase in high temperature deep discharge cycle”.
  • the voltage increase in the high temperature deep discharge cycle does not matter even if the positive electrode material does not contain organic fibers. That is, it can be said that the voltage increase in the high temperature deep discharge cycle is a problem peculiar to the case where the density of the positive electrode material is 3.75 g / cm 3 or less in the clad type positive electrode plate.
  • such a specific problem can be solved by the condition (a) or (b).
  • the present invention also includes a clad type positive electrode plate for a lead storage battery that satisfies the condition (a) or (b).
  • Each of the clad type positive electrode plates for lead storage batteries according to the third side surface and the fourth side surface of the present invention has a plurality of porous tubes, a core metal housed in the tubes, and a positive electrode material filled in the tubes. And a current collector that connects one end of a plurality of cores arranged in a row in the length direction.
  • the positive electrode material contains organic fibers. The density of the positive electrode material is 3.75 g / cm 3 or less.
  • the clad type positive electrode plate for a lead storage battery according to the third side surface satisfies the above condition (a).
  • the clad type positive electrode plate for a lead storage battery according to the fourth side surface satisfies the above condition (b).
  • the above-mentioned effects described for the first side surface or the second side surface can be obtained.
  • Each of the first side surface and the third side surface may satisfy the condition (b) in addition to the condition (a). In this case, the voltage rise in the high temperature deep discharge cycle can be reduced more effectively.
  • the number of organic fibers per unit volume (cm 3 ) of the positive electrode material may be 800 or more. Further, the ratio of the organic fiber to the positive electrode material may be 0.026% by volume or more. In these cases, the rate of occurrence of voltage rise in the high temperature deep discharge cycle can be further reduced.
  • the number of organic fibers per unit volume (cm 3 ) of the positive electrode material may be 10,000 or less. Further, the ratio of the organic fiber to the positive electrode material may be 0.32% by volume or less. In these cases, in the positive electrode material, the decrease in the binding force is suppressed and the cracks are reduced, so that it is easy to secure a higher initial capacity.
  • the organic fiber preferably contains a fiber having a specific gravity of 1.2 or more. In this case, the rate of occurrence of voltage rise in the high temperature deep discharge cycle can be further reduced. It is considered that this is because the fibers are more likely to be uniformly dispersed in the entire positive electrode material, and the movement of ions in the positive electrode material is further restricted.
  • the organic fiber contains an oxygen element, and the content of the oxygen element in the organic fiber is preferably 10,000 ⁇ mol / g or more. In this case, the rate of occurrence of voltage rise in the high temperature deep discharge cycle can be further reduced.
  • the organic fiber contains a large amount of oxygen elements, the organic fiber tends to hydrogen bond with water molecules. This makes it easier for the organic fibers to be more evenly dispersed throughout the positive electrode material, and the movement of ions in the positive electrode material is further restricted by the organic fibers, resulting in a voltage rise in the high temperature deep discharge cycle. It is believed that the rate will be further reduced. It was
  • the content of oxygen element in the organic fiber may be 35,000 ⁇ mol / g or less. In this case, even if it is exposed to the positive electrode potential, oxidative decomposition of the organic fiber is suppressed, so that high durability can be ensured.
  • the organic fiber preferably contains at least one selected from the group consisting of polyester fiber, acetalized polyvinyl alcohol fiber, polyurethane fiber, and cellulose fiber. These organic fibers have an appropriate specific gravity, and are easily dispersed more uniformly over the entire positive electrode material. Therefore, it is considered that the movement of ions in the positive electrode electrode material is further restricted by the organic fiber, so that the occurrence rate of the voltage increase in the high temperature deep discharge cycle is further reduced.
  • the density of the positive electrode material is preferably 3.7 g / cm 3 or less. In this case, the rate of occurrence of voltage rise in the high temperature deep discharge cycle is further increased, but even in such a range, the positive electrode electrode so as to satisfy at least one of the above conditions (a) and (b). Since the material contains organic fibers, the occurrence rate of voltage rise in the high temperature deep discharge cycle can be reduced.
  • the density of the positive electrode material is preferably 3.3 g / cm 3 or more.
  • the lead-acid battery may be either a control valve type (sealed type) lead-acid battery (VRLA type lead-acid battery) or a liquid type (vent type) lead-acid battery.
  • the density of the positive electrode material, the number of organic fibers per unit volume, the ratio of the organic fibers to the positive electrode material, the specific gravity of the organic fibers, and the content of the oxygen element in the organic fibers are in a fully charged state. It is required for the positive electrode plate taken out from the lead storage battery of.
  • the clad type positive electrode plate consists of a plurality of porous tubes, a core metal (spine) housed in each tube, a positive electrode material filled in the tube, and a plurality of core metal pieces arranged in a row. It is provided with a current collector that connects one end in the length direction.
  • the clad type positive electrode plate may further include a spine protector that connects a plurality of tubes.
  • the positive electrode material is a portion of the positive electrode plate excluding the tube, the core metal, the current collector, and the collective punishment.
  • the core metal and the current collector may be collectively referred to as a positive electrode current collector.
  • a member such as a mat may be attached to the positive electrode plate. Since such a member (also referred to as a sticking member) is used integrally with the positive electrode plate, it is included in the positive electrode plate.
  • the positive electrode plate includes a sticking member (mat, etc.)
  • the positive electrode electrode material is a portion of the positive electrode plate excluding the tube, the positive electrode current collector, the collective punishment, and the sticking member.
  • the density of the positive electrode material is a density (g / cm 3 ) obtained by dividing the mass of the positive electrode material by the bulk volume of the positive electrode material obtained by the mercury intrusion method. The density is determined for a predetermined amount of unmilled positive electrode material collected from the positive electrode plate taken out from the lead storage battery. The positive electrode material at this time is collected from one tube located near the center of the positive electrode plate.
  • the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is obtained by dividing the number of organic fibers contained in the positive electrode material by the bulk volume (cm 3 ) of the positive electrode material obtained by the mercury intrusion method. It is a numerical value obtained by.
  • the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is determined for a predetermined amount of unground positive electrode material used for calculating the density.
  • the ratio of the organic fibers to the positive electrode material is the ratio (% by volume) of the total volume of the organic fibers contained in the positive electrode material to the bulk volume (cm 3 ) of the positive electrode material obtained by the mercury intrusion method.
  • the ratio of organic fibers to the positive electrode material is determined for a predetermined amount of unground positive electrode material used for calculating the density.
  • the fully charged state of a liquid lead-acid battery is defined by the definition of JIS D 5301: 2019. More specifically, in a water tank at 25 ° C ⁇ 2 ° C, charging is performed every 15 minutes with a current (A) 0.2 times the value described as the rated capacity (value whose unit is Ah). The state in which the lead-acid battery is charged is regarded as a fully charged state until the terminal voltage (V) of No. 1 or the electrolyte density converted into temperature at 20 ° C. shows a constant value with three valid digits three times in a row.
  • V terminal voltage
  • the fully charged state is 0.2 times the current (value with Ah as the unit) described in the rated capacity in the air tank at 25 ° C ⁇ 2 ° C (the unit is Ah).
  • A) constant current constant voltage charging of 2.23 V / cell is performed, and the charging current at the time of constant voltage charging is 0.005 times the value (value with the unit being Ah) described in the rated capacity (A). When it becomes, charging is completed.
  • a fully charged lead-acid battery is a fully charged lead-acid battery.
  • the lead-acid battery may be fully charged after the chemical conversion, immediately after the chemical conversion, or after a lapse of time from the chemical conversion (for example, after the chemical conversion, the lead-acid battery in use (preferably at the initial stage of use) is fully charged. May be).
  • An initial use battery is a battery that has not been used for a long time and has hardly deteriorated.
  • the vertical direction of the lead-acid battery or the component of the lead-acid battery means the vertical direction of the lead-acid battery in the state where the lead-acid battery is used.
  • Each electrode plate of the positive electrode plate and the negative electrode plate is provided with an ear portion for connecting to an external terminal.
  • the ears are provided so as to project laterally to the sides of the plate, but in many lead-acid batteries, the ears are usually made of the plate. It is provided so as to project upward at the top.
  • the clad type positive electrode plate and the lead storage battery according to the embodiment of the present invention will be described for each of the main constituent requirements, but the present invention is not limited to the following embodiments.
  • the clad type positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal pieces arranged in a row in the length direction. It is provided with a current collector that connects one end. Further, the clad type positive electrode plate usually has a collective punishment for connecting a plurality of tubes.
  • the positive electrode material contains organic fibers.
  • the positive electrode material usually contains a positive electrode active material (specifically, at least one of lead dioxide and lead sulfate) that develops a capacity by a redox reaction.
  • the positive electrode material may contain other additives, if necessary.
  • the density of the positive electrode material is 3.75 g / cm 3 or less.
  • the density of the positive electrode material may be 3.7 g / cm 3 or less.
  • the rate of occurrence of voltage increase in the high temperature deep discharge cycle becomes higher, but even in this case, the voltage in the high temperature deep discharge cycle is satisfied by satisfying at least one of the above conditions (a) and (b).
  • the rise can be reduced.
  • the density of the positive electrode material is preferably 3.3 g / cm 3 or more.
  • the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more. From the viewpoint of further reducing the occurrence rate of voltage rise in the high temperature deep discharge cycle, the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is preferably 800 or more.
  • the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 15,000 or less, preferably 10,000 or less, and more preferably 7500 or less or 7200 or less.
  • the density of the positive electrode material becomes small, the binding force decreases and cracks tend to occur easily.
  • the number of organic fibers is in such a range, a relatively high binding force can be secured in the positive electrode material, and cracks are reduced, so that a higher initial capacity can be secured.
  • the ratio of organic fibers to the positive electrode material is 0.013% by volume or more. From the viewpoint of further reducing the occurrence rate of voltage rise in the high temperature deep discharge cycle, the ratio of organic fibers is preferably 0.026% by volume or more.
  • the ratio of the organic fiber is 0.5% by volume or less, preferably 0.32% by volume or less, and more preferably 0.25% by volume or less or 0.23% by volume or less.
  • the organic fiber preferably contains a fiber having a specific gravity of 1.2 or more (hereinafter, may be referred to as a first fiber).
  • a fiber having a specific gravity of 1.2 or more hereinafter, may be referred to as a first fiber.
  • the specific gravity of the first fiber is more preferably 1.25 or more or 1.26 or more.
  • the specific gravity of the first fiber is, for example, 1.7 or less, and may be 1.6 or less or 1.5 or less.
  • the organic fiber may contain a fiber other than the first fiber (hereinafter, may be referred to as a second fiber), but from the viewpoint of ensuring high dispersibility of the organic fiber, the organic fiber contained in the positive electrode electrode material. It is preferable that the ratio of the first fiber to the whole is high.
  • the ratio of the first fiber to the total organic fibers contained in the positive electrode material is preferably 60% by volume or more, more preferably 75% by volume or more, still more preferably 90% by volume or more.
  • the ratio of the first fiber to the total organic fiber is 100% by volume or less.
  • the positive electrode material may contain only the first fiber as the organic fiber.
  • the second fiber is an organic fiber having a specific gravity of less than 1.2 (for example, 0.8 or more and less than 1.2).
  • the organic fiber may contain an oxygen element.
  • the content of the oxygen element in the organic fiber is, for example, 10,000 ⁇ mol / g or more, preferably 15,000 ⁇ mol / g or more, more preferably 17,000 ⁇ mol / g or more or 17,400 ⁇ mol / g or more, and 19000 ⁇ mol / g or more or 20,000 ⁇ mol / g or more. More preferably, it may be 20800 ⁇ mol / g or more.
  • the content of the oxygen element is in such a range, the organic fibers are easily hydrogen-bonded to water molecules, so that the dispersibility of the organic fibers in the positive electrode material can be further enhanced, and the voltage in the high temperature deep discharge cycle can be further improved. The rate of rise can be further reduced.
  • the content of the oxygen element in the organic fiber is, for example, 50,000 ⁇ mol / g or less, and may be 40,000 ⁇ mol / g or less. From the viewpoint of ensuring higher durability of the organic fiber, the content of the oxygen element in the organic fiber is preferably 35,000 ⁇ mol / g or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the average fiber diameter of the organic fiber is, for example, 1 ⁇ m or more, and may be 5 ⁇ m or more or 10 ⁇ m or more. When the average fiber diameter is in such a range, it is easy to secure higher dispersibility of the organic fiber in the positive electrode material.
  • the average fiber diameter of the organic fiber is, for example, 50 ⁇ m or less, and may be 30 ⁇ m or less or 20 ⁇ m or less. When the average fiber diameter is in such a range, it is easy to secure higher conductivity of the positive electrode material.
  • the average fiber length of the organic fiber is, for example, 0.1 mm or more, may be 0.5 mm or more or 1 mm or more, and may be 1.5 mm or more or 2 mm or more. When the average fiber length is in such a range, it is easy to secure higher dispersibility in the positive electrode material.
  • the average fiber length of the organic fiber is, for example, 10 mm or less, and may be 6 mm or less. When the average fiber length is in such a range, higher dispersibility of the organic fiber can be ensured, and it is easy to secure higher conductivity of the positive electrode material.
  • the average fiber diameter of the organic fiber is the average value of the maximum diameters of any 100 fibers of the organic fiber separated from the positive electrode material.
  • the average fiber length of the organic fiber is an average value of the length of each of any 100 fibers of the organic fiber separated from the positive electrode material.
  • organic fiber examples include polyester fiber, polyvinyl alcohol fiber (acetalized polyvinyl alcohol fiber, etc.), polyurethane fiber, acrylic fiber, polyacrylonitrile fiber, polyolefin fiber, polyvinyl chloride fiber, polystyrene fiber, polyamide fiber, and cellulose fiber. Be done.
  • Cellulose fibers include not only cellulose fibers but also fibers made of cellulose derivatives (for example, cellulose ethers and cellulose esters), rayon and the like.
  • the positive electrode material may contain one kind of these organic fibers, or may contain two or more kinds of these organic fibers.
  • Polyester fiber, acetalized polyvinyl alcohol fiber, polyurethane fiber, and cellulose fiber are preferable, and polyester fiber, acetalized polyvinyl alcohol fiber, and the like, from the viewpoint of having an appropriate specific gravity and easily ensuring higher dispersibility in the positive electrode electrode material. And cellulose fibers are more preferred.
  • the core metal is made of, for example, a lead alloy. It is preferable to use a Pb—Sb based alloy for the core metal.
  • the Pb-Sb-based alloy may contain at least one of arsenic, selenium, bismuth, and tin, if necessary.
  • the current collector is made of, for example, a lead alloy. It is preferable to use a Pb—Sb-based alloy for the current collector.
  • the Pb-Sb-based alloy may contain at least one of arsenic, selenium, bismuth, and tin, if necessary.
  • Porous tubes should be able to accommodate the core metal inside and hold the positive electrode material.
  • Porous tubes are usually tubular fiber aggregates.
  • the tube-shaped fiber aggregate a fiber aggregate obtained by knitting fibers into a tube shape may be used, or a tubular non-woven fabric or a woven fabric may be used.
  • the fiber include an inorganic fiber (glass fiber and the like) and a resin fiber.
  • the porous tube may be heat-treated, if necessary. Further, in the porous tube, the tubular fiber aggregate may be impregnated with a resin.
  • the length of the tube may be selected according to the length of the core metal.
  • the outer diameter and thickness of the tube are selected, for example, depending on the shape of the core metal or the application of the lead-acid battery.
  • the collective punishment is usually arranged at one end of the tube on the current collector side and the other end on the opposite side of the current collector. More specifically, in the length direction of the tube, one end of the tube on the current collecting portion side is usually fixed to the current collecting portion by an upper joint. The other end of the tube is sealed by a lower punishment.
  • the upper joint is usually formed by integrally molding a resin so as to cover the upper part of the core metal and the current collector.
  • the lower punishment is usually made of resin and is inserted into the opening at the other end of each tube.
  • the current collector is usually formed with an ear for extracting electricity from the lead-acid battery.
  • the clad type positive electrode plate is not formed by accommodating a plurality of cores having one end in the length direction connected in a current collector in a plurality of tubes and filling the tubes with lead powder. It is formed by forming a chemical positive electrode plate.
  • the order of accommodating the core metal and filling the lead powder is not particularly limited. More specifically, in the unchemical positive electrode plate, after accommodating each of the plurality of cores in the tube, one end of the plurality of tubes and the current collecting portion are fixed by the upper joint, and the other end of the tube is fixed. It is formed by filling a tube with a mixture containing lead powder, organic fibers and the like from the opening of the tube, and sealing the opening at the other end of the plurality of tubes with a lower joint.
  • Lead powder contains at least lead monoxide.
  • the lead powder may contain metallic lead.
  • lead powder and lead tan may be used in combination.
  • the filling of the mixture in the tube may be either drywall or wet.
  • the dry mixture is filled in the tube as it is, and in the case of wet type, the slurry-like mixture is filled.
  • the mixture contains, for example, lead powder, organic fibers and optionally additives.
  • a slurry-like mixture is prepared by mixing lead powder, organic fibers, water, sulfuric acid, and if necessary, additives and the like. From the viewpoint of easily ensuring higher dispersibility of the organic fiber in the positive electrode material, it is preferable to use a slurry-like mixture.
  • the organic fiber can be more uniformly dispersed in the slurry-like mixture by the action of water.
  • the unchemical positive electrode plate is further chemicalized.
  • Lead dioxide is produced by the chemical formation.
  • Chemical formation can be performed, for example, by charging the electrode plate group in a state where the electrode plate group including the unchemical clad type positive electrode plate is immersed in an electrolytic solution containing sulfuric acid in the electric tank of a lead storage battery. can. Such chemical formation is called electric tank chemical formation.
  • the chemical conversion of the positive electrode plate may be performed before assembling the electrode plate group, not limited to the case of the electric tank chemical conversion.
  • the density (bulk density) of unground sample A is determined by a mercury intrusion method using a mercury porosimeter. More specifically, first, a predetermined amount of uncrushed sample A is collected and the mass is measured. After putting this sample A into the measuring container of the mercury porosimeter and exhausting it under reduced pressure, the sample A is filled with mercury at a pressure of 0.5 psia or more and 0.55 psia or less ( ⁇ 3.45 kPa or more and 3.79 kPa or less). The density of the positive electrode electrode material is obtained by measuring the bulk volume and dividing the measured mass of the sample A by the bulk volume. The volume obtained by subtracting the mercury injection volume from the volume of the measuring container is defined as the bulk volume. As the mercury porosimeter, an automatic porosimeter (Autopore IV9505) manufactured by Shimadzu Corporation is used.
  • the ratio (% by volume) of the total volume (cm 3 ) of the organic fiber to the bulk volume (cm 3 ) of the positive electrode material measured in (1) is determined. This ratio corresponds to the ratio (volume%) of organic fibers in the positive electrode material.
  • Average fiber diameter and average fiber length of organic fibers Select any 100 fibers from the organic fibers separated in (2-1) above, measure the maximum diameter of each fiber, and average them. The average fiber diameter of the organic fiber can be obtained.
  • the organic fibers separated in (2-1) above select any 100 fibers and measure the length of each fiber.
  • the length of the fiber is the length of the center line of the fiber. By averaging the measured fiber lengths, the average fiber length of organic fibers can be obtained.
  • the negative electrode plate includes, for example, a negative electrode material and a current collector that holds the negative electrode material.
  • the negative electrode material is a portion obtained by removing the current collector from the negative electrode plate.
  • Members such as mats and pacing papers may be attached to the negative electrode plate. Since such a member (also referred to as a sticking member) is used integrally with the negative electrode plate, it is included in the negative electrode plate.
  • the negative electrode plate includes a sticking member (mat, pacing paper, etc.)
  • the negative electrode electrode material is a portion of the negative electrode plate excluding the current collector and the sticking member.
  • the thickness of the negative electrode plate shall be the thickness including the mat. This is because the mat is used integrally with the negative electrode plate. However, if a mat is attached to the separator, the thickness of the mat is included in the thickness of the separator.
  • the negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead sheet or a lead alloy sheet. Examples of the processing method include expanding processing and punching processing. It is preferable to use a grid-shaped current collector as the negative electrode current collector because it is easy to support the negative electrode material.
  • the lead alloy used for the negative electrode current collector may be any of Pb—Sb-based alloys, Pb-Ca-based alloys, and Pb-Ca—Sn-based alloys. These leads or lead alloys may further contain, as an additive element, at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like.
  • the negative electrode current collector may include a surface layer. The composition of the surface layer and the inner layer of the negative electrode current collector may be different. The surface layer may be formed on a part of the negative electrode current collector. The surface layer may be formed on the selvage portion of the negative electrode current collector. The surface layer of the selvage may contain Sn or Sn alloy.
  • the negative electrode electrode material contains a negative electrode active material (specifically, lead or lead sulfate) whose capacity is developed by a redox reaction as an essential component, and is an organic shrinkage inhibitor, a carbonaceous material, barium sulfate, a fiber (resin fiber, etc.). May contain additives such as. Additives are not limited to these.
  • the negative electrode active material in the charged state is spongy lead, but the unchemical negative electrode plate is usually produced by using lead powder.
  • the lead powder preferably contains at least lead monoxide.
  • the lead powder may further contain metallic lead.
  • the organic shrinkage proofing agent is an organic compound among compounds having a function of suppressing the shrinkage of lead, which is a negative electrode active material, when the lead storage battery is repeatedly charged and discharged.
  • Organic shrinkage proofing agents are usually roughly classified into lignin compounds and synthetic organic shrinkage proofing agents. It can be said that the synthetic organic shrinkage proofing agent is an organic shrinkage proofing agent other than the lignin compound.
  • Examples of the organic shrinkage proofing agent contained in the negative electrode electrode material include a lignin compound and a synthetic organic shrinkage proofing agent.
  • the negative electrode electrode material may contain one kind of organic shrinkage proofing agent, or may contain two or more kinds of organic shrinkage proofing agents.
  • Examples of the lignin compound include lignin and lignin derivatives.
  • Examples of the lignin derivative include lignin sulfonic acid or a salt thereof (alkali metal salt (sodium salt, etc.), etc.).
  • the synthetic organic shrinkage proofing agent is an organic polymer containing an element of sulfur.
  • the synthetic organic shrinkage proofing agent include a condensate of an aldehyde compound (aldehyde or a condensate thereof (for example, formaldehyde)) of a compound having a sulfur-containing group and an aromatic ring.
  • synthetic organic shrinkage proofing agents are not limited to this.
  • the sulfur-containing groups a sulfonic acid group or a sulfonyl group, which is a stable form, is preferable.
  • the sulfonic acid group may be present in acid form or may be present in salt form such as Na salt.
  • the content of the organic shrink-proofing agent contained in the negative electrode electrode material is, for example, 0.01% by mass or more, and may be 0.05% by mass or more.
  • the content of the organic shrinkage proofing agent is, for example, 1.0% by mass or less, and may be 0.5% by mass or less.
  • the content of the organic shrinkage-proofing agent contained in the negative electrode electrode material is the content in the negative electrode material collected by the method described later from a prefabricated lead-acid battery in a fully charged state.
  • carbon black As the carbonaceous material contained in the negative electrode electrode material, carbon black, graphite, hard carbon, soft carbon, etc. can be used. Examples of carbon black include acetylene black, furnace black, and lamp black. Furness Black also includes Ketjen Black (trade name).
  • the graphite may be any carbonaceous material containing a graphite-type crystal structure, and may be either artificial graphite or natural graphite.
  • the negative electrode material may contain one kind of carbonaceous material, or may contain two or more kinds of carbonaceous material.
  • the content of the carbonaceous material in the negative electrode electrode material is, for example, 0.05% by mass or more, and may be 0.10% by mass or more.
  • the content of the carbonaceous material is, for example, 5% by mass or less, and may be 3% by mass or less.
  • barium sulfate The content of barium sulfate in the negative electrode electrode material is, for example, 0.05% by mass or more, and may be 0.10% by mass or more. The content of barium sulfate in the negative electrode electrode material is, for example, 3% by mass or less, and may be 2% by mass or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the negative electrode plate can be formed by applying or filling a negative electrode paste to a negative electrode current collector, aging and drying to produce an unchemical negative electrode plate, and then forming an unchemical negative electrode plate.
  • the negative electrode paste is prepared by adding water and sulfuric acid (or an aqueous solution of sulfuric acid) to, for example, lead powder and at least one selected from the group consisting of an organic shrinkage proofing agent, a carbonaceous material, barium sulfate, and other additives, if necessary. In addition, it is produced by kneading. At the time of aging, it is preferable to ripen the unchemical negative electrode plate at a temperature higher than room temperature and high humidity.
  • Chemical formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unchemical negative electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical formation may be performed before assembling the lead-acid battery or the electrode plate group. The formation produces spongy lead.
  • a fully charged lead-acid battery is disassembled to obtain a negative electrode plate to be analyzed.
  • the obtained negative electrode plate is washed with water to remove sulfuric acid from the negative electrode plate. Wash with water by pressing the pH test paper against the surface of the negative electrode plate washed with water until it is confirmed that the color of the test paper does not change. However, the time for washing with water shall be within 2 hours.
  • the negative electrode plate washed with water is dried at 60 ⁇ 5 ° C. for about 6 hours in a reduced pressure environment. If the negative electrode plate contains a sticking member after drying, the sticking member is removed by peeling.
  • sample B a sample (hereinafter referred to as sample B) is obtained by separating the negative electrode material from the negative electrode plate. Sample B is pulverized as needed and subjected to analysis.
  • the infrared spectroscopic spectrum measured using the sample C of the organic shrinkage proofing agent thus obtained the ultraviolet visible absorption spectrum measured by diluting the sample C with distilled water or the like, and the sample C being used as heavy water or the like.
  • the structural formula of the organic shrinkage proofing agent cannot be specified exactly, so that the same organic shrinkage proofing is applied to the calibration curve.
  • the agent may not be available.
  • calibration is performed using an organic shrink-proof agent extracted from the negative electrode of the battery and a separately available organic polymer having a similar shape in the ultraviolet-visible absorption spectrum, infrared spectroscopic spectrum, NMR spectrum, and the like. By creating a line, the content of the organic shrink-proofing agent is measured using the ultraviolet-visible absorption spectrum.
  • a carbonaceous material and components other than barium sulfate are removed from the dispersion liquid using a sieve.
  • the dispersion liquid is suction-filtered using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a dryer at 110 ° C. ⁇ 5 ° C.
  • the filtered sample is a mixed sample of carbonaceous material and barium sulfate.
  • the mass of the sample C (M m ) is measured by subtracting the mass of the membrane filter from the total mass of the dried mixed sample (hereinafter referred to as sample C) and the membrane filter.
  • the sample C is put into a crucible together with a membrane filter and incinerated at 1300 ° C. or higher.
  • the remaining residue is barium oxide.
  • the mass of barium oxide is converted into the mass of barium sulfate to obtain the mass of barium sulfate ( MB ).
  • the mass of the carbonaceous material is calculated by subtracting the mass MB from the mass M m .
  • a separator can be arranged between the negative electrode plate and the positive electrode plate.
  • As the separator at least one selected from a non-woven fabric and a microporous membrane is used.
  • Nonwoven fabric is a mat that is entwined without weaving fibers, and is mainly composed of fibers.
  • the non-woven fabric for example, 60% by mass or more of the non-woven fabric is formed of fibers.
  • the fiber glass fiber, polymer fiber (polyolefin fiber, acrylic fiber, polyester fiber (polyethylene terephthalate fiber, etc.), etc.), pulp fiber, and the like can be used. Of these, glass fiber is preferable.
  • the nonwoven fabric may contain components other than fibers (for example, acid-resistant inorganic powder, polymer as a binder) and the like.
  • the microporous film is a porous sheet mainly composed of components other than fiber components.
  • a composition containing a pore-forming agent is extruded into a sheet and then the pore-forming agent is removed to form pores. It is obtained by.
  • the microporous membrane is preferably composed of a material having acid resistance, and a microporous membrane mainly composed of a polymer component is preferable.
  • the polymer component polyolefin (polyethylene, polypropylene, etc.) is preferable.
  • the pore-forming agent include at least one selected from the group consisting of polymer powders and oils.
  • the separator may be composed of, for example, only a non-woven fabric or only a microporous membrane. Further, the separator may be a laminate of a non-woven fabric and a microporous film, a material obtained by laminating different or similar materials, or a material in which irregularities are engaged with different or similar materials, as required.
  • the separator may be in the shape of a sheet or in the shape of a bag.
  • a sheet-shaped separator may be sandwiched between the positive electrode plate and the negative electrode plate.
  • the electrode plate may be arranged so as to sandwich the electrode plate with one sheet-shaped separator in a bent state.
  • the positive electrode plate sandwiched between the bent sheet-shaped separators and the negative electrode plate sandwiched between the bent sheet-shaped separators may be overlapped, and one of the positive electrode plate and the negative electrode plate may be sandwiched between the bent sheet-shaped separators. , May be overlapped with the other electrode plate.
  • the sheet-shaped separator may be bent in a bellows shape, and the positive electrode plate and the negative electrode plate may be sandwiched between the bellows-shaped separators so that the separator is interposed between them.
  • the separator may be arranged so that the bent portion is along the horizontal direction of the lead storage battery (for example, the bent portion is parallel to the horizontal direction), or along the vertical direction. (For example, the separator may be arranged so that the bent portion is parallel to the vertical direction).
  • recesses are alternately formed on both main surface sides of the separator.
  • the positive electrode plate is formed only in the concave portion on one main surface side of the separator.
  • a negative electrode plate is arranged (that is, a double separator is interposed between the adjacent positive electrode plate and the negative electrode plate).
  • the separator is arranged so that the bent portion is along the vertical direction of the lead storage battery, the positive electrode plate can be accommodated in the recess on one main surface side and the negative electrode plate can be accommodated in the recess on the other main surface side (that is,).
  • the separator can be in a single interposition between the adjacent positive electrode plate and the negative electrode plate).
  • the bag-shaped separator may accommodate a positive electrode plate or a negative electrode plate.
  • the electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled if necessary.
  • the electrolytic solution may contain the above-mentioned polymer compound.
  • the electrolytic solution may contain a cation (for example, a metal cation) and / or an anion (for example, an anion other than the sulfate anion (for example, a phosphate ion)), if necessary.
  • a cation for example, a metal cation
  • an anion for example, an anion other than the sulfate anion (for example, a phosphate ion)
  • the metal cation include at least one selected from the group consisting of Na ion, Li ion, Mg ion, and Al ion.
  • the specific gravity of the electrolytic solution in a fully charged lead storage battery at 20 ° C. is, for example, 1.20 or more, and may be 1.25 or more.
  • the specific gravity of the electrolytic solution at 20 ° C. is 1.35 or less, and may be 1.32 or less.
  • the lead-acid battery can be obtained by a manufacturing method including a step of accommodating a group of plates and an electrolytic solution in an electric tank.
  • the electrode plate group is assembled by laminating the positive electrode plate, the negative electrode plate, and the separator so that the separator is interposed between the positive electrode plate and the negative electrode plate prior to the accommodation in the electric tank.
  • the positive electrode plate, the negative electrode plate, the electrolytic solution, and the separator are each prepared prior to assembling the electrode plate group.
  • the method for manufacturing a lead-acid battery may include, if necessary, a step of forming at least one of a positive electrode plate and a negative electrode plate after a step of accommodating a group of electrode plates and an electrolytic solution in an electric tank.
  • One battery case usually contains one group of plates.
  • one electric tank may contain two or more groups of plates.
  • the lead-acid battery may be provided with one battery case containing a group of plates and an electrolytic solution, or may be provided with two or more lead-acid batteries.
  • each group of plates is usually connected in series.
  • Each electrode plate in the electrode plate group may be one plate or two or more plates.
  • the electrode plate group includes two or more positive electrode plates
  • the density of the positive electrode electrode material is in the above range for at least one positive electrode plate, and at least one of the above conditions (a) and (b) is satisfied. If this is done, the generation of resistance components is reduced for the positive electrode plates, and the effect of reducing the occurrence rate of voltage increase in the high temperature deep discharge cycle in the lead storage battery can be obtained according to the number of such positive electrode plates.
  • 50% or more (more preferably 80% or more or 90% or more) of the number of positive electrode plates included in the electrode plate group is the above condition.
  • the positive electrode plate satisfies the above.
  • the ratio of the positive electrode plates having the density of the positive electrode electrode material in the above range and satisfying the above conditions is 100% or less. It is particularly preferable that all of the positive electrode plates included in the electrode plate group have a density of the positive electrode electrode material in the above range and satisfy the above conditions.
  • the lead-acid battery has two or more electrode plates
  • at least a part of the electrode plates has a positive electrode plate in which the density of the positive electrode material is in the above range and satisfies the above conditions. All you have to do is prepare.
  • 50% or more (more preferably 80% or more or 90% or more) of the number of electrode plates contained in the lead storage battery is the positive electrode material. It is preferable to include a group of electrode plates including a positive electrode plate having a density of the above-mentioned range and satisfying the above-mentioned conditions.
  • the ratio of the electrode plate group including the electrode plate group including the positive electrode plate having the density of the positive electrode electrode material in the above range and satisfying the above conditions is 100% or less. be. It is preferable that all of the electrode plates included in the lead storage battery are provided with a positive electrode plate in which the density of the positive electrode electrode material is in the above range and the above conditions are satisfied.
  • FIG. 1 is a perspective view schematically showing an example in which the lid of the lead storage battery according to the embodiment of the present invention is removed.
  • 2A is a front view of the lead storage battery of FIG. 1
  • FIG. 2B is a schematic cross-sectional view taken along the line IIB-IIB of FIG. 2A when viewed from the direction of an arrow.
  • the lead-acid battery 1 includes an electric tank 10 that houses the electrode plate group 11 and the electrolytic solution 12.
  • the electrode plate group 11 is configured by laminating a plurality of negative electrode plates 2 and a clad type positive electrode plate 3 via a separator 4.
  • a state in which the sheet-shaped separator 4 is sandwiched between the negative electrode plate 2 and the clad type positive electrode plate 3, but the form of the separator is not particularly limited.
  • an ear portion (not shown) for collecting electricity is provided so as to project upward.
  • An ear portion (not shown) for collecting electricity is also provided on the upper portion of each of the plurality of clad type positive electrode plates 3 so as to project upward.
  • the ears of the negative electrode plate 2 are connected to each other by the negative electrode strap 5a and integrated.
  • the ears of the clad type positive electrode plate 3 are also connected and integrated by the positive electrode strap 5b.
  • the lower end of the negative electrode column 6a is fixed to the upper part of the negative electrode strap 5a, and the lower end of the positive electrode column 6b is fixed to the upper part of the positive electrode strap 5b.
  • the clad type positive electrode plate for a lead storage battery and the lead storage battery according to one aspect of the present invention are collectively described below.
  • a clad type positive electrode plate for a lead storage battery has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
  • the positive electrode material contains organic fibers and contains The density of the positive electrode material is 3.75 g / cm 3 or less.
  • the number of the organic fibers per unit volume of the positive electrode material may be 800 or more.
  • the number of the organic fibers per unit volume of the positive electrode material may be 10,000 or less, 7500 or less, or 7200 or less.
  • the ratio of the organic fiber to the positive electrode material may be 0.013% by volume or more and 0.5% by volume or less.
  • a clad type positive electrode plate for a lead storage battery has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
  • the positive electrode material contains organic fibers and contains The density of the positive electrode material is 3.75 g / cm 3 or less.
  • the ratio of the organic fiber to the positive electrode material may be 0.026% by volume or more.
  • the ratio of the organic fiber to the positive electrode material is 0.32% by volume or less, 0.25% by volume or less, or 0.23% by volume. It may be less than or equal to%.
  • the organic fiber may contain a fiber (first fiber) having a specific gravity of 1.2 or more.
  • the specific gravity of the first fiber may be 1.25 or more or 1.26 or more.
  • the specific gravity of the first fiber may be 1.7 or less, 1.6 or less, or 1.5 or less.
  • the ratio of the first fiber to the entire organic fiber contained in the positive electrode electrode material is 60% by volume or more, 75% by volume or more, or It may be 90% by volume or more.
  • the ratio of the first fiber may be 100% by volume or less.
  • the positive electrode material may contain only the first fiber as the organic fiber.
  • the organic fiber may contain an oxygen element.
  • the content of the oxygen element in the organic fiber is 10,000 ⁇ mol / g or more, 15,000 ⁇ mol / g or more, 17,000 ⁇ mol / g or more, 17400 ⁇ mol / g or more, 19000 ⁇ mol / g or more, 20000 ⁇ mol / g.
  • the above, or 20800 ⁇ mol / g or more may be used.
  • the content of the oxygen element in the organic fiber may be 50,000 ⁇ mol / g or less, 40,000 ⁇ mol / g or less, or 35,000 ⁇ mol / g or less.
  • the average fiber diameter of the organic fiber may be 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the average fiber diameter of the organic fiber may be 50 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less.
  • the average fiber length of the organic fiber is 0.1 mm or more, 0.5 mm or more, 1 mm or more, 1.5 mm or more, or 2 mm or more. You may.
  • the average fiber length of the organic fiber may be 10 mm or less, or 6 mm or less.
  • the organic fiber may contain at least one selected from the group consisting of polyester fiber, acetalized polyvinyl alcohol fiber, polyurethane fiber, and cellulose fiber. good.
  • the density of the positive electrode material may be 3.7 g / cm 3 or less.
  • the density of the positive electrode material may be 3.3 g / cm 3 or more.
  • the lead-acid battery comprises at least one group of plates and an electrolytic solution.
  • the electrode plate group includes at least one clad type positive electrode plate according to any one of (1) to (23), at least one negative electrode plate, and a separator interposed between the clad type positive electrode plate and the negative electrode plate.
  • a lead-acid battery is not limited to a lead-acid battery.
  • the negative electrode plate may contain a negative electrode material.
  • the negative electrode material may contain an organic shrinkage proofing agent.
  • the content of the organic shrinkage barrier in the negative electrode electrode material may be 0.01% by mass or more, or 0.05% by mass or more.
  • the content of the organic shrinkage barrier in the negative electrode electrode material may be 1.0% by mass or less, or 0.5% by mass or less.
  • the negative electrode material may contain a carbonaceous material.
  • the content of the carbonaceous material in the negative electrode material may be 0.05% by mass or more, or 0.10% by mass or more.
  • the content of the carbonaceous material in the negative electrode electrode material may be 5% by mass or less, or 3% by mass or less.
  • the negative electrode material may contain barium sulfate.
  • the content of the barium sulfate in the negative electrode electrode material may be 0.05% by mass or more, or 0.10% by mass or more.
  • the content of the barium sulfate in the negative electrode electrode material may be 3% by mass or less, or 2% by mass or less.
  • a clad type positive electrode plate is manufactured by the following procedure. First, each of the 15 cores having one end in the length direction integrated into the current collector provided with the selvage is housed in each of the 15 tubes. A resin upper collective punishment is formed by covering the current collector and one end of the tube in the length direction on the current collector side with resin so that the selvage is exposed.
  • the material of the core metal and the current collector is a Pb—Sb alloy, and the length of each core metal is 295 mm.
  • As the tube a porous tube made of glass fiber having a length of 310 mm and an outer diameter of 9.5 mm is used.
  • a positive electrode slurry prepared by kneading lead powder (containing 80% by mass of lead oxide and 20% by mass of metallic lead), lead tan, the organic fibers shown in the table, water, and dilute sulfuric acid is added in the length direction of the tube. Fill through the opening at the end. The opening at the other end of the tube is then sealed with a lower punishment and dried. In this way, an unchemical clad type positive electrode plate is produced.
  • the width of the produced positive electrode plate is 143 mm.
  • the mass ratio of lead powder and lead tan is 9: 1.
  • the amount of organic fibers added is adjusted so that the number of organic fibers per unit volume (cm 3 ) of the positive electrode material or the ratio of organic fibers to the positive electrode material obtained by the above procedure is the value shown in the table. Will be done.
  • the filling amount of the positive electrode slurry is adjusted so that the density of the positive electrode material obtained by the above-mentioned procedure becomes the value shown in the table.
  • the average fiber diameter of the organic fiber obtained by the above-mentioned procedure is 14 ⁇ m, and the average fiber length is 2 mm.
  • Electrode plate (including 80% by mass of lead oxide and 20% by mass of metallic lead), 0.3% by mass of carbon black, 0.1% by mass of an organic shrinkage proofing agent (sodium lignin sulfonate), and Barium sulphate 1.5% by weight is mixed with water and dilute lead sulphate to prepare a negative paste.
  • An unchemical negative electrode plate (thickness 4.5 mm) is produced by filling a cast lattice (thickness 4.4 mm) made of an Sb-based alloy as a negative electrode current collector with a negative electrode paste and drying it.
  • the filling amount of the negative electrode paste is adjusted so that the mass of the negative electrode active material contained in the negative electrode material in one negative electrode plate after chemical conversion is 750 ⁇ 6 g in terms of Pb element.
  • the length of the negative electrode plate is the same as the length of the tube of the positive electrode plate, and the width of the negative electrode plate is the same as the width of the positive electrode plate.
  • the electrode plate group is housed in a polypropylene electric tank, dilute sulfuric acid having a specific gravity of 1.280 at 20 ° C. is injected, and the lid is fixed to the opening of the electric tank by adhesion. Chemicalization is performed while the electric tank is held in a water tank at 30 ° C ⁇ 2 ° C. In this way, lead-acid batteries E1 to E19, C1 to C6, and R1 to R2 having a rated voltage of 2 V and a rated capacity (5-hour rate) of 165 Ah are obtained. Lead-acid batteries are almost fully charged due to chemical formation.
  • the effect of reducing the voltage rise in the high temperature deep discharge cycle is that the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more and / or the positive electrode. It can be obtained when the ratio of organic fibers to the electrode material is 0.013% by volume or more. From the viewpoint of further reducing the rate of voltage rise in the high temperature deep discharge cycle, the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 800 or more and / or the ratio of organic fibers to the positive electrode material. Is preferably 0.026% by volume or more.
  • the oxygen element content of the organic fiber is 15,000 ⁇ mol / g or more (preferably 17,000 ⁇ mol / g or more or 17,400 ⁇ mol / g or more), the voltage rise in the high temperature deep discharge cycle. The incidence can be further reduced.
  • the number of organic fibers per unit volume of the positive electrode material is more preferably 7500 or less or 7200 or less from the viewpoint of easily securing a higher initial capacity.
  • the ratio of the organic fiber to the positive electrode material is more preferably 0.25% by volume or less or 0.23% by volume or less (Tables 4 and 9).
  • the clad type positive electrode plate according to one aspect of the present invention can be suitably used for an industrial long-life lead-acid battery or a lead-acid battery for an electric vehicle (forklift, etc.). Further, the clad type positive electrode plate may be used for a lead storage battery for a vehicle such as an automobile or a motorcycle, for example. However, these applications are merely examples, and the applications of the clad type positive electrode plate and the lead storage battery provided with the clad type positive electrode plate are not limited to these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This clad positive-electrode plate for a lead storage battery comprises a plurality of porous tubes, metal cores accommodated within the tubes, a positive electrode material with which the tubes are filled, and a current collector that connects the longitudinal-direction ends of a plurality of the metal cores lined up in a row. The positive electrode material contains organic fibers. The density of the positive electrode material is 3.75 g/cm3 or less. The positive electrode material satisfies at least one of a condition (a), in which the number of organic fibers per unit volume (cm3) of the positive electrode material is 400-15,000 (inclusive), and a condition (b), in which the ratio of the organic fibers occupying the positive electrode material is 0.013-0.5 vol% (inclusive).

Description

鉛蓄電池用クラッド式正極板および鉛蓄電池Clad type positive electrode plate for lead-acid battery and lead-acid battery
 本発明は、鉛蓄電池用クラッド式正極板および鉛蓄電池に関する。 The present invention relates to a clad type positive electrode plate for a lead storage battery and a lead storage battery.
 鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、正極板と、負極板と、電解液とを含む。正極板としては、ペースト式正極板、およびクラッド式正極板などが用いられている。各極板は集電体と電極材料とを含む。様々な機能を付与する観点から、鉛蓄電池の構成部材(例えば、電極材料)に添加剤が添加されることがある。 Lead-acid batteries are used for various purposes such as in-vehicle use, industrial use, and so on. The lead-acid battery includes a positive electrode plate, a negative electrode plate, and an electrolytic solution. As the positive electrode plate, a paste type positive electrode plate, a clad type positive electrode plate, or the like is used. Each electrode plate contains a current collector and an electrode material. From the viewpoint of imparting various functions, an additive may be added to a constituent member (for example, an electrode material) of a lead storage battery.
 特許文献1は、正極電極材料は密度が3.1g/cm以上でかつSb元素を含有する鉛蓄電池において、負極電極材料の有機防縮剤が3800μmol/g以上のS元素を含有していることを特徴とする、鉛蓄電池を提案している。 Patent Document 1 describes that the positive electrode material is a lead-acid battery having a density of 3.1 g / cm 3 or more and containing Sb element, and the organic shrinkage barrier of the negative electrode material contains S element of 3800 μmol / g or more. We are proposing a lead-acid battery that features.
 特許文献2は、負極電極材料が、S元素含有量が3500μmol/g以上である有機防縮剤を含有する負極板と、ゲル化され、あるいはセパレータに保持され、もしくは顆粒状シリカに保持されている電解液の一つ以上、とを備えている鉛蓄電池を提案している。 In Patent Document 2, the negative electrode electrode material is gelled, held in a separator, or held in granular silica with a negative electrode plate containing an organic shrink-proofing agent having an S element content of 3500 μmol / g or more. We are proposing a lead-acid battery equipped with one or more of the electrolytes.
 特許文献3は、鉛粉を主成分とする正極活物質を正極格子体に充填した鉛蓄電池用正極板において、有機又はガラス短繊維とアンチモンを前記正極活物質中に含有させたことを特徴とする鉛蓄電池用正極板を提案している。 Patent Document 3 is characterized in that, in a positive electrode plate for a lead storage battery in which a positive electrode active material containing lead powder as a main component is filled in a positive electrode lattice, organic or glass short fibers and antimony are contained in the positive electrode active material. We are proposing a positive electrode plate for lead-acid batteries.
 特許文献4は、正極板と負極板と電解液とを備え、前記負極板の負極電極材料は黒鉛あるいは炭素繊維と、硫酸バリウム換算で1.1mass%以上のバリウム元素と、を含有し、前記正極板の正極電極材料はスズ元素を含有することを特徴とする鉛蓄電池を提案している。 Patent Document 4 includes a positive electrode plate, a negative electrode plate, and an electrolytic solution, and the negative electrode electrode material of the negative electrode plate contains graphite or carbon fiber and a barium element of 1.1 mass% or more in terms of barium sulfate. We have proposed a lead storage battery characterized by containing tin element as the positive electrode material of the positive electrode plate.
 また、電極材料の密度または比表面積などを調節することも提案されている。 It has also been proposed to adjust the density or specific surface area of the electrode material.
 特許文献5は、正極及び負極を備え、前記正極が、正極集電体と、当該正極集電体に保持された正極材と、を有し、前記負極が、負極集電体と、当該負極集電体に保持された負極材と、を有し、前記正極材の比表面積が10m/g以上であり、前記正極材の密度が3.8g/cm以上である、鉛蓄電池を提案している。 Patent Document 5 includes a positive electrode and a negative electrode, wherein the positive electrode has a positive electrode current collector and a positive electrode material held by the positive electrode current collector, and the negative electrode is a negative electrode current collector and the negative electrode. Proposed a lead storage battery having a negative electrode material held by a current collector, the positive electrode material having a specific surface area of 10 m 2 / g or more, and the positive electrode material having a density of 3.8 g / cm 3 or more. is doing.
 特許文献6は、密度が3.8~5.0g/cmの正極活物質を、アンチモンを含有しない鉛合金で形成した格子体に保持させた正極と、密度が1.20~1.28g/cmの硫酸電解液とを有する密閉型鉛蓄電池を提案している。 Patent Document 6 describes a positive electrode in which a positive electrode active material having a density of 3.8 to 5.0 g / cm 3 is held in a lattice body made of a lead alloy containing no antimony, and a positive electrode having a density of 1.20 to 1.28 g. We are proposing a sealed lead-acid battery with a sulfuric acid electrolyte of / cm3 .
特開2016-225113号公報Japanese Unexamined Patent Publication No. 2016-225113 特開2016-189297号公報Japanese Unexamined Patent Publication No. 2016-189297 特開2010-277799号公報Japanese Unexamined Patent Publication No. 2010-277799 国際公開第2018/025837号International Publication No. 2018/025837 特開2017-016970号公報JP-A-2017-016970 特開2001-250589号公報Japanese Unexamined Patent Publication No. 2001-250589
 深放電を含む充放電サイクルで使用される鉛蓄電池では、長時間充放電を繰り返すと、電池の温度が高くなる。クラッド式正極板を備える鉛蓄電池において、正極電極材料の密度が比較的小さい場合、高温(例えば、75℃以上の温度)で深放電を含む充放電サイクルを行うと、充電時に急激な電圧上昇が起こる場合があることが明らかとなった。例えば、鉛蓄電池が準定電圧方式で充電される場合、充電時に急激な電圧上昇が起こると、早期に充電の設定電圧に到達したと認識されて、充電が終了してしまい、実際には充電不足状態となることがある。 In lead-acid batteries used in charge / discharge cycles including deep discharge, the temperature of the battery rises when charging / discharging is repeated for a long time. In a lead-acid battery provided with a clad type positive electrode plate, when the density of the positive electrode material is relatively low, when a charge / discharge cycle including deep discharge is performed at a high temperature (for example, a temperature of 75 ° C. or higher), a rapid voltage rise occurs during charging. It became clear that it could happen. For example, when a lead-acid battery is charged by the semi-constant voltage method, if a sudden voltage rise occurs during charging, it is recognized that the set voltage for charging has been reached early, and charging ends, and the charging is actually performed. It may be in short supply.
 本発明の第1側面は、鉛蓄電池用クラッド式正極板であって、
 前記正極板は、複数の多孔質のチューブと、前記チューブ内に収容された芯金と、前記チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の前記芯金の長さ方向の一端部を連結する集電部とを備え、
 前記正極電極材料は、有機繊維を含み、
 前記正極電極材料の密度は、3.75g/cm以下であり、
 前記正極電極材料の単位体積(cm)当たりの前記有機繊維の本数は、400以上15000以下である、鉛蓄電池用クラッド式正極板に関する。
The first aspect of the present invention is a clad type positive electrode plate for a lead storage battery.
The positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
The positive electrode material contains organic fibers and contains
The density of the positive electrode material is 3.75 g / cm 3 or less.
The present invention relates to a clad type positive electrode plate for a lead storage battery, wherein the number of the organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more and 15,000 or less.
 本発明の第2側面は、鉛蓄電池用クラッド式正極板であって、
 前記正極板は、複数の多孔質のチューブと、前記チューブ内に収容された芯金と、前記チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の前記芯金の長さ方向の一端部を連結する集電部とを備え、
 前記正極電極材料は、有機繊維を含み、
 前記正極電極材料の密度は、3.75g/cm以下であり、
 前記正極電極材料に占める前記有機繊維の比率は、0.013体積%以上0.5体積%以下である、鉛蓄電池用クラッド式正極板に関する。
The second aspect of the present invention is a clad type positive electrode plate for a lead storage battery.
The positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
The positive electrode material contains organic fibers and contains
The density of the positive electrode material is 3.75 g / cm 3 or less.
The present invention relates to a clad type positive electrode plate for a lead storage battery, wherein the ratio of the organic fiber to the positive electrode electrode material is 0.013% by volume or more and 0.5% by volume or less.
 本発明の第3側面は、鉛蓄電池であって、
 前記鉛蓄電池は、少なくとも1つの極板群および電解液を備え、
 前記極板群は、少なくとも1つの、上記のクラッド式正極板と、少なくとも1つの負極板と、前記クラッド式正極板および前記負極板の間に介在するセパレータとを備える、鉛蓄電池に関する。
The third aspect of the present invention is a lead storage battery.
The lead-acid battery comprises at least one group of plates and an electrolytic solution.
The electrode plate group relates to a lead storage battery including at least one clad type positive electrode plate, at least one negative electrode plate, and a separator interposed between the clad type positive electrode plate and the negative electrode plate.
 クラッド式正極板を備える鉛蓄電池を、高温で深放電を含む充放電サイクルで充放電したときの充電時の電圧上昇を低減できる。 It is possible to reduce the voltage rise during charging when a lead storage battery equipped with a clad type positive electrode plate is charged and discharged in a charge / discharge cycle including deep discharge at high temperature.
本発明の実施形態に係る鉛蓄電池の蓋を外した一例を模式的に示す斜視図である。It is a perspective view schematically showing an example which removed the lid of the lead storage battery which concerns on embodiment of this invention. 図1の鉛蓄電池の正面図である。It is a front view of the lead storage battery of FIG. 図1AのIIB-IIB線における断面を矢印方向から見たときの概略断面図である。It is a schematic cross-sectional view when the cross section in the IIB-IIB line of FIG. 1A is seen from the direction of an arrow. 表1の電圧上昇発生率と正極電極材料の密度との関係を示すグラフである。It is a graph which shows the relationship between the voltage rise occurrence rate of Table 1 and the density of a positive electrode material. 表2の電圧上昇発生率と有機繊維の本数との関係を示すグラフである。It is a graph which shows the relationship between the voltage rise occurrence rate of Table 2 and the number of organic fibers. 表2の電圧上昇発生率と有機繊維の比率との関係を示すグラフである。It is a graph which shows the relationship between the voltage rise occurrence rate of Table 2 and the ratio of an organic fiber. 表3の電圧上昇発生率と有機繊維の比重との関係を示すグラフである。It is a graph which shows the relationship between the voltage rise occurrence rate of Table 3 and the specific gravity of an organic fiber. 表3の電圧上昇発生率と有機繊維の酸素元素含有量との関係を示すグラフである。It is a graph which shows the relationship between the voltage rise occurrence rate of Table 3 and the oxygen element content of an organic fiber. 表4の初期容量と有機繊維の本数との関係を示すグラフである。It is a graph which shows the relationship between the initial capacity of Table 4 and the number of organic fibers. 表4の初期容量と有機繊維の比率との関係を示すグラフである。It is a graph which shows the relationship between the initial capacity of a table 4 and the ratio of an organic fiber.
 深放電を含む充放電サイクルで使用される鉛蓄電池では、長時間充放電を繰り返すと、電池の温度が高温(例えば、75℃以上の温度)になる。これは、充電時には、過充電状態となり易いことで、発熱することに加え、放電時にも深放電に伴い抵抗が大きくなることで、発熱が大きくなるためである。 In a lead-acid battery used in a charge / discharge cycle including deep discharge, the temperature of the battery becomes high (for example, a temperature of 75 ° C or higher) when charging / discharging is repeated for a long time. This is because, during charging, it tends to be in an overcharged state, which causes heat generation, and also during discharging, the resistance increases with deep discharge, so that heat generation increases.
 クラッド式正極板を備える鉛蓄電池において、正極電極材料の密度が3.75g/cm以下の場合に、高温で深放電を含む充放電を行うと、急激な電圧上昇が生じることが明らかとなった。このような電圧上昇の課題は、これまで知られていない新たな課題である。クラッド式正極板は、例えば、複数の多孔質のチューブと、チューブ内に収容された芯金と、チューブ内に充填された正極電極材料と、を備えている。正極電極材料の密度が小さい場合、硫酸イオンが正極電極材料の内部に侵入し易くなる。メカニズムの詳細は定かではないが、内部まで侵入した硫酸イオンの作用により、芯金に含まれる成分に由来するイオンなどが正極電極材料中に拡散して、何らかの抵抗成分が形成されることで、上記の電圧上昇が生じると考えられる。 It has been clarified that in a lead-acid battery provided with a clad type positive electrode plate, when the density of the positive electrode material is 3.75 g / cm 3 or less, when charging / discharging including deep discharge is performed at a high temperature, a rapid voltage rise occurs. rice field. The problem of such voltage rise is a new problem that has not been known so far. The clad type positive electrode plate includes, for example, a plurality of porous tubes, a core metal housed in the tube, and a positive electrode material filled in the tube. When the density of the positive electrode material is small, sulfate ions easily invade the inside of the positive electrode material. Although the details of the mechanism are not clear, the action of sulfate ions that have penetrated into the core causes ions and the like derived from the components contained in the core metal to diffuse into the positive electrode material, forming some kind of resistance component. It is considered that the above voltage rise occurs.
 鉛蓄電池は、準定電圧方式で充電されることがある。準定電圧方式では、鉛蓄電池の電圧(具体的には、端子電圧)を検知しながら充電が行われる。より具体的には、充電初期の電池電圧が低い状態では充電電流が大きく、充電が進み、電池電圧が上昇すると、充電電流が小さくなり、電池電圧が設定値になると、充電が終了する。このような充電方式では、充電時に上記のような急激な電圧上昇が起こると、実際には充電が進んでいないにも拘わらず、電池電圧が設定値に到達したと誤認して、充電が終了する場合がある。充電が終了した鉛蓄電池は、実際には充電不足状態であるため、鉛蓄電池を装置または機器類に搭載しても長時間作動させることが難しい。 Lead-acid batteries may be charged by the semi-constant voltage method. In the quasi-constant voltage method, charging is performed while detecting the voltage of the lead storage battery (specifically, the terminal voltage). More specifically, when the battery voltage at the initial stage of charging is low, the charging current is large, charging proceeds, and when the battery voltage rises, the charging current decreases, and when the battery voltage reaches the set value, charging ends. In such a charging method, if the above-mentioned sudden voltage rise occurs during charging, it is mistakenly recognized that the battery voltage has reached the set value even though the charging has not actually progressed, and the charging is completed. May be done. Since the lead-acid battery that has been charged is actually in an insufficient charge state, it is difficult to operate the lead-acid battery for a long time even if it is mounted on a device or equipment.
 上記に鑑み、本発明の第1側面および第2側面のそれぞれに係る鉛蓄電池は、少なくとも1つの極板群および電解液を備える。極板群は、少なくとも1つのクラッド式の正極板と、少なくとも1つの負極板と、正極板および負極板の間に介在するセパレータとを備える。正極板は、複数の多孔質のチューブと、チューブ内に収容された芯金と、チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の芯金の長さ方向の一端部を連結する集電部とを備える。正極電極材料は、有機繊維を含む。正極電極材料の密度は、3.75g/cm以下である。 In view of the above, the lead-acid battery according to each of the first side surface and the second side surface of the present invention includes at least one electrode plate group and an electrolytic solution. The electrode plate group includes at least one clad type positive electrode plate, at least one negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate. The positive electrode plate is formed by a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and one end of a plurality of core metal pieces arranged in a row in the length direction. It is equipped with a current collector for connecting the above. The positive electrode material contains organic fibers. The density of the positive electrode material is 3.75 g / cm 3 or less.
 第1側面に係る鉛蓄電池において、(a)正極電極材料の単位体積(cm)当たりの有機繊維の本数は、400以上15000以下である。 In the lead storage battery according to the first aspect, (a) the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more and 15,000 or less.
 第2側面に係る鉛蓄電池において、(b)正極電極材料に占める有機繊維の比率は、0.013体積%以上0.5体積%以下である。 In the lead storage battery according to the second aspect, (b) the ratio of organic fibers to the positive electrode material is 0.013% by volume or more and 0.5% by volume or less.
 第1側面および第2側面に係る鉛蓄電池では、正極電極材料の密度が3.75g/cm以下でも、高温(例えば、75℃)で深放電を含む充放電サイクルで充放電したときの充電時の電圧上昇を低減することができる。よって、鉛蓄電池における電圧上昇の発生率を大幅に低減することができる。このような効果が得られるのは、上記の条件(a)または(b)を充足するように、正極電極材料が有機繊維を含むことで、正極電極材料の密度が小さくても、有機繊維により、正極電極材料中のイオンの移動が妨げられるためと考えられる。より具体的には、硫酸イオンの芯金近傍への侵入が緩和されると考えられる。さらに、芯金近傍に硫酸イオンが到達し、芯金に含まれる成分が溶出しても、この成分に由来するイオンなどの正極電極材料中の移動が妨げられ、正極電極材料全体への拡散が低減されると考えられる。正極電極材料での抵抗成分の形成が低減されることで、上記の電圧上昇が低減されると考えられる。 In the lead-acid battery according to the first side surface and the second side surface, even if the density of the positive electrode material is 3.75 g / cm 3 or less, charging is performed at a high temperature (for example, 75 ° C.) in a charge / discharge cycle including deep discharge. It is possible to reduce the voltage rise at the time. Therefore, the rate of occurrence of voltage rise in the lead storage battery can be significantly reduced. Such an effect can be obtained by containing organic fibers in the positive electrode material so as to satisfy the above conditions (a) or (b), and even if the density of the positive electrode material is low, the organic fibers can be used. This is probably because the movement of ions in the positive electrode material is hindered. More specifically, it is considered that the invasion of sulfate ions into the vicinity of the core metal is alleviated. Furthermore, even if sulfate ions reach the vicinity of the core metal and the components contained in the core metal elute, the movement of ions derived from these components into the positive electrode material is hindered and diffusion into the entire positive electrode material is prevented. It is thought that it will be reduced. It is considered that the above voltage rise is reduced by reducing the formation of the resistance component in the positive electrode material.
 なお、本明細書中、高温(例えば、75℃)で深放電を含む充放電サイクルで充放電したときの充電時の電圧上昇を、単に、「高温深放電サイクルでの電圧上昇」と称することがある。 In the present specification, the voltage increase during charging when charging / discharging in a charge / discharge cycle including deep discharge at a high temperature (for example, 75 ° C.) is simply referred to as “voltage increase in high temperature deep discharge cycle”. There is.
 一方、クラッド式正極板において正極電極材料の密度が3.75g/cmを超える場合には、正極電極材料が有機繊維を含まなくても、高温深放電サイクルでの電圧上昇が問題とならない。つまり、高温深放電サイクルでの電圧上昇は、クラッド式正極板において正極電極材料の密度が3.75g/cm以下である場合に特有の課題であると言える。本発明の第1側面および第2側面では、条件(a)または(b)により、このような特有の課題を解決することができる。 On the other hand, when the density of the positive electrode material exceeds 3.75 g / cm 3 in the clad type positive electrode plate, the voltage increase in the high temperature deep discharge cycle does not matter even if the positive electrode material does not contain organic fibers. That is, it can be said that the voltage increase in the high temperature deep discharge cycle is a problem peculiar to the case where the density of the positive electrode material is 3.75 g / cm 3 or less in the clad type positive electrode plate. In the first aspect and the second aspect of the present invention, such a specific problem can be solved by the condition (a) or (b).
 本発明には、条件(a)または(b)を充足する鉛蓄電池用クラッド式正極板も包含される。本発明の第3側面および第4側面に係る鉛蓄電池用クラッド式正極板のそれぞれは、複数の多孔質のチューブと、チューブ内に収容された芯金と、チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の芯金の長さ方向の一端部を連結する集電部とを備える。正極電極材料は、有機繊維を含む。正極電極材料の密度は、3.75g/cm以下である。そして、第3側面に係る鉛蓄電池用クラッド式正極板は、上記の条件(a)を充足する。第4側面に係る鉛蓄電池用クラッド式正極板は、上記の条件(b)を充足する。このようなクラッド式正極板を鉛蓄電池に用いることで、第1側面または第2側面について説明した上記のような効果が得られる。 The present invention also includes a clad type positive electrode plate for a lead storage battery that satisfies the condition (a) or (b). Each of the clad type positive electrode plates for lead storage batteries according to the third side surface and the fourth side surface of the present invention has a plurality of porous tubes, a core metal housed in the tubes, and a positive electrode material filled in the tubes. And a current collector that connects one end of a plurality of cores arranged in a row in the length direction. The positive electrode material contains organic fibers. The density of the positive electrode material is 3.75 g / cm 3 or less. The clad type positive electrode plate for a lead storage battery according to the third side surface satisfies the above condition (a). The clad type positive electrode plate for a lead storage battery according to the fourth side surface satisfies the above condition (b). By using such a clad type positive electrode plate for a lead storage battery, the above-mentioned effects described for the first side surface or the second side surface can be obtained.
 第1側面および第3側面のそれぞれは、条件(a)に加え、条件(b)を充足してもよい。この場合、高温深放電サイクルでの電圧上昇をより効果的に低減することができる。 Each of the first side surface and the third side surface may satisfy the condition (b) in addition to the condition (a). In this case, the voltage rise in the high temperature deep discharge cycle can be reduced more effectively.
 正極電極材料の単位体積(cm)当たりの有機繊維の本数は、800以上であってもよい。また、正極電極材料に占める有機繊維の比率は、0.026体積%以上であってもよい。これらの場合、高温深放電サイクルでの電圧上昇の発生率をさらに低減することができる。 The number of organic fibers per unit volume (cm 3 ) of the positive electrode material may be 800 or more. Further, the ratio of the organic fiber to the positive electrode material may be 0.026% by volume or more. In these cases, the rate of occurrence of voltage rise in the high temperature deep discharge cycle can be further reduced.
 正極電極材料の単位体積(cm)当たりの有機繊維の本数は、10000以下であってもよい。また、正極電極材料に占める有機繊維の比率は、0.32体積%以下であってもよい。これらの場合、正極電極材料において、結着力の低下が抑制され、ひび割れが低減されることで、より高い初期容量を確保し易い。 The number of organic fibers per unit volume (cm 3 ) of the positive electrode material may be 10,000 or less. Further, the ratio of the organic fiber to the positive electrode material may be 0.32% by volume or less. In these cases, in the positive electrode material, the decrease in the binding force is suppressed and the cracks are reduced, so that it is easy to secure a higher initial capacity.
 有機繊維は、比重が1.2以上の繊維を含むことが好ましい。この場合、高温深放電サイクルでの電圧上昇の発生率をさらに低減できる。これは、繊維が、正極電極材料全体により均一に分散し易くなることで、正極電極材料内のイオンの移動がさらに制限されるためと考えられる。 The organic fiber preferably contains a fiber having a specific gravity of 1.2 or more. In this case, the rate of occurrence of voltage rise in the high temperature deep discharge cycle can be further reduced. It is considered that this is because the fibers are more likely to be uniformly dispersed in the entire positive electrode material, and the movement of ions in the positive electrode material is further restricted.
 有機繊維は、酸素元素を含み、有機繊維中の前記酸素元素の含有量は、10000μmol/g以上であることが好ましい。この場合、高温深放電サイクルでの電圧上昇の発生率をさらに低減できる。有機繊維に多くの酸素元素が含まれると、有機繊維が水分子と水素結合し易くなる。これにより、有機繊維が、正極電極材料全体により均一に分散し易くなるため、正極電極材料内のイオンの移動が有機繊維により、さらに制限されることで、高温深放電サイクルでの電圧上昇の発生率がさらに低減されると考えられる。  The organic fiber contains an oxygen element, and the content of the oxygen element in the organic fiber is preferably 10,000 μmol / g or more. In this case, the rate of occurrence of voltage rise in the high temperature deep discharge cycle can be further reduced. When the organic fiber contains a large amount of oxygen elements, the organic fiber tends to hydrogen bond with water molecules. This makes it easier for the organic fibers to be more evenly dispersed throughout the positive electrode material, and the movement of ions in the positive electrode material is further restricted by the organic fibers, resulting in a voltage rise in the high temperature deep discharge cycle. It is believed that the rate will be further reduced. It was
 有機繊維中の酸素元素の含有量は、35000μmol/g以下であってもよい。この場合、正極電位に晒されても有機繊維の酸化分解が抑制されるため、高い耐久性を確保できる。 The content of oxygen element in the organic fiber may be 35,000 μmol / g or less. In this case, even if it is exposed to the positive electrode potential, oxidative decomposition of the organic fiber is suppressed, so that high durability can be ensured.
 有機繊維は、ポリエステル繊維、アセタール化ポリビニルアルコール繊維、ポリウレタン繊維、およびセルロース繊維からなる群より選択される少なくとも一種を含むことが好ましい。これらの有機繊維は、適度な比重を有し、正極電極材料全体により均一に分散し易くなる。そのため、正極電極材料内のイオンの移動が、有機繊維によりさらに制限されることで、高温深放電サイクルでの電圧上昇の発生率がさらに低減されると考えられる。 The organic fiber preferably contains at least one selected from the group consisting of polyester fiber, acetalized polyvinyl alcohol fiber, polyurethane fiber, and cellulose fiber. These organic fibers have an appropriate specific gravity, and are easily dispersed more uniformly over the entire positive electrode material. Therefore, it is considered that the movement of ions in the positive electrode electrode material is further restricted by the organic fiber, so that the occurrence rate of the voltage increase in the high temperature deep discharge cycle is further reduced.
 正極電極材料の密度は、3.7g/cm以下であることが好ましい。この場合、高温深放電サイクルでの電圧上昇の発生率がさらに高くなるが、このような範囲であっても、上記の条件(a)および(b)の少なくとも一方を充足するように、正極電極材料が有機繊維を含むことで、高温深放電サイクルでの電圧上昇の発生率を低減することができる。 The density of the positive electrode material is preferably 3.7 g / cm 3 or less. In this case, the rate of occurrence of voltage rise in the high temperature deep discharge cycle is further increased, but even in such a range, the positive electrode electrode so as to satisfy at least one of the above conditions (a) and (b). Since the material contains organic fibers, the occurrence rate of voltage rise in the high temperature deep discharge cycle can be reduced.
 より高い放電容量を確保し易い観点からは、正極電極材料の密度は、3.3g/cm以上であることが好ましい。 From the viewpoint of easily securing a higher discharge capacity, the density of the positive electrode material is preferably 3.3 g / cm 3 or more.
 鉛蓄電池は、制御弁式(密閉式)鉛蓄電池(VRLA型鉛蓄電池)および液式(ベント式)鉛蓄電池のいずれでもよい。 The lead-acid battery may be either a control valve type (sealed type) lead-acid battery (VRLA type lead-acid battery) or a liquid type (vent type) lead-acid battery.
 本明細書中、正極電極材料の密度および単位体積当たりの有機繊維の本数、正極電極材料に占める有機繊維の比率、有機繊維の比重、ならびに有機繊維中の酸素元素の含有量は、満充電状態の鉛蓄電池から取り出した正極板について求められる。 In the present specification, the density of the positive electrode material, the number of organic fibers per unit volume, the ratio of the organic fibers to the positive electrode material, the specific gravity of the organic fibers, and the content of the oxygen element in the organic fibers are in a fully charged state. It is required for the positive electrode plate taken out from the lead storage battery of.
(用語の説明)
 (正極電極材料)
 クラッド式正極板は、複数の多孔質のチューブと、各チューブ内に収容された芯金(spine)と、チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の芯金の長さ方向の一端部を連結する集電部とを備える。クラッド式正極板は、さらに複数のチューブを連結する連座(spine protector)を備えていてもよい。クラッド式正極板では、正極電極材料は、正極板から、チューブ、芯金、集電部、および連座を除いた部分である。クラッド式正極板では、芯金と集電部とを合わせて正極集電体と称する場合がある。正極板には、マットなどの部材が貼り付けられていることがある。このような部材(貼付部材とも称する)は正極板と一体として使用されるため、正極板に含まれる。正極板が貼付部材(マットなど)を含む場合には、正極電極材料は、正極板から、チューブ、正極集電体、連座および貼付部材を除いた部分である。
(Explanation of terms)
(Positive electrode material)
The clad type positive electrode plate consists of a plurality of porous tubes, a core metal (spine) housed in each tube, a positive electrode material filled in the tube, and a plurality of core metal pieces arranged in a row. It is provided with a current collector that connects one end in the length direction. The clad type positive electrode plate may further include a spine protector that connects a plurality of tubes. In the clad type positive electrode plate, the positive electrode material is a portion of the positive electrode plate excluding the tube, the core metal, the current collector, and the collective punishment. In the clad type positive electrode plate, the core metal and the current collector may be collectively referred to as a positive electrode current collector. A member such as a mat may be attached to the positive electrode plate. Since such a member (also referred to as a sticking member) is used integrally with the positive electrode plate, it is included in the positive electrode plate. When the positive electrode plate includes a sticking member (mat, etc.), the positive electrode electrode material is a portion of the positive electrode plate excluding the tube, the positive electrode current collector, the collective punishment, and the sticking member.
 (正極電極材料の密度)
 正極電極材料の密度は、正極電極材料の質量を、水銀圧入法により求められる正極電極材料のかさ容積で除することにより求められる密度(g/cm)である。密度は、鉛蓄電池から取り出した正極板から採取した所定量の未粉砕の正極電極材料について求められる。このときの正極電極材料は、正極板の中央付近に位置する1つのチューブから採取する。
(Density of positive electrode material)
The density of the positive electrode material is a density (g / cm 3 ) obtained by dividing the mass of the positive electrode material by the bulk volume of the positive electrode material obtained by the mercury intrusion method. The density is determined for a predetermined amount of unmilled positive electrode material collected from the positive electrode plate taken out from the lead storage battery. The positive electrode material at this time is collected from one tube located near the center of the positive electrode plate.
 (正極電極材料の単位体積当たりの有機繊維の本数)
 正極電極材料の単位体積(cm)当たりの有機繊維の本数は、正極電極材料に含まれる有機繊維の本数を、水銀圧入法により求められる正極電極材料のかさ容積(cm)で除することにより求められる数値である。正極電極材料の単位体積(cm)当たりの有機繊維の本数は、密度の算出に供された所定量の未粉砕の正極電極材料について求められる。
(Number of organic fibers per unit volume of positive electrode material)
The number of organic fibers per unit volume (cm 3 ) of the positive electrode material is obtained by dividing the number of organic fibers contained in the positive electrode material by the bulk volume (cm 3 ) of the positive electrode material obtained by the mercury intrusion method. It is a numerical value obtained by. The number of organic fibers per unit volume (cm 3 ) of the positive electrode material is determined for a predetermined amount of unground positive electrode material used for calculating the density.
 (正極電極材料に占める有機繊維の比率)
 正極電極材料に占める有機繊維の比率は、正極電極材料に含まれる有機繊維の合計体積の、水銀圧入法により求められる正極電極材料のかさ容積(cm)に占める比率(体積%)である。正極電極材料に占める有機繊維の比率は、密度の算出に供された所定量の未粉砕の正極電極材料について求められる。
(Ratio of organic fibers in positive electrode material)
The ratio of the organic fibers to the positive electrode material is the ratio (% by volume) of the total volume of the organic fibers contained in the positive electrode material to the bulk volume (cm 3 ) of the positive electrode material obtained by the mercury intrusion method. The ratio of organic fibers to the positive electrode material is determined for a predetermined amount of unground positive electrode material used for calculating the density.
 (満充電状態)
 液式の鉛蓄電池の満充電状態とは、JIS D 5301:2019の定義によって定められる。より具体的には、25℃±2℃の水槽中で、定格容量として記載の数値(単位をAhとする数値)の0.2倍の電流(A)で、15分ごとに測定した充電中の端子電圧(V)または20℃に温度換算した電解液密度が3回連続して有効数字3桁で一定値を示すまで、鉛蓄電池を充電した状態を満充電状態とする。また、制御弁式の鉛蓄電池の場合、満充電状態とは、25℃±2℃の気槽中で、定格容量に記載の数値(単位をAhとする数値)の0.2倍の電流(A)で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が定格容量に記載の数値(単位をAhとする数値)の0.005倍の値(A)になった時点で充電を終了した状態である。
(Fully charged)
The fully charged state of a liquid lead-acid battery is defined by the definition of JIS D 5301: 2019. More specifically, in a water tank at 25 ° C ± 2 ° C, charging is performed every 15 minutes with a current (A) 0.2 times the value described as the rated capacity (value whose unit is Ah). The state in which the lead-acid battery is charged is regarded as a fully charged state until the terminal voltage (V) of No. 1 or the electrolyte density converted into temperature at 20 ° C. shows a constant value with three valid digits three times in a row. In the case of a control valve type lead-acid battery, the fully charged state is 0.2 times the current (value with Ah as the unit) described in the rated capacity in the air tank at 25 ° C ± 2 ° C (the unit is Ah). In A), constant current constant voltage charging of 2.23 V / cell is performed, and the charging current at the time of constant voltage charging is 0.005 times the value (value with the unit being Ah) described in the rated capacity (A). When it becomes, charging is completed.
 満充電状態の鉛蓄電池は、既化成の鉛蓄電池を満充電した鉛蓄電池をいう。鉛蓄電池の満充電は、化成後であれば、化成直後でもよく、化成から時間が経過した後に行ってもよい(例えば、化成後で、使用中(好ましくは使用初期)の鉛蓄電池を満充電してもよい)。使用初期の電池とは、使用開始後、それほど時間が経過しておらず、ほとんど劣化していない電池をいう。 A fully charged lead-acid battery is a fully charged lead-acid battery. The lead-acid battery may be fully charged after the chemical conversion, immediately after the chemical conversion, or after a lapse of time from the chemical conversion (for example, after the chemical conversion, the lead-acid battery in use (preferably at the initial stage of use) is fully charged. May be). An initial use battery is a battery that has not been used for a long time and has hardly deteriorated.
 (鉛蓄電池または鉛蓄電池の構成要素の上下方向)
 本明細書中、鉛蓄電池または鉛蓄電池の構成要素(極板、電槽、セパレータなど)の上下方向は、鉛蓄電池が使用される状態において、鉛蓄電池の鉛直方向における上下方向を意味する。正極板および負極板の各極板は、外部端子と接続するための耳部を備えている。横置き型の制御弁式鉛蓄電池など、耳部が、極板の側部に側方に突出するように設けられることもあるが、多くの鉛蓄電池では、耳部は、通常、極板の上部に上方に突出するように設けられている。
(Vertical direction of lead-acid battery or lead-acid battery component)
In the present specification, the vertical direction of the lead-acid battery or the component of the lead-acid battery (plate, battery case, separator, etc.) means the vertical direction of the lead-acid battery in the state where the lead-acid battery is used. Each electrode plate of the positive electrode plate and the negative electrode plate is provided with an ear portion for connecting to an external terminal. In some lead-acid batteries, such as horizontal control valve type lead-acid batteries, the ears are provided so as to project laterally to the sides of the plate, but in many lead-acid batteries, the ears are usually made of the plate. It is provided so as to project upward at the top.
 以下、本発明の実施形態に係るクラッド式正極板および鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されない。 Hereinafter, the clad type positive electrode plate and the lead storage battery according to the embodiment of the present invention will be described for each of the main constituent requirements, but the present invention is not limited to the following embodiments.
[クラッド式正極板]
 クラッド式正極板は、複数の多孔質のチューブと、チューブ内に収容された芯金と、チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の芯金の長さ方向の一端部を連結する集電部とを備える。さらに、クラッド式正極板は、通常、複数のチューブを連結する連座を備えている。
[Clad type positive electrode plate]
The clad type positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal pieces arranged in a row in the length direction. It is provided with a current collector that connects one end. Further, the clad type positive electrode plate usually has a collective punishment for connecting a plurality of tubes.
(正極電極材料)
 正極電極材料は、有機繊維を含む。正極電極材料は、通常、酸化還元反応により容量を発現する正極活物質(具体的には、二酸化鉛および硫酸鉛の少なくとも一方)を含む。正極電極材料は、必要に応じて、他の添加剤を含んでもよい。
(Positive electrode material)
The positive electrode material contains organic fibers. The positive electrode material usually contains a positive electrode active material (specifically, at least one of lead dioxide and lead sulfate) that develops a capacity by a redox reaction. The positive electrode material may contain other additives, if necessary.
 正極電極材料の密度は、3.75g/cm以下である。この場合、正極電極材料が有機繊維を含むことによる高温深放電サイクルでの電圧上昇の課題が生じるが、上記(a)および(b)の少なくとも一方の条件を充足することで、高温深放電サイクルでの電圧上昇を低減できる。正極電極材料の密度は、3.7g/cm以下であってもよい。この場合、高温深放電サイクルでの電圧上昇の発生率がさらに高くなるが、この場合でも、上記(a)および(b)の少なくとも一方の条件を充足することで、高温深放電サイクルでの電圧上昇を低減できる。より高い放電容量を確保し易い観点からは、正極電極材料の密度は、3.3g/cm以上であることが好ましい。 The density of the positive electrode material is 3.75 g / cm 3 or less. In this case, there is a problem of voltage increase in the high temperature deep discharge cycle due to the inclusion of organic fibers in the positive electrode material, but by satisfying at least one of the above conditions (a) and (b), the high temperature deep discharge cycle occurs. It is possible to reduce the voltage rise in. The density of the positive electrode material may be 3.7 g / cm 3 or less. In this case, the rate of occurrence of voltage increase in the high temperature deep discharge cycle becomes higher, but even in this case, the voltage in the high temperature deep discharge cycle is satisfied by satisfying at least one of the above conditions (a) and (b). The rise can be reduced. From the viewpoint of easily securing a higher discharge capacity, the density of the positive electrode material is preferably 3.3 g / cm 3 or more.
 正極電極材料の単位体積(cm)当たりの有機繊維の本数は、400以上である。高温深放電サイクルでの電圧上昇の発生率をさらに低減する観点からは、正極電極材料の単位体積(cm)当たりの有機繊維の本数は、800以上が好ましい。正極電極材料の単位体積(cm)当たりの有機繊維の本数は、15000以下であり、10000以下が好ましく、7500以下または7200以下がより好ましい。正極電極材料の密度が小さくなると、結着力が低下し、ひび割れが発生し易い傾向がある。しかし、有機繊維の本数がこのような範囲である場合、正極電極材料において、比較的高い結着力を確保することができ、ひび割れが軽減されるため、より高い初期容量を確保することができる。これらの下限値と上限値とは任意に組み合わせることができる。 The number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more. From the viewpoint of further reducing the occurrence rate of voltage rise in the high temperature deep discharge cycle, the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is preferably 800 or more. The number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 15,000 or less, preferably 10,000 or less, and more preferably 7500 or less or 7200 or less. When the density of the positive electrode material becomes small, the binding force decreases and cracks tend to occur easily. However, when the number of organic fibers is in such a range, a relatively high binding force can be secured in the positive electrode material, and cracks are reduced, so that a higher initial capacity can be secured. These lower limit values and upper limit values can be arbitrarily combined.
 正極電極材料に占める有機繊維の比率は、0.013体積%以上である。高温深放電サイクルでの電圧上昇の発生率をさらに低減する観点からは、有機繊維の比率は、0.026体積%以上が好ましい。有機繊維の比率は、0.5体積%以下であり、0.32体積%以下が好ましく、0.25体積%以下または0.23体積%以下がより好ましい。有機繊維の比率がこのような範囲である場合、正極電極材料において、比較的高い結着力を確保することができ、ひび割れが軽減されるため、より高い初期容量を確保することができる。これらの下限値と上限値とは任意に組み合わせることができる。 The ratio of organic fibers to the positive electrode material is 0.013% by volume or more. From the viewpoint of further reducing the occurrence rate of voltage rise in the high temperature deep discharge cycle, the ratio of organic fibers is preferably 0.026% by volume or more. The ratio of the organic fiber is 0.5% by volume or less, preferably 0.32% by volume or less, and more preferably 0.25% by volume or less or 0.23% by volume or less. When the ratio of the organic fibers is in such a range, a relatively high binding force can be secured in the positive electrode material, and cracks are reduced, so that a higher initial capacity can be secured. These lower limit values and upper limit values can be arbitrarily combined.
 有機繊維は、比重が1.2以上の繊維(以下、第1繊維と称することがある。)を含むことが好ましい。この場合、第1繊維の分散性が高いため、高温深放電サイクルでの電圧上昇の発生率をより低減することができる。高温深放電サイクルでの電圧上昇の発生率をさらに低減する観点からは、第1繊維の比重は1.25以上または1.26以上がより好ましい。第1繊維の比重は、例えば、1.7以下であり、1.6以下または1.5以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。 The organic fiber preferably contains a fiber having a specific gravity of 1.2 or more (hereinafter, may be referred to as a first fiber). In this case, since the first fiber has high dispersibility, the rate of occurrence of voltage increase in the high temperature deep discharge cycle can be further reduced. From the viewpoint of further reducing the occurrence rate of voltage increase in the high temperature deep discharge cycle, the specific gravity of the first fiber is more preferably 1.25 or more or 1.26 or more. The specific gravity of the first fiber is, for example, 1.7 or less, and may be 1.6 or less or 1.5 or less. These lower limit values and upper limit values can be arbitrarily combined.
 有機繊維は、第1繊維以外の繊維(以下、第2繊維と称することがある。)を含んでもよいが、有機繊維の高い分散性を確保する観点からは、正極電極材料に含まれる有機繊維全体に占める第1繊維の比率は高い方が好ましい。正極電極材料に含まれる有機繊維全体に占める第1繊維の比率は、60体積%以上が好ましく、75体積%以上がより好ましく、90体積%以上がさらに好ましい。有機繊維全体に占める第1繊維の比率は、100体積%以下である。正極電極材料が有機繊維として、第1繊維のみを含んでもよい。なお、第2繊維は、比重が1.2未満(例えば、0.8以上1.2未満)の有機繊維である。 The organic fiber may contain a fiber other than the first fiber (hereinafter, may be referred to as a second fiber), but from the viewpoint of ensuring high dispersibility of the organic fiber, the organic fiber contained in the positive electrode electrode material. It is preferable that the ratio of the first fiber to the whole is high. The ratio of the first fiber to the total organic fibers contained in the positive electrode material is preferably 60% by volume or more, more preferably 75% by volume or more, still more preferably 90% by volume or more. The ratio of the first fiber to the total organic fiber is 100% by volume or less. The positive electrode material may contain only the first fiber as the organic fiber. The second fiber is an organic fiber having a specific gravity of less than 1.2 (for example, 0.8 or more and less than 1.2).
 有機繊維には、酸素元素が含まれていてもよい。有機繊維中の酸素元素の含有量は、例えば、10000μmol/g以上であり、15000μmol/g以上が好ましく、17000μmol/g以上または17400μmol/g以上がより好ましく、19000μmol/g以上または20000μmol/g以上がさらに好ましく、20800μmol/g以上であってもよい。酸素元素の含有量がこのような範囲である場合、有機繊維が水分子と水素結合し易くなるため、正極電極材料における有機繊維の分散性をさらに高めることができ、高温深放電サイクルでの電圧上昇の発生率をさらに低減することができる。有機繊維中の酸素元素の含有量は、例えば、50000μmol/g以下であり、40000μmol/g以下であってもよい。有機繊維のより高い耐久性を確保する観点からは、有機繊維中の酸素元素の含有量は、35000μmol/g以下が好ましい。これらの下限値と上限値とは任意に組み合わせることができる。 The organic fiber may contain an oxygen element. The content of the oxygen element in the organic fiber is, for example, 10,000 μmol / g or more, preferably 15,000 μmol / g or more, more preferably 17,000 μmol / g or more or 17,400 μmol / g or more, and 19000 μmol / g or more or 20,000 μmol / g or more. More preferably, it may be 20800 μmol / g or more. When the content of the oxygen element is in such a range, the organic fibers are easily hydrogen-bonded to water molecules, so that the dispersibility of the organic fibers in the positive electrode material can be further enhanced, and the voltage in the high temperature deep discharge cycle can be further improved. The rate of rise can be further reduced. The content of the oxygen element in the organic fiber is, for example, 50,000 μmol / g or less, and may be 40,000 μmol / g or less. From the viewpoint of ensuring higher durability of the organic fiber, the content of the oxygen element in the organic fiber is preferably 35,000 μmol / g or less. These lower limit values and upper limit values can be arbitrarily combined.
 有機繊維の平均繊維径は、例えば、1μm以上であり、5μm以上または10μm以上であってもよい。平均繊維径がこのような範囲である場合、正極電極材料において有機繊維のより高い分散性を確保し易い。有機繊維の平均繊維径は、例えば、50μm以下であり、30μm以下または20μm以下であってもよい。平均繊維径がこのような範囲である場合、正極電極材料のより高い導電性を確保し易い。これらの下限値と上限値とは任意に組み合わせることができる。 The average fiber diameter of the organic fiber is, for example, 1 μm or more, and may be 5 μm or more or 10 μm or more. When the average fiber diameter is in such a range, it is easy to secure higher dispersibility of the organic fiber in the positive electrode material. The average fiber diameter of the organic fiber is, for example, 50 μm or less, and may be 30 μm or less or 20 μm or less. When the average fiber diameter is in such a range, it is easy to secure higher conductivity of the positive electrode material. These lower limit values and upper limit values can be arbitrarily combined.
 有機繊維の平均繊維長は、例えば、0.1mm以上であり、0.5mm以上または1mm以上であってもよく、1.5mm以上または2mm以上であってもよい。平均繊維長がこのような範囲である場合、正極電極材料においてより高い分散性を確保し易い。有機繊維の平均繊維長は、例えば、10mm以下であり、6mm以下であってもよい。平均繊維長がこのような範囲である場合、有機繊維のより高い分散性を確保することができ、正極電極材料のより高い導電性を確保し易い。これらの下限値と上限値とは任意に組み合わせることができる。 The average fiber length of the organic fiber is, for example, 0.1 mm or more, may be 0.5 mm or more or 1 mm or more, and may be 1.5 mm or more or 2 mm or more. When the average fiber length is in such a range, it is easy to secure higher dispersibility in the positive electrode material. The average fiber length of the organic fiber is, for example, 10 mm or less, and may be 6 mm or less. When the average fiber length is in such a range, higher dispersibility of the organic fiber can be ensured, and it is easy to secure higher conductivity of the positive electrode material. These lower limit values and upper limit values can be arbitrarily combined.
 なお、有機繊維の平均繊維径とは、正極電極材料から分離された有機繊維の任意の100本の各繊維の最大径の平均値である。有機繊維の平均繊維長とは、正極電極材料から分離された有機繊維の任意の100本の各繊維の長さの平均値である。 The average fiber diameter of the organic fiber is the average value of the maximum diameters of any 100 fibers of the organic fiber separated from the positive electrode material. The average fiber length of the organic fiber is an average value of the length of each of any 100 fibers of the organic fiber separated from the positive electrode material.
 有機繊維としては、例えば、ポリエステル繊維、ポリビニルアルコール繊維(アセタール化ポリビニルアルコール繊維など)、ポリウレタン繊維、アクリル繊維、ポリアクリロニトリル繊維、ポリオレフィン繊維、ポリ塩化ビニル繊維、ポリスチレン繊維、ポリアミド繊維、セルロース繊維が挙げられる。セルロース繊維には、セルロース製の繊維だけでなく、セルロース誘導体(例えば、セルロースエーテル、セルロースエステル)製の繊維、レーヨンなども包含される。正極電極材料は、これらの有機繊維を一種含んでいてもよく、二種以上含んでいてもよい。適度な比重を有し、正極電極材料におけるより高い分散性を確保し易い観点からは、ポリエステル繊維、アセタール化ポリビニルアルコール繊維、ポリウレタン繊維、およびセルロース繊維が好ましく、ポリエステル繊維、アセタール化ポリビニルアルコール繊維、およびセルロース繊維がより好ましい。 Examples of the organic fiber include polyester fiber, polyvinyl alcohol fiber (acetalized polyvinyl alcohol fiber, etc.), polyurethane fiber, acrylic fiber, polyacrylonitrile fiber, polyolefin fiber, polyvinyl chloride fiber, polystyrene fiber, polyamide fiber, and cellulose fiber. Be done. Cellulose fibers include not only cellulose fibers but also fibers made of cellulose derivatives (for example, cellulose ethers and cellulose esters), rayon and the like. The positive electrode material may contain one kind of these organic fibers, or may contain two or more kinds of these organic fibers. Polyester fiber, acetalized polyvinyl alcohol fiber, polyurethane fiber, and cellulose fiber are preferable, and polyester fiber, acetalized polyvinyl alcohol fiber, and the like, from the viewpoint of having an appropriate specific gravity and easily ensuring higher dispersibility in the positive electrode electrode material. And cellulose fibers are more preferred.
(その他)
 芯金は、例えば、鉛合金で構成されている。芯金には、Pb-Sb系合金を用いることが好ましい。Pb-Sb系合金は、必要に応じて、ヒ素、セレン、ビスマス、およびスズの少なくとも一種などを含んでいてもよい。
(others)
The core metal is made of, for example, a lead alloy. It is preferable to use a Pb—Sb based alloy for the core metal. The Pb-Sb-based alloy may contain at least one of arsenic, selenium, bismuth, and tin, if necessary.
 集電部は、例えば、鉛合金で構成されている。集電部には、Pb-Sb系合金を用いることが好ましい。Pb-Sb系合金は、必要に応じて、ヒ素、セレン、ビスマス、およびスズの少なくとも一種などを含んでいてもよい。 The current collector is made of, for example, a lead alloy. It is preferable to use a Pb—Sb-based alloy for the current collector. The Pb-Sb-based alloy may contain at least one of arsenic, selenium, bismuth, and tin, if necessary.
 多孔質のチューブは、内部に芯金を収容して、正極電極材料を保持できればよい。多孔質のチューブは、通常、チューブ状の繊維集合体である。チューブ状の繊維集合体としては、繊維をチューブ状に編み上げた繊維集合体を使用してもよく、チューブ状の不織布または織布を用いてもよい。繊維としては、例えば、無機繊維(ガラス繊維など)、樹脂繊維が挙げられる。しかし、繊維は、これらに限定されない。多孔質のチューブは、必要に応じて、加熱処理されていてもよい。また、多孔質のチューブでは、チューブ状の繊維集合体に、樹脂を含浸されていてもよい。 The porous tube should be able to accommodate the core metal inside and hold the positive electrode material. Porous tubes are usually tubular fiber aggregates. As the tube-shaped fiber aggregate, a fiber aggregate obtained by knitting fibers into a tube shape may be used, or a tubular non-woven fabric or a woven fabric may be used. Examples of the fiber include an inorganic fiber (glass fiber and the like) and a resin fiber. However, the fibers are not limited to these. The porous tube may be heat-treated, if necessary. Further, in the porous tube, the tubular fiber aggregate may be impregnated with a resin.
 チューブの長さは、芯金の長さに応じて選択すればよい。チューブの外径および厚さは、例えば、芯金の形状、または鉛蓄電池の用途に応じて選択される。 The length of the tube may be selected according to the length of the core metal. The outer diameter and thickness of the tube are selected, for example, depending on the shape of the core metal or the application of the lead-acid battery.
 連座は、通常、チューブの集電部側の一端部および集電部とは反対側の他端部に、それぞれ配置される。より具体的には、チューブの長さ方向において、チューブの集電部側の一端部は、通常、上部連座により集電部に固定されている。チューブの他端部は、下部連座により封止されている。上部連座は、通常、芯金の上部および集電部を覆うように、樹脂を一体成形することにより形成される。下部連座は、通常、樹脂製であり、各チューブの他端部の開口内に挿入される。集電部には、通常、鉛蓄電池から電気を取り出すための耳部が形成されている。 The collective punishment is usually arranged at one end of the tube on the current collector side and the other end on the opposite side of the current collector. More specifically, in the length direction of the tube, one end of the tube on the current collecting portion side is usually fixed to the current collecting portion by an upper joint. The other end of the tube is sealed by a lower punishment. The upper joint is usually formed by integrally molding a resin so as to cover the upper part of the core metal and the current collector. The lower punishment is usually made of resin and is inserted into the opening at the other end of each tube. The current collector is usually formed with an ear for extracting electricity from the lead-acid battery.
 クラッド式正極板は、集電部で長さ方向の一端部が連結された複数の芯金を、それぞれ、複数のチューブ内に収容し、鉛粉をチューブ内に充填することにより形成される未化成の正極板を化成することにより形成される。芯金の収容と鉛粉の充填の順序は、特に制限されない。より具体的には、未化成の正極板は、複数の芯金のそれぞれをチューブ内に収容した後、上部連座で複数のチューブの一端部と集電部とを固定し、チューブの他端部の開口から鉛粉および有機繊維などを含む混合物をチューブ内に充填し、下部連座で複数のチューブの他端部の開口を封止することにより形成される。鉛粉は、少なくとも一酸化鉛を含む。鉛粉は、金属鉛を含んでもよい。また、鉛粉と鉛丹とを併用してもよい。 The clad type positive electrode plate is not formed by accommodating a plurality of cores having one end in the length direction connected in a current collector in a plurality of tubes and filling the tubes with lead powder. It is formed by forming a chemical positive electrode plate. The order of accommodating the core metal and filling the lead powder is not particularly limited. More specifically, in the unchemical positive electrode plate, after accommodating each of the plurality of cores in the tube, one end of the plurality of tubes and the current collecting portion are fixed by the upper joint, and the other end of the tube is fixed. It is formed by filling a tube with a mixture containing lead powder, organic fibers and the like from the opening of the tube, and sealing the opening at the other end of the plurality of tubes with a lower joint. Lead powder contains at least lead monoxide. The lead powder may contain metallic lead. In addition, lead powder and lead tan may be used in combination.
 混合物のチューブへの充填は、乾式および湿式のいずれであってもよい。例えば、乾式の場合、乾燥状態の混合物がそのままチューブに充填され、湿式の場合、スラリー状の混合物が充填される。混合物は、例えば、鉛粉、有機繊維、必要に応じて添加剤を含む。例えば、スラリー状の混合物は、鉛粉と、有機繊維と、水と、硫酸と、必要に応じて添加剤などとを混合することにより調製される。正極電極材料における有機繊維のより高い分散性を確保し易い観点からは、スラリー状の混合物を用いることが好ましい。特に、有機繊維の酸素元素含有量が上記のような範囲である場合、水分の作用により、スラリー状の混合物中に有機繊維をより均一に分散させることができる。 The filling of the mixture in the tube may be either drywall or wet. For example, in the case of dry type, the dry mixture is filled in the tube as it is, and in the case of wet type, the slurry-like mixture is filled. The mixture contains, for example, lead powder, organic fibers and optionally additives. For example, a slurry-like mixture is prepared by mixing lead powder, organic fibers, water, sulfuric acid, and if necessary, additives and the like. From the viewpoint of easily ensuring higher dispersibility of the organic fiber in the positive electrode material, it is preferable to use a slurry-like mixture. In particular, when the oxygen element content of the organic fiber is in the above range, the organic fiber can be more uniformly dispersed in the slurry-like mixture by the action of water.
 未化成の正極板は、さらに化成される。化成により、二酸化鉛が生成する。化成は、例えば、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成のクラッド式正極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。このような化成は電槽化成と呼ばれる。ただし、電槽化成の場合に限らず、正極板の化成は、極板群の組み立て前に行ってもよい。 The unchemical positive electrode plate is further chemicalized. Lead dioxide is produced by the chemical formation. Chemical formation can be performed, for example, by charging the electrode plate group in a state where the electrode plate group including the unchemical clad type positive electrode plate is immersed in an electrolytic solution containing sulfuric acid in the electric tank of a lead storage battery. can. Such chemical formation is called electric tank chemical formation. However, the chemical conversion of the positive electrode plate may be performed before assembling the electrode plate group, not limited to the case of the electric tank chemical conversion.
 (正極電極材料の密度の測定、ならびに正極電極材料およびその構成成分の分析)
 以下に、正極電極材料の密度の測定方法、ならびに正極電極材料またはその構成成分の分析方法について説明する。測定または分析に先立ち、満充電状態の鉛蓄電池を解体して分析対象の正極板を入手する。入手した正極板を水洗し、乾燥することにより、正極板中の電解液を除く。次いで正極板から正極電極材料を分離して、未粉砕の試料(試料A)を得る。試料Aは必要に応じて粉末状に粉砕され、分析に供される。
(Measurement of density of positive electrode material and analysis of positive electrode material and its constituents)
Hereinafter, a method for measuring the density of the positive electrode material and a method for analyzing the positive electrode material or its constituent components will be described. Prior to measurement or analysis, a fully charged lead-acid battery is disassembled to obtain a positive electrode plate to be analyzed. The obtained positive electrode plate is washed with water and dried to remove the electrolytic solution in the positive electrode plate. Next, the positive electrode material is separated from the positive electrode plate to obtain an unground sample (Sample A). Sample A is pulverized into powder as needed and subjected to analysis.
 (1)正極電極材料の密度の測定
 未粉砕の試料Aについて、水銀ポロシメータを用いて、水銀圧入法により、密度(かさ密度)を求める。より具体的には、まず、未粉砕の試料Aを所定量採取し、質量を測定する。この試料Aを水銀ポロシメータの測定容器に投入し、減圧下で排気した後、0.5psia以上0.55psia以下(≒3.45kPa以上3.79kPa以下)の圧力で水銀を満たして、試料Aのかさ容積を測定し、測定した試料Aの質量をかさ容積で除することにより、正極電極材料の密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。水銀ポロシメータとしては、島津製作所(株)製の自動ポロシメータ(オートポアIV9505)が用いられる。
(1) Measurement of Density of Positive Electrode Material The density (bulk density) of unground sample A is determined by a mercury intrusion method using a mercury porosimeter. More specifically, first, a predetermined amount of uncrushed sample A is collected and the mass is measured. After putting this sample A into the measuring container of the mercury porosimeter and exhausting it under reduced pressure, the sample A is filled with mercury at a pressure of 0.5 psia or more and 0.55 psia or less (≈3.45 kPa or more and 3.79 kPa or less). The density of the positive electrode electrode material is obtained by measuring the bulk volume and dividing the measured mass of the sample A by the bulk volume. The volume obtained by subtracting the mercury injection volume from the volume of the measuring container is defined as the bulk volume. As the mercury porosimeter, an automatic porosimeter (Autopore IV9505) manufactured by Shimadzu Corporation is used.
 (2)有機繊維の分析
 (2-1)有機繊維の分離
 上記(1)でかさ容積を測定した試料Aを5g採取し、これに20質量%濃度の硝酸50mLおよび300g/Lの過酸化水素水20mLを加える。得られる混合物を、鉛成分が完全に溶解するまで80℃±5℃で加熱する。得られる混合物を濾過することにより固形分を分離する。得られる固形分を、水中に分散させて分散液を調製する。篩を用いて、分散液から、有機繊維と、有機繊維以外の成分とを分離する。
(2) Analysis of organic fibers (2-1) Separation of organic fibers 5 g of sample A whose bulk volume was measured in (1) above was collected, and 50 mL of nitric acid having a concentration of 20% by mass and 300 g / L of hydrogen peroxide solution were collected. Add 20 mL. The resulting mixture is heated at 80 ° C. ± 5 ° C. until the lead component is completely dissolved. The solid content is separated by filtering the resulting mixture. The obtained solid content is dispersed in water to prepare a dispersion. A sieve is used to separate the organic fibers from the dispersion and the components other than the organic fibers.
 (2-2)有機繊維の本数および比率
 上記(2-1)で分離された全ての有機繊維の本数を計測し、(1)で測定した正極電極材料のかさ容積(cm)で除することにより、正極電極材料の単位体積当たりの有機繊維の本数が求められる。
(2-2) Number and ratio of organic fibers Measure the number of all organic fibers separated in (2-1) above, and divide by the bulk volume (cm 3 ) of the positive electrode material measured in (1). Therefore, the number of organic fibers per unit volume of the positive electrode material can be obtained.
 (2-3)有機繊維の比重
 上記(2-1)で分離された有機繊維の所定量を採取し、JIS K7112-1999に準拠して、密度勾配管法により繊維の比重が求められる。
(2-3) Specific gravity of organic fiber A predetermined amount of the organic fiber separated in (2-1) above is collected, and the specific gravity of the fiber is determined by the density gradient tube method in accordance with JIS K7112-1999.
 このようにして求められる繊維の比重と、上記(2-2)で算出した全ての有機繊維の本数と、この全ての有機繊維の質量とから、採取した試料Aに含まれる有機繊維の総体積(cm)を求める。有機繊維の総体積(cm)が、(1)で測定した正極電極材料のかさ容積(cm)に占める体積基準の比率(体積%)を求める。この比率が、正極電極材料に占める有機繊維の比率(体積%)に相当する。 The total volume of the organic fibers contained in the sample A collected from the specific gravity of the fibers thus obtained, the number of all the organic fibers calculated in (2-2) above, and the mass of all the organic fibers. Find (cm 3 ). The ratio (% by volume) of the total volume (cm 3 ) of the organic fiber to the bulk volume (cm 3 ) of the positive electrode material measured in (1) is determined. This ratio corresponds to the ratio (volume%) of organic fibers in the positive electrode material.
 (2-4)有機繊維中の酸素元素の含有量
 上記(2-1)で分離された有機繊維を所定量採取する。採取した有機繊維について、有機微量分析装置を用いてCHN/O元素分析を行うことにより、有機繊維1g当たりの酸素量(μmol/g)を求める。有機微量分析装置としては、Exeter Analytical,Inc.社製のCE-440が用いられる。
(2-4) Content of oxygen element in organic fiber A predetermined amount of the organic fiber separated in (2-1) above is collected. The collected organic fiber is subjected to CHN / O elemental analysis using an organic trace analyzer to determine the amount of oxygen (μmol / g) per 1 g of the organic fiber. Examples of the organic trace analyzer include Exeter Analytical, Inc. CE-440 manufactured by the company is used.
 (2-5)有機繊維の種類
 上記(2-1)で分離された有機繊維の熱分解GC-MSスペクトル、ならびに有機繊維を所定の溶媒に溶解させて得られる溶液の赤外分光スペクトル、紫外可視吸収スペクトル、およびNMRスペクトルなどから得た情報を組み合わせて、有機繊維の種類(材料)が特定される。
(2-5) Types of organic fibers The thermal decomposition GC-MS spectrum of the organic fibers separated in (2-1) above, and the infrared spectroscopic spectrum of the solution obtained by dissolving the organic fibers in a predetermined solvent, ultraviolet rays. The type (material) of the organic fiber is specified by combining the information obtained from the visible absorption spectrum, the NMR spectrum, and the like.
 (2-6)有機繊維の平均繊維径および平均繊維長
 上記(2-1)で分離された有機繊維から、任意の100本を選択し、各繊維の最大径を計測し、平均化することにより有機繊維の平均繊維径が求められる。
(2-6) Average fiber diameter and average fiber length of organic fibers Select any 100 fibers from the organic fibers separated in (2-1) above, measure the maximum diameter of each fiber, and average them. The average fiber diameter of the organic fiber can be obtained.
 上記(2-1)で分離された有機繊維から、任意の100本を選択し、各繊維の長さを計測する。繊維の長さとは、繊維の中心線の長さである。計測した繊維の長さを平均化することにより、有機繊維の平均繊維長が求められる。 From the organic fibers separated in (2-1) above, select any 100 fibers and measure the length of each fiber. The length of the fiber is the length of the center line of the fiber. By averaging the measured fiber lengths, the average fiber length of organic fibers can be obtained.
 (負極板)
 負極板は、例えば、負極電極材料と、負極電極材料を保持する集電体とを備える。負極電極材料とは、負極板から集電体を除いた部分である。負極板には、マット、ペースティングペーパなどの部材が貼り付けられていることがある。このような部材(貼付部材とも称する)は負極板と一体として使用されるため、負極板に含まれる。負極板が貼付部材(マット、ペースティングペーパなど)を含む場合には、負極電極材料は、負極板から集電体および貼付部材を除いた部分である。
(Negative electrode plate)
The negative electrode plate includes, for example, a negative electrode material and a current collector that holds the negative electrode material. The negative electrode material is a portion obtained by removing the current collector from the negative electrode plate. Members such as mats and pacing papers may be attached to the negative electrode plate. Since such a member (also referred to as a sticking member) is used integrally with the negative electrode plate, it is included in the negative electrode plate. When the negative electrode plate includes a sticking member (mat, pacing paper, etc.), the negative electrode electrode material is a portion of the negative electrode plate excluding the current collector and the sticking member.
 なお、極板群にセパレータとマットとが併用される場合、ならびに負極板に不織布を主体とするマットが貼り付けられている場合は、負極板の厚さはマットを含む厚さとする。マットは負極板と一体として使用されるためである。ただし、セパレータにマットが貼り付けられている場合は、マットの厚さはセパレータの厚さに含まれる。 If a separator and a mat are used together in the electrode plate group, or if a mat mainly composed of non-woven fabric is attached to the negative electrode plate, the thickness of the negative electrode plate shall be the thickness including the mat. This is because the mat is used integrally with the negative electrode plate. However, if a mat is attached to the separator, the thickness of the mat is included in the thickness of the separator.
 負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛シートまたは鉛合金シートを加工して形成してもよい。加工方法としては、例えば、エキスパンド加工または打ち抜き(パンチング)加工が挙げられる。負極集電体として格子状の集電体を用いると、負極電極材料を担持させ易いため好ましい。 The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead sheet or a lead alloy sheet. Examples of the processing method include expanding processing and punching processing. It is preferable to use a grid-shaped current collector as the negative electrode current collector because it is easy to support the negative electrode material.
 負極集電体に用いる鉛合金は、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。負極集電体は、表面層を備えていてもよい。負極集電体の表面層と内側の層とは組成が異なってもよい。表面層は、負極集電体の一部に形成されていてもよい。表面層は、負極集電体の耳部に形成されていてもよい。耳部の表面層は、SnまたはSn合金を含有してもよい。 The lead alloy used for the negative electrode current collector may be any of Pb—Sb-based alloys, Pb-Ca-based alloys, and Pb-Ca—Sn-based alloys. These leads or lead alloys may further contain, as an additive element, at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like. The negative electrode current collector may include a surface layer. The composition of the surface layer and the inner layer of the negative electrode current collector may be different. The surface layer may be formed on a part of the negative electrode current collector. The surface layer may be formed on the selvage portion of the negative electrode current collector. The surface layer of the selvage may contain Sn or Sn alloy.
 負極電極材料は、酸化還元反応により容量を発現する負極活物質(具体的には、鉛もしくは硫酸鉛)を必須成分として含み、有機防縮剤、炭素質材料、硫酸バリウム、繊維(樹脂繊維など)などの添加剤を含み得る。添加剤はこれらに限定されない。なお、充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。鉛粉は、少なくとも一酸化鉛を含むことが好ましい。鉛粉は、さらに金属鉛を含んでもよい。 The negative electrode electrode material contains a negative electrode active material (specifically, lead or lead sulfate) whose capacity is developed by a redox reaction as an essential component, and is an organic shrinkage inhibitor, a carbonaceous material, barium sulfate, a fiber (resin fiber, etc.). May contain additives such as. Additives are not limited to these. The negative electrode active material in the charged state is spongy lead, but the unchemical negative electrode plate is usually produced by using lead powder. The lead powder preferably contains at least lead monoxide. The lead powder may further contain metallic lead.
 有機防縮剤は、鉛蓄電池の充放電を繰り返したときに負極活物質である鉛の収縮を抑制する機能を有する化合物のうち、有機化合物である。有機防縮剤は、通常、リグニン化合物と合成有機防縮剤とに大別される。合成有機防縮剤は、リグニン化合物以外の有機防縮剤であるとも言える。負極電極材料に含まれる有機防縮剤としては、リグニン化合物および合成有機防縮剤などが挙げられる。負極電極材料は、有機防縮剤を、一種含んでもよく、二種以上含んでもよい。 The organic shrinkage proofing agent is an organic compound among compounds having a function of suppressing the shrinkage of lead, which is a negative electrode active material, when the lead storage battery is repeatedly charged and discharged. Organic shrinkage proofing agents are usually roughly classified into lignin compounds and synthetic organic shrinkage proofing agents. It can be said that the synthetic organic shrinkage proofing agent is an organic shrinkage proofing agent other than the lignin compound. Examples of the organic shrinkage proofing agent contained in the negative electrode electrode material include a lignin compound and a synthetic organic shrinkage proofing agent. The negative electrode electrode material may contain one kind of organic shrinkage proofing agent, or may contain two or more kinds of organic shrinkage proofing agents.
 リグニン化合物としては、リグニン、リグニン誘導体などが挙げられる。リグニン誘導体としては、リグニンスルホン酸またはその塩(アルカリ金属塩(ナトリウム塩など)など)などが挙げられる。 Examples of the lignin compound include lignin and lignin derivatives. Examples of the lignin derivative include lignin sulfonic acid or a salt thereof (alkali metal salt (sodium salt, etc.), etc.).
 合成有機防縮剤は、硫黄元素を含む有機高分子である。合成有機防縮剤としては、例えば、硫黄含有基を有するとともに芳香環を有する化合物のアルデヒド化合物(アルデヒドまたはその縮合物(例えば、ホルムアルデヒド)など)による縮合物が挙げられる。しかし、合成有機防縮剤は、これに限定されない。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。 The synthetic organic shrinkage proofing agent is an organic polymer containing an element of sulfur. Examples of the synthetic organic shrinkage proofing agent include a condensate of an aldehyde compound (aldehyde or a condensate thereof (for example, formaldehyde)) of a compound having a sulfur-containing group and an aromatic ring. However, synthetic organic shrinkage proofing agents are not limited to this. Among the sulfur-containing groups, a sulfonic acid group or a sulfonyl group, which is a stable form, is preferable. The sulfonic acid group may be present in acid form or may be present in salt form such as Na salt.
 負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上であり、0.05質量%以上であってもよい。有機防縮剤の含有量は、例えば、1.0質量%以下であり、0.5質量%以下であってもよい。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。これらの下限値と上限値とは任意に組み合わせることができる。 The content of the organic shrink-proofing agent contained in the negative electrode electrode material is, for example, 0.01% by mass or more, and may be 0.05% by mass or more. The content of the organic shrinkage proofing agent is, for example, 1.0% by mass or less, and may be 0.5% by mass or less. Here, the content of the organic shrinkage-proofing agent contained in the negative electrode electrode material is the content in the negative electrode material collected by the method described later from a prefabricated lead-acid battery in a fully charged state. These lower limit values and upper limit values can be arbitrarily combined.
 負極電極材料に含まれる炭素質材料としては、カーボンブラック、黒鉛、ハードカーボン、ソフトカーボンなどを用いることができる。カーボンブラックとしては、アセチレンブラック、ファーネスブラック、ランプブラックなどが例示される。ファーネスブラックには、ケッチェンブラック(商品名)も含まれる。黒鉛は、黒鉛型の結晶構造を含む炭素質材料であればよく、人造黒鉛および天然黒鉛のいずれであってもよい。負極電極材料は、炭素質材料を一種含んでいてもよく、二種以上含んでいてもよい。 As the carbonaceous material contained in the negative electrode electrode material, carbon black, graphite, hard carbon, soft carbon, etc. can be used. Examples of carbon black include acetylene black, furnace black, and lamp black. Furness Black also includes Ketjen Black (trade name). The graphite may be any carbonaceous material containing a graphite-type crystal structure, and may be either artificial graphite or natural graphite. The negative electrode material may contain one kind of carbonaceous material, or may contain two or more kinds of carbonaceous material.
 負極電極材料中の炭素質材料の含有量は、例えば、0.05質量%以上であり、0.10質量%以上であってもよい。炭素質材料の含有量は、例えば、5質量%以下であり、3質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。 The content of the carbonaceous material in the negative electrode electrode material is, for example, 0.05% by mass or more, and may be 0.10% by mass or more. The content of the carbonaceous material is, for example, 5% by mass or less, and may be 3% by mass or less. These lower limit values and upper limit values can be arbitrarily combined.
 (硫酸バリウム)
 負極電極材料中の硫酸バリウムの含有量は、例えば、0.05質量%以上であり、0.10質量%以上であってもよい。負極電極材料中の硫酸バリウムの含有量は、例えば、3質量%以下であり、2質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
(Barium sulfate)
The content of barium sulfate in the negative electrode electrode material is, for example, 0.05% by mass or more, and may be 0.10% by mass or more. The content of barium sulfate in the negative electrode electrode material is, for example, 3% by mass or less, and may be 2% by mass or less. These lower limit values and upper limit values can be arbitrarily combined.
 負極板は、負極集電体に負極ペーストを塗布または充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、例えば、鉛粉と、必要に応じて有機防縮剤、炭素質材料、硫酸バリウム、他の添加剤からなる群より選択される少なくとも一種とに、水および硫酸(または硫酸水溶液)を加えて混練することで作製する。熟成する際には、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。 The negative electrode plate can be formed by applying or filling a negative electrode paste to a negative electrode current collector, aging and drying to produce an unchemical negative electrode plate, and then forming an unchemical negative electrode plate. The negative electrode paste is prepared by adding water and sulfuric acid (or an aqueous solution of sulfuric acid) to, for example, lead powder and at least one selected from the group consisting of an organic shrinkage proofing agent, a carbonaceous material, barium sulfate, and other additives, if necessary. In addition, it is produced by kneading. At the time of aging, it is preferable to ripen the unchemical negative electrode plate at a temperature higher than room temperature and high humidity.
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 Chemical formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unchemical negative electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical formation may be performed before assembling the lead-acid battery or the electrode plate group. The formation produces spongy lead.
 (負極電極材料の構成成分の分析)
 以下に、負極電極材料の構成成分の分析方法について説明する。測定または分析に先立ち、満充電状態の鉛蓄電池を解体して分析対象の負極板を入手する。入手した負極板を水洗し、負極板から硫酸分を除去する。水洗は、水洗した負極板表面にpH試験紙を押し当て、試験紙の色が変化しないことが確認されるまで行う。ただし、水洗を行う時間は、2時間以内とする。水洗した負極板は、減圧環境下、60±5℃で6時間程度乾燥する。乾燥後に負極板に貼付部材が含まれる場合には、剥離により貼付部材が除去される。次に、負極板から負極電極材料を分離することにより試料(以下、試料Bと称する)を入手する。試料Bは、必要に応じて粉砕され、分析に供される。
(Analysis of constituents of negative electrode material)
The method of analyzing the constituent components of the negative electrode material will be described below. Prior to measurement or analysis, a fully charged lead-acid battery is disassembled to obtain a negative electrode plate to be analyzed. The obtained negative electrode plate is washed with water to remove sulfuric acid from the negative electrode plate. Wash with water by pressing the pH test paper against the surface of the negative electrode plate washed with water until it is confirmed that the color of the test paper does not change. However, the time for washing with water shall be within 2 hours. The negative electrode plate washed with water is dried at 60 ± 5 ° C. for about 6 hours in a reduced pressure environment. If the negative electrode plate contains a sticking member after drying, the sticking member is removed by peeling. Next, a sample (hereinafter referred to as sample B) is obtained by separating the negative electrode material from the negative electrode plate. Sample B is pulverized as needed and subjected to analysis.
 (1)有機防縮剤の分析
 (1-1)負極電極材料中の有機防縮剤の定性分析
 粉砕した試料Bを1mol/Lの水酸化ナトリウム水溶液に浸漬し、有機防縮剤を抽出する。次に、抽出物から、不溶成分を濾過で取り除き、得られた溶液を脱塩した後、濃縮し、乾燥する。脱塩は、脱塩カラムを用いて行うか、溶液をイオン交換膜に通すことにより行うか、もしくは、溶液を透析チューブに入れて蒸留水中に浸すことにより行なう。これを乾燥することにより有機防縮剤の粉末試料(以下、試料Cと称する)が得られる。
(1) Analysis of organic shrinkage-proofing agent (1-1) Qualitative analysis of organic shrinkage-proofing agent in negative electrode material The crushed sample B is immersed in a 1 mol / L sodium hydroxide aqueous solution to extract the organic shrinkage-proofing agent. The insoluble components are then filtered off the extract, the resulting solution is desalted, then concentrated and dried. Desalination is performed using a desalting column, by passing the solution through an ion exchange membrane, or by placing the solution in a dialysis tube and immersing it in distilled water. By drying this, a powder sample of an organic shrinkage proofing agent (hereinafter referred to as sample C) can be obtained.
 このようにして得た有機防縮剤の試料Cを用いて測定した赤外分光スペクトル、試料Cを蒸留水等で希釈し、紫外可視吸光度計で測定した紫外可視吸収スペクトル、試料Cを重水等の所定の溶媒で溶解することにより得られる溶液のNMRスペクトル、または物質を構成している個々の化合物の情報を得ることができる熱分解GC-MSなどから得た情報を組み合わせて、有機防縮剤の種類を特定する。 The infrared spectroscopic spectrum measured using the sample C of the organic shrinkage proofing agent thus obtained, the ultraviolet visible absorption spectrum measured by diluting the sample C with distilled water or the like, and the sample C being used as heavy water or the like. Combining the NMR spectrum of the solution obtained by dissolving in a predetermined solvent or the information obtained from thermal decomposition GC-MS or the like capable of obtaining information on the individual compounds constituting the substance, the organic shrinkage proofing agent Identify the type.
 (1-2)負極電極材料中における有機防縮剤の含有量の定量
 上記(1-1)と同様に、有機防縮剤を含む抽出物から不溶成分を濾過で取り除いた後の溶液を得る。得られた溶液について、紫外可視吸収スペクトルを測定する。有機防縮剤に特徴的なピークの強度と、予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を求める。
(1-2) Quantification of the content of the organic shrinkage proofing agent in the negative electrode electrode material In the same manner as in (1-1) above, a solution is obtained after removing insoluble components from the extract containing the organic shrinkage proofing agent by filtration. The ultraviolet-visible absorption spectrum of the obtained solution is measured. The content of the organic shrinkage proofing agent in the negative electrode electrode material is determined by using the peak intensity characteristic of the organic shrinkage proofing agent and the calibration curve prepared in advance.
 なお、有機防縮剤の含有量が未知の鉛蓄電池を入手して有機防縮剤の含有量を測定する際に、有機防縮剤の構造式の厳密な特定ができないために検量線に同一の有機防縮剤が使用できないことがある。この場合には、当該電池の負極から抽出した有機防縮剤と、紫外可視吸収スペクトル、赤外分光スペクトル、およびNMRスペクトルなどが類似の形状を示す、別途入手可能な有機高分子を使用して検量線を作成することで、紫外可視吸収スペクトルを用いて有機防縮剤の含有量を測定する。 When a lead-acid battery having an unknown content of the organic shrinkage proof is obtained and the content of the organic shrinkage proofing agent is measured, the structural formula of the organic shrinkage proofing agent cannot be specified exactly, so that the same organic shrinkage proofing is applied to the calibration curve. The agent may not be available. In this case, calibration is performed using an organic shrink-proof agent extracted from the negative electrode of the battery and a separately available organic polymer having a similar shape in the ultraviolet-visible absorption spectrum, infrared spectroscopic spectrum, NMR spectrum, and the like. By creating a line, the content of the organic shrink-proofing agent is measured using the ultraviolet-visible absorption spectrum.
 (2)炭素質材料と硫酸バリウムの定量
 粉砕した試料B10gに対し、20質量%濃度の硝酸50mLを加え、約20分加熱し、鉛成分を鉛イオンとして溶解させる。得られた溶液を濾過して、炭素質材料、硫酸バリウム等の固形分を濾別する。
(2) Quantification of carbonaceous material and barium sulfate To 10 g of crushed sample B, 50 mL of nitric acid having a concentration of 20% by mass is added and heated for about 20 minutes to dissolve the lead component as lead ions. The obtained solution is filtered to filter out solids such as carbonaceous materials and barium sulfate.
 得られた固形分を水中に分散させて分散液とした後、篩いを用いて分散液から炭素質材料および硫酸バリウム以外の成分(例えば補強材)を除去する。次に、分散液に対し、予め質量を測定したメンブレンフィルタを用いて吸引ろ過を施し、濾別された試料とともにメンブレンフィルタを110℃±5℃の乾燥器で乾燥する。濾別された試料は、炭素質材料と硫酸バリウムとの混合試料である。乾燥後の混合試料(以下、試料Cと称する)とメンブレンフィルタとの合計質量からメンブレンフィルタの質量を差し引いて、試料Cの質量(M)を測定する。その後、試料Cをメンブレンフィルタとともに坩堝に入れ、1300℃以上で灼熱灰化させる。残った残渣は酸化バリウムである。酸化バリウムの質量を硫酸バリウムの質量に変換して硫酸バリウムの質量(M)を求める。質量Mから質量Mを差し引いて炭素質材料の質量を算出する。 After the obtained solid content is dispersed in water to form a dispersion liquid, a carbonaceous material and components other than barium sulfate (for example, a reinforcing material) are removed from the dispersion liquid using a sieve. Next, the dispersion liquid is suction-filtered using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a dryer at 110 ° C. ± 5 ° C. The filtered sample is a mixed sample of carbonaceous material and barium sulfate. The mass of the sample C (M m ) is measured by subtracting the mass of the membrane filter from the total mass of the dried mixed sample (hereinafter referred to as sample C) and the membrane filter. Then, the sample C is put into a crucible together with a membrane filter and incinerated at 1300 ° C. or higher. The remaining residue is barium oxide. The mass of barium oxide is converted into the mass of barium sulfate to obtain the mass of barium sulfate ( MB ). The mass of the carbonaceous material is calculated by subtracting the mass MB from the mass M m .
(セパレータ)
 負極板と正極板との間には、セパレータを配置することができる。セパレータとしては、不織布、および微多孔膜から選択される少なくとも一種などが用いられる。
(Separator)
A separator can be arranged between the negative electrode plate and the positive electrode plate. As the separator, at least one selected from a non-woven fabric and a microporous membrane is used.
 不織布は、繊維を織らずに絡み合わせたマットであり、繊維を主体とする。不織布は、例えば、不織布の60質量%以上が繊維で形成されている。繊維としては、ガラス繊維、ポリマー繊維(ポリオレフィン繊維、アクリル繊維、ポリエステル繊維(ポリエチレンテレフタレート繊維など)など)、パルプ繊維などを用いることができる。中でも、ガラス繊維が好ましい。不織布は、繊維以外の成分(例えば、耐酸性の無機粉体、結着剤としてのポリマー)などを含んでもよい。 Nonwoven fabric is a mat that is entwined without weaving fibers, and is mainly composed of fibers. In the non-woven fabric, for example, 60% by mass or more of the non-woven fabric is formed of fibers. As the fiber, glass fiber, polymer fiber (polyolefin fiber, acrylic fiber, polyester fiber (polyethylene terephthalate fiber, etc.), etc.), pulp fiber, and the like can be used. Of these, glass fiber is preferable. The nonwoven fabric may contain components other than fibers (for example, acid-resistant inorganic powder, polymer as a binder) and the like.
 一方、微多孔膜は、繊維成分以外を主体とする多孔性のシートであり、例えば、造孔剤含む組成物をシート状に押し出し成形した後、造孔剤を除去して細孔を形成することにより得られる。微多孔膜は、耐酸性を有する材料で構成することが好ましく、ポリマー成分を主体とする微多孔膜が好ましい。ポリマー成分としては、ポリオレフィン(ポリエチレン、ポリプロピレンなど)が好ましい。造孔剤としては、ポリマー粉末およびオイルからなる群より選択される少なくとも一種などが挙げられる。 On the other hand, the microporous film is a porous sheet mainly composed of components other than fiber components. For example, a composition containing a pore-forming agent is extruded into a sheet and then the pore-forming agent is removed to form pores. It is obtained by. The microporous membrane is preferably composed of a material having acid resistance, and a microporous membrane mainly composed of a polymer component is preferable. As the polymer component, polyolefin (polyethylene, polypropylene, etc.) is preferable. Examples of the pore-forming agent include at least one selected from the group consisting of polymer powders and oils.
 セパレータは、例えば、不織布のみで構成してもよく、微多孔膜のみで構成してもよい。また、セパレータは、必要に応じて、不織布と微多孔膜との積層物、異種または同種の素材を貼り合わせた物、または異種または同種の素材において凹凸をかみ合わせた物などであってもよい。 The separator may be composed of, for example, only a non-woven fabric or only a microporous membrane. Further, the separator may be a laminate of a non-woven fabric and a microporous film, a material obtained by laminating different or similar materials, or a material in which irregularities are engaged with different or similar materials, as required.
 セパレータは、シート状であってもよく、袋状に形成されていてもよい。正極板と負極板との間に1枚のシート状のセパレータを挟むように配置してもよい。また、折り曲げた状態の1枚のシート状のセパレータで極板を挟むように配置してもよい。この場合、折り曲げたシート状のセパレータで挟んだ正極板と、折り曲げたシート状のセパレータで挟んだ負極板とを重ねてもよく、正極板および負極板の一方を折り曲げたシート状のセパレータで挟み、他方の極板と重ねてもよい。また、シート状のセパレータを蛇腹状に折り曲げ、正極板および負極板を、これらの間にセパレータが介在するように、蛇腹状のセパレータに挟み込んでもよい。蛇腹状に折り曲げられたセパレータを用いる場合、折り曲げ部が鉛蓄電池の水平方向に沿うように(例えば、折り曲げ部が水平方向と平行になるように)セパレータを配置してもよく、鉛直方向に沿うように(例えば、折り曲げ部が鉛直方向と平行になるように)セパレータを配置してもよい。蛇腹状に折り曲げられたセパレータでは、セパレータの両方の主面側に交互に凹部が形成されることになる。正極板および負極板の上部には通常耳部が形成されているため、折り曲げ部が鉛蓄電池の水平方向に沿うようにセパレータを配置する場合、セパレータの一方の主面側の凹部のみに正極板および負極板が配置される(つまり、隣接する正極板と負極板との間には、二重のセパレータが介在した状態となる)。折り曲げ部が鉛蓄電池の鉛直方向に沿うようにセパレータを配置する場合、一方の主面側の凹部に正極板を収容し、他方の主面側の凹部に負極板を収容することができる(つまり、隣接する正極板と負極板との間には、セパレータが一重に介在した状態とすることができる。)。袋状のセパレータを用いる場合、袋状のセパレータが正極板を収容していてもよいし、負極板を収容してもよい。 The separator may be in the shape of a sheet or in the shape of a bag. A sheet-shaped separator may be sandwiched between the positive electrode plate and the negative electrode plate. Further, the electrode plate may be arranged so as to sandwich the electrode plate with one sheet-shaped separator in a bent state. In this case, the positive electrode plate sandwiched between the bent sheet-shaped separators and the negative electrode plate sandwiched between the bent sheet-shaped separators may be overlapped, and one of the positive electrode plate and the negative electrode plate may be sandwiched between the bent sheet-shaped separators. , May be overlapped with the other electrode plate. Further, the sheet-shaped separator may be bent in a bellows shape, and the positive electrode plate and the negative electrode plate may be sandwiched between the bellows-shaped separators so that the separator is interposed between them. When using a separator bent in a bellows shape, the separator may be arranged so that the bent portion is along the horizontal direction of the lead storage battery (for example, the bent portion is parallel to the horizontal direction), or along the vertical direction. (For example, the separator may be arranged so that the bent portion is parallel to the vertical direction). In the bellows-shaped separator, recesses are alternately formed on both main surface sides of the separator. Since the ear portion is usually formed on the upper part of the positive electrode plate and the negative electrode plate, when the separator is arranged so that the bent portion is along the horizontal direction of the lead storage battery, the positive electrode plate is formed only in the concave portion on one main surface side of the separator. And a negative electrode plate is arranged (that is, a double separator is interposed between the adjacent positive electrode plate and the negative electrode plate). When the separator is arranged so that the bent portion is along the vertical direction of the lead storage battery, the positive electrode plate can be accommodated in the recess on one main surface side and the negative electrode plate can be accommodated in the recess on the other main surface side (that is,). , The separator can be in a single interposition between the adjacent positive electrode plate and the negative electrode plate). When a bag-shaped separator is used, the bag-shaped separator may accommodate a positive electrode plate or a negative electrode plate.
(電解液)
 電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。
 電解液には、上記のポリマー化合物が含まれていてもよい。
(Electrolytic solution)
The electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled if necessary.
The electrolytic solution may contain the above-mentioned polymer compound.
 電解液は、必要に応じて、カチオン(例えば、金属カチオン)、および/またはアニオン(例えば、硫酸アニオン以外のアニオン(リン酸イオンなど))を含んでいてもよい。金属カチオンとしては、例えば、Naイオン、Liイオン、Mgイオン、およびAlイオンからなる群より選択される少なくとも一種が挙げられる。 The electrolytic solution may contain a cation (for example, a metal cation) and / or an anion (for example, an anion other than the sulfate anion (for example, a phosphate ion)), if necessary. Examples of the metal cation include at least one selected from the group consisting of Na ion, Li ion, Mg ion, and Al ion.
 満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば、1.20以上であり、1.25以上であってもよい。電解液の20℃における比重は、1.35以下であり、1.32以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。 The specific gravity of the electrolytic solution in a fully charged lead storage battery at 20 ° C. is, for example, 1.20 or more, and may be 1.25 or more. The specific gravity of the electrolytic solution at 20 ° C. is 1.35 or less, and may be 1.32 or less. These lower limit values and upper limit values can be arbitrarily combined.
(その他)
 鉛蓄電池は、電槽に極板群と電解液とを収容する工程を含む製造方法により得ることができる。極板群は、電槽への収容に先立って、正極板、負極板、およびセパレータを、正極板と負極板との間にセパレータが介在するように積層することにより組み立てられる。正極板、負極板、電解液、およびセパレータは、それぞれ、極板群の組み立てに先立って、準備される。鉛蓄電池の製造方法は、極板群および電解液を電槽に収容する工程の後、必要に応じて、正極板および負極板の少なくとも一方を化成する工程を含んでもよい。1つの電槽には、通常、1つの極板群が収容されている。必要に応じて、1つの電槽に2つ以上の極板群が収容されていてもよい。鉛蓄電池は、極板群および電解液が収容された電槽を、1つ備えていてもよく、2つ以上備えていてもよい。極板群および電解液が収容された電槽を2つ以上備える場合、各極板群は、通常、直列に接続されている。
(others)
The lead-acid battery can be obtained by a manufacturing method including a step of accommodating a group of plates and an electrolytic solution in an electric tank. The electrode plate group is assembled by laminating the positive electrode plate, the negative electrode plate, and the separator so that the separator is interposed between the positive electrode plate and the negative electrode plate prior to the accommodation in the electric tank. The positive electrode plate, the negative electrode plate, the electrolytic solution, and the separator are each prepared prior to assembling the electrode plate group. The method for manufacturing a lead-acid battery may include, if necessary, a step of forming at least one of a positive electrode plate and a negative electrode plate after a step of accommodating a group of electrode plates and an electrolytic solution in an electric tank. One battery case usually contains one group of plates. If necessary, one electric tank may contain two or more groups of plates. The lead-acid battery may be provided with one battery case containing a group of plates and an electrolytic solution, or may be provided with two or more lead-acid batteries. When two or more electric tanks containing a group of plates and an electrolytic solution are provided, each group of plates is usually connected in series.
 極板群における各極板は、1枚であってもよく、2枚以上であってもよい。極板群が2枚以上の正極板を備える場合、少なくとも1枚の正極板について、正極電極材料の密度が上述の範囲であり、かつ上記(a)および(b)の条件の少なくとも一方を充足していれば、この正極板について抵抗成分の生成が低減され、このような正極板の枚数に応じて、鉛蓄電池における高温深放電サイクルでの電圧上昇の発生率を低減する効果が得られる。高温深放電サイクルでの電圧上昇の発生率をさらに低減する観点からは、極板群に含まれる正極板の枚数の50%以上(より好ましくは80%以上または90%以上)が、上記の条件を充足する正極板であることが好ましい。極板群に含まれる正極板のうち、正極電極材料の密度が上述の範囲であり、かつ上記の条件を充足する正極板の比率は、100%以下である。極板群に含まれる正極板の全てが、正極電極材料の密度が上述の範囲であり、かつ上記の条件を充足することが特に好ましい。 Each electrode plate in the electrode plate group may be one plate or two or more plates. When the electrode plate group includes two or more positive electrode plates, the density of the positive electrode electrode material is in the above range for at least one positive electrode plate, and at least one of the above conditions (a) and (b) is satisfied. If this is done, the generation of resistance components is reduced for the positive electrode plates, and the effect of reducing the occurrence rate of voltage increase in the high temperature deep discharge cycle in the lead storage battery can be obtained according to the number of such positive electrode plates. From the viewpoint of further reducing the occurrence rate of voltage rise in the high temperature deep discharge cycle, 50% or more (more preferably 80% or more or 90% or more) of the number of positive electrode plates included in the electrode plate group is the above condition. It is preferable that the positive electrode plate satisfies the above. Among the positive electrode plates included in the electrode plate group, the ratio of the positive electrode plates having the density of the positive electrode electrode material in the above range and satisfying the above conditions is 100% or less. It is particularly preferable that all of the positive electrode plates included in the electrode plate group have a density of the positive electrode electrode material in the above range and satisfy the above conditions.
 鉛蓄電池が、2つ以上の極板群を有する場合には、少なくとも一部の極板群が、正極電極材料の密度が上述の範囲であり、かつ上記のような条件を充足する正極板を備えていればよい。高温深放電サイクルでの電圧上昇の発生率をさらに低減する観点からは、鉛蓄電池に含まれる極板群の個数の50%以上(より好ましくは80%以上または90%以上)が、正極電極材料の密度が上述の範囲であり、かつ上記の条件を充足する正極板を含む極板群を備えることが好ましい。鉛蓄電池に含まれる極板群のうち、正極電極材料の密度が上述の範囲であり、かつ上記の条件を充足する正極板を含む極板群を備える極板群の比率は、100%以下である。鉛蓄電池に含まれる極板群の全てが、正極電極材料の密度が上述の範囲であり、かつ上記の条件を充足する正極板を備えることが好ましい。 When the lead-acid battery has two or more electrode plates, at least a part of the electrode plates has a positive electrode plate in which the density of the positive electrode material is in the above range and satisfies the above conditions. All you have to do is prepare. From the viewpoint of further reducing the occurrence rate of voltage rise in the high temperature deep discharge cycle, 50% or more (more preferably 80% or more or 90% or more) of the number of electrode plates contained in the lead storage battery is the positive electrode material. It is preferable to include a group of electrode plates including a positive electrode plate having a density of the above-mentioned range and satisfying the above-mentioned conditions. Among the electrode plate groups included in the lead storage battery, the ratio of the electrode plate group including the electrode plate group including the positive electrode plate having the density of the positive electrode electrode material in the above range and satisfying the above conditions is 100% or less. be. It is preferable that all of the electrode plates included in the lead storage battery are provided with a positive electrode plate in which the density of the positive electrode electrode material is in the above range and the above conditions are satisfied.
 図1は、本発明の実施形態に係る鉛蓄電池の蓋を外した一例を模式的に示す斜視図である。図2Aは、図1の鉛蓄電池の正面図であり、図2Bは、図2AのIIB-IIB線における断面を矢印方向から見たときの概略断面図である。
 鉛蓄電池1は、極板群11と電解液12とを収容する電槽10を具備する。極板群11は、それぞれ複数枚の負極板2およびクラッド式正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2とクラッド式正極板3との間に、シート状のセパレータ4が挟まれている状態を示すが、セパレータの形態は特に限定されない。
FIG. 1 is a perspective view schematically showing an example in which the lid of the lead storage battery according to the embodiment of the present invention is removed. 2A is a front view of the lead storage battery of FIG. 1, and FIG. 2B is a schematic cross-sectional view taken along the line IIB-IIB of FIG. 2A when viewed from the direction of an arrow.
The lead-acid battery 1 includes an electric tank 10 that houses the electrode plate group 11 and the electrolytic solution 12. The electrode plate group 11 is configured by laminating a plurality of negative electrode plates 2 and a clad type positive electrode plate 3 via a separator 4. Here, a state in which the sheet-shaped separator 4 is sandwiched between the negative electrode plate 2 and the clad type positive electrode plate 3, but the form of the separator is not particularly limited.
 複数の負極板2のそれぞれの上部には、上方に突出する集電用の耳部(図示せず)が設けられている。複数のクラッド式正極板3のそれぞれの上部にも、上方に突出する集電用の耳部(図示せず)が設けられている。そして、負極板2の耳部同士は負極用ストラップ5aにより連結され一体化されている。同様に、クラッド式正極板3の耳部同士も正極用ストラップ5bにより連結されて一体化されている。負極用ストラップ5aの上部には負極柱6aの下端部が固定され、正極用ストラップ5bの上部には正極柱6bの下端部が固定されている。 At the upper part of each of the plurality of negative electrode plates 2, an ear portion (not shown) for collecting electricity is provided so as to project upward. An ear portion (not shown) for collecting electricity is also provided on the upper portion of each of the plurality of clad type positive electrode plates 3 so as to project upward. The ears of the negative electrode plate 2 are connected to each other by the negative electrode strap 5a and integrated. Similarly, the ears of the clad type positive electrode plate 3 are also connected and integrated by the positive electrode strap 5b. The lower end of the negative electrode column 6a is fixed to the upper part of the negative electrode strap 5a, and the lower end of the positive electrode column 6b is fixed to the upper part of the positive electrode strap 5b.
 本発明の一側面に係る鉛蓄電池用クラッド式正極板および鉛蓄電池を以下にまとめて記載する。 The clad type positive electrode plate for a lead storage battery and the lead storage battery according to one aspect of the present invention are collectively described below.
(1)鉛蓄電池用クラッド式正極板であって、
 前記正極板は、複数の多孔質のチューブと、前記チューブ内に収容された芯金と、前記チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の前記芯金の長さ方向の一端部を連結する集電部とを備え、
 前記正極電極材料は、有機繊維を含み、
 前記正極電極材料の密度は、3.75g/cm以下であり、
 前記正極電極材料の単位体積(cm)当たりの前記有機繊維の本数は、400以上15000以下である、鉛蓄電池用クラッド式正極板。
(1) A clad type positive electrode plate for a lead storage battery.
The positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
The positive electrode material contains organic fibers and contains
The density of the positive electrode material is 3.75 g / cm 3 or less.
A clad type positive electrode plate for a lead storage battery, wherein the number of the organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more and 15,000 or less.
(2)上記(1)において、前記正極電極材料の単位体積当たりの前記有機繊維の本数は、800以上であってもよい。
(3)上記(1)または(2)において、前記正極電極材料の単位体積当たりの前記有機繊維の本数は、10000以下、7500以下、または7200以下であってもよい。
(2) In the above (1), the number of the organic fibers per unit volume of the positive electrode material may be 800 or more.
(3) In the above (1) or (2), the number of the organic fibers per unit volume of the positive electrode material may be 10,000 or less, 7500 or less, or 7200 or less.
(4)上記(1)~(3)のいずれか1つにおいて、前記正極電極材料に占める前記有機繊維の比率は、0.013体積%以上0.5体積%以下であってもよい。 (4) In any one of the above (1) to (3), the ratio of the organic fiber to the positive electrode material may be 0.013% by volume or more and 0.5% by volume or less.
(5)鉛蓄電池用クラッド式正極板であって、
 前記正極板は、複数の多孔質のチューブと、前記チューブ内に収容された芯金と、前記チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の前記芯金の長さ方向の一端部を連結する集電部とを備え、
 前記正極電極材料は、有機繊維を含み、
 前記正極電極材料の密度は、3.75g/cm以下であり、
 前記正極電極材料に占める前記有機繊維の比率は、0.013体積%以上0.5体積%以下である、鉛蓄電池用クラッド式正極板。
(5) A clad type positive electrode plate for a lead storage battery.
The positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
The positive electrode material contains organic fibers and contains
The density of the positive electrode material is 3.75 g / cm 3 or less.
A clad type positive electrode plate for a lead storage battery, wherein the ratio of the organic fiber to the positive electrode electrode material is 0.013% by volume or more and 0.5% by volume or less.
(6)上記(1)~(5)のいずれか1つにおいて、前記正極電極材料に占める前記有機繊維の比率は、0.026体積%以上であってもよい。 (6) In any one of the above (1) to (5), the ratio of the organic fiber to the positive electrode material may be 0.026% by volume or more.
(7)上記(1)~(6)のいずれか1つにおいて、前記正極電極材料に占める前記有機繊維の比率は、0.32体積%以下、0.25体積%以下、または0.23体積%以下であってもよい。 (7) In any one of the above (1) to (6), the ratio of the organic fiber to the positive electrode material is 0.32% by volume or less, 0.25% by volume or less, or 0.23% by volume. It may be less than or equal to%.
(8)上記(1)~(7)のいずれか1つにおいて、前記有機繊維は、比重が1.2以上の繊維(第1繊維)を含んでもよい。 (8) In any one of the above (1) to (7), the organic fiber may contain a fiber (first fiber) having a specific gravity of 1.2 or more.
(9)上記(8)において、前記第1繊維の比重は、1.25以上または1.26以上であってもよい。 (9) In the above (8), the specific gravity of the first fiber may be 1.25 or more or 1.26 or more.
(10)上記(8)または(9)において、前記第1繊維の比重は、1.7以下、1.6以下または1.5以下であってもよい。 (10) In the above (8) or (9), the specific gravity of the first fiber may be 1.7 or less, 1.6 or less, or 1.5 or less.
(11)上記(8)~(10)のいずれか1つにおいて、前記正極電極材料に含まれる前記有機繊維全体に占める前記第1繊維の比率は、60体積%以上、75体積%以上、または90体積%以上であってもよい。 (11) In any one of the above (8) to (10), the ratio of the first fiber to the entire organic fiber contained in the positive electrode electrode material is 60% by volume or more, 75% by volume or more, or It may be 90% by volume or more.
(12)上記(11)において、前記第1繊維の比率は、100体積%以下であってもよい。 (12) In the above (11), the ratio of the first fiber may be 100% by volume or less.
(13)上記(8)~(10)のいずれか1つにおいて、前記正極電極材料は、前記有機繊維として、前記第1繊維のみを含んでもよい。 (13) In any one of the above (8) to (10), the positive electrode material may contain only the first fiber as the organic fiber.
(14)上記(1)~(13)のいずれか1つにおいて、前記有機繊維は、酸素元素を含んでいてもよい。 (14) In any one of the above (1) to (13), the organic fiber may contain an oxygen element.
(15)上記(14)において、前記有機繊維中の前記酸素元素の含有量は、10000μmol/g以上、15000μmol/g以上、17000μmol/g以上、17400μmol/g以上、19000μmol/g以上、20000μmol/g以上、または20800μmol/g以上であってもよい。 (15) In the above (14), the content of the oxygen element in the organic fiber is 10,000 μmol / g or more, 15,000 μmol / g or more, 17,000 μmol / g or more, 17400 μmol / g or more, 19000 μmol / g or more, 20000 μmol / g. The above, or 20800 μmol / g or more may be used.
(16)上記(14)または(15)において、前記有機繊維中の前記酸素元素の含有量は、50000μmol/g以下、40000μmol/g以下、または35000μmol/g以下であってもよい。 (16) In the above (14) or (15), the content of the oxygen element in the organic fiber may be 50,000 μmol / g or less, 40,000 μmol / g or less, or 35,000 μmol / g or less.
(17)上記(1)~(16)のいずれか1つにおいて、前記有機繊維の平均繊維径は、1μm以上、5μm以上、または10μm以上であってもよい。 (17) In any one of the above (1) to (16), the average fiber diameter of the organic fiber may be 1 μm or more, 5 μm or more, or 10 μm or more.
(18)上記(1)~(17)のいずれか1つにおいて、前記有機繊維の平均繊維径は、50μm以下、30μm以下または20μm以下であってもよい。 (18) In any one of the above (1) to (17), the average fiber diameter of the organic fiber may be 50 μm or less, 30 μm or less, or 20 μm or less.
(19)上記(1)~(18)のいずれか1つにおいて、前記有機繊維の平均繊維長は、0.1mm以上、0.5mm以上、1mm以上、1.5mm以上、または2mm以上であってもよい。 (19) In any one of the above (1) to (18), the average fiber length of the organic fiber is 0.1 mm or more, 0.5 mm or more, 1 mm or more, 1.5 mm or more, or 2 mm or more. You may.
(20)上記(1)~(19)のいずれか1つにおいて、前記有機繊維の平均繊維長は、10mm以下、または6mm以下であってもよい。 (20) In any one of the above (1) to (19), the average fiber length of the organic fiber may be 10 mm or less, or 6 mm or less.
(21)上記(1)~(20)のいずれか1つにおいて、前記有機繊維は、ポリエステル繊維、アセタール化ポリビニルアルコール繊維、ポリウレタン繊維、およびセルロース繊維からなる群より選択される少なくとも一種を含んでもよい。 (21) In any one of the above (1) to (20), the organic fiber may contain at least one selected from the group consisting of polyester fiber, acetalized polyvinyl alcohol fiber, polyurethane fiber, and cellulose fiber. good.
(22)上記(1)~(21)のいずれか1つにおいて、前記正極電極材料の密度は、3.7g/cm以下であってもよい。 (22) In any one of the above (1) to (21), the density of the positive electrode material may be 3.7 g / cm 3 or less.
(23)上記(1)~(22)のいずれか1つにおいて、前記正極電極材料の密度は、3.3g/cm以上であってもよい。 (23) In any one of the above (1) to (22), the density of the positive electrode material may be 3.3 g / cm 3 or more.
(24)鉛蓄電池であって、
 前記鉛蓄電池は、少なくとも1つの極板群および電解液を備え、
 前記極板群は、少なくとも1つの、上記(1)~(23)のいずれか1つのクラッド式正極板と、少なくとも1つの負極板と、前記クラッド式正極板および前記負極板の間に介在するセパレータとを備える、鉛蓄電池。
(24) Lead-acid battery
The lead-acid battery comprises at least one group of plates and an electrolytic solution.
The electrode plate group includes at least one clad type positive electrode plate according to any one of (1) to (23), at least one negative electrode plate, and a separator interposed between the clad type positive electrode plate and the negative electrode plate. A lead-acid battery.
(25)上記(24)において、前記負極板は、負極電極材料を含んでもよい。 (25) In the above (24), the negative electrode plate may contain a negative electrode material.
(26)上記(25)において、前記負極電極材料は、有機防縮剤を含んでもよい。 (26) In the above (25), the negative electrode material may contain an organic shrinkage proofing agent.
(27)上記(26)において、前記負極電極材料中の前記有機防縮剤の含有量は、0.01質量%以上、または0.05質量%以上であってもよい。 (27) In the above (26), the content of the organic shrinkage barrier in the negative electrode electrode material may be 0.01% by mass or more, or 0.05% by mass or more.
(28)上記(26)または(27)において、前記負極電極材料中の前記有機防縮剤の含有量は、1.0質量%以下、または0.5質量%以下であってもよい。 (28) In the above (26) or (27), the content of the organic shrinkage barrier in the negative electrode electrode material may be 1.0% by mass or less, or 0.5% by mass or less.
(29)上記(25)~(28)のいずれか1つにおいて、前記負極電極材料は、炭素質材料を含んでもよい。 (29) In any one of the above (25) to (28), the negative electrode material may contain a carbonaceous material.
(30)上記(29)において、前記負極電極材料中の前記炭素質材料の含有量は、0.05質量%以上、または0.10質量%以上であってもよい。 (30) In the above (29), the content of the carbonaceous material in the negative electrode material may be 0.05% by mass or more, or 0.10% by mass or more.
(31)上記(29)または(30)において、前記負極電極材料中の前記炭素質材料の含有量は、5質量%以下、または3質量%以下であってもよい。 (31) In the above (29) or (30), the content of the carbonaceous material in the negative electrode electrode material may be 5% by mass or less, or 3% by mass or less.
(32)上記(25)~(31)のいずれか1つにおいて、前記負極電極材料は、硫酸バリウムを含んでもよい。 (32) In any one of the above (25) to (31), the negative electrode material may contain barium sulfate.
(33)上記(32)において、前記負極電極材料中の前記硫酸バリウムの含有量は、0.05質量%以上、または0.10質量%以上であってもよい。 (33) In the above (32), the content of the barium sulfate in the negative electrode electrode material may be 0.05% by mass or more, or 0.10% by mass or more.
(34)上記(32)または(33)において、前記負極電極材料中の前記硫酸バリウムの含有量は、3質量%以下、または2質量%以下であってもよい。 (34) In the above (32) or (33), the content of the barium sulfate in the negative electrode electrode material may be 3% by mass or less, or 2% by mass or less.
(35)上記(25)~(34)のいずれか1つにおいて、満充電状態の前記鉛蓄電池における前記電解液の20℃における比重は、1.20以上、または1.25以上であってもよい。 (35) In any one of the above (25) to (34), even if the specific gravity of the electrolytic solution at 20 ° C. in the fully charged lead-acid battery is 1.20 or more, or 1.25 or more. good.
(36)上記(25)~(35)のいずれか1つにおいて、満充電状態の前記鉛蓄電池における前記電解液の20℃における比重は、1.35以下、または1.32以下であってもよい。 (36) In any one of the above (25) to (35), even if the specific gravity of the electrolytic solution at 20 ° C. in the fully charged lead-acid battery is 1.35 or less, or 1.32 or less. good.
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されない。
[Example]
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
《鉛蓄電池E1~E19、R1~R2、およびC1~C6》
(1)正極板の作製
 クラッド式正極板を下記の手順で作製する。
 まず、耳部を備える集電部に長さ方向の一端部が一体化された15本の芯金のそれぞれを、15個のチューブ内にそれぞれ収容する。耳部が露出した状態となるように、集電部とチューブの集電部側の長さ方向の一端部とを樹脂で覆うことにより樹脂製の上部連座を形成する。なお、芯金および集電部の材質は、Pb-Sb系合金であり、各芯金の長さは295mmである。チューブとしては、長さ310mm、外径9.5mmのガラス繊維製の多孔質チューブを用いる。
<< Lead-acid batteries E1 to E19, R1 to R2, and C1 to C6 >>
(1) Preparation of positive electrode plate A clad type positive electrode plate is manufactured by the following procedure.
First, each of the 15 cores having one end in the length direction integrated into the current collector provided with the selvage is housed in each of the 15 tubes. A resin upper collective punishment is formed by covering the current collector and one end of the tube in the length direction on the current collector side with resin so that the selvage is exposed. The material of the core metal and the current collector is a Pb—Sb alloy, and the length of each core metal is 295 mm. As the tube, a porous tube made of glass fiber having a length of 310 mm and an outer diameter of 9.5 mm is used.
 鉛粉(酸化鉛80質量%および金属鉛20質量%を含む)と鉛丹と表に示す有機繊維と水と希硫酸とを混練することにより調製した正極スラリーを、チューブの長さ方向の他端部の開口から充填する。次いで、チューブの他端部の開口を、下部連座で封止し、乾燥させる。このようにして、未化成のクラッド式正極板を作製する。作製した正極板の幅は、143mmである。 A positive electrode slurry prepared by kneading lead powder (containing 80% by mass of lead oxide and 20% by mass of metallic lead), lead tan, the organic fibers shown in the table, water, and dilute sulfuric acid is added in the length direction of the tube. Fill through the opening at the end. The opening at the other end of the tube is then sealed with a lower punishment and dried. In this way, an unchemical clad type positive electrode plate is produced. The width of the produced positive electrode plate is 143 mm.
 なお、鉛粉と鉛丹との質量比は、9:1とする。有機繊維の添加量は、既述の手順で求められる正極電極材料の単位体積(cm)当たりの有機繊維の本数または正極電極材料に占める有機繊維の比率が表に示す値となるように調整される。正極スラリーの充填量は、既述の手順で求められる正極電極材料の密度が、表に示す値となるように調整される。既述の手順で求められる有機繊維の平均繊維径は14μmであり、平均繊維長は2mmである。 The mass ratio of lead powder and lead tan is 9: 1. The amount of organic fibers added is adjusted so that the number of organic fibers per unit volume (cm 3 ) of the positive electrode material or the ratio of organic fibers to the positive electrode material obtained by the above procedure is the value shown in the table. Will be done. The filling amount of the positive electrode slurry is adjusted so that the density of the positive electrode material obtained by the above-mentioned procedure becomes the value shown in the table. The average fiber diameter of the organic fiber obtained by the above-mentioned procedure is 14 μm, and the average fiber length is 2 mm.
(2)負極板の作製
 鉛粉(酸化鉛80質量%および金属鉛20質量%を含む)と、カーボンブラック0.3質量%、有機防縮剤(リグニンスルホン酸ナトリウム)0.1質量%、および硫酸バリウム1.5質量%を、水および希硫酸とともに混合して、負極ペーストを調製する。負極集電体としてSb系合金製の鋳造格子(厚み4.4mm)に負極ペーストを充填し、乾燥させることにより未化成の負極板(厚み4.5mm)を作製する。化成後の負極板1枚において負極電極材料に含まれる負極活物質の質量が、Pb元素換算で750±6gとなるように、負極ペーストの充填量を調節する。負極板の長さは、正極板のチューブの長さと同じにし、負極板の幅は、正極板の幅と同じにする。
(2) Preparation of negative electrode plate Lead powder (including 80% by mass of lead oxide and 20% by mass of metallic lead), 0.3% by mass of carbon black, 0.1% by mass of an organic shrinkage proofing agent (sodium lignin sulfonate), and Barium sulphate 1.5% by weight is mixed with water and dilute lead sulphate to prepare a negative paste. An unchemical negative electrode plate (thickness 4.5 mm) is produced by filling a cast lattice (thickness 4.4 mm) made of an Sb-based alloy as a negative electrode current collector with a negative electrode paste and drying it. The filling amount of the negative electrode paste is adjusted so that the mass of the negative electrode active material contained in the negative electrode material in one negative electrode plate after chemical conversion is 750 ± 6 g in terms of Pb element. The length of the negative electrode plate is the same as the length of the tube of the positive electrode plate, and the width of the negative electrode plate is the same as the width of the positive electrode plate.
(3)鉛蓄電池の作製
 未化成の負極板4枚と、たがいに同形状の芯金を持つ未化成のクラッド式正極板3枚とを、間にセパレータを介在させた状態で、交互に重ねて、図2Bに示すような極板群を形成する。セパレータとしては、一方の表面にリブを有するポリプロピレン製の微多孔膜を用いる。セパレータは、正極板側にリブが位置するように配置する。
(3) Preparation of lead-acid battery Four unchemical negative electrode plates and three unchemical clad positive electrode plates having core metal having the same shape are alternately stacked with a separator interposed therebetween. Then, a group of electrode plates as shown in FIG. 2B is formed. As the separator, a polypropylene microporous membrane having ribs on one surface is used. The separator is arranged so that the rib is located on the positive electrode plate side.
 極板群をポリプロピレン製の電槽に収容し、20℃における比重が1.280である希硫酸を注液して、電槽の開口に蓋を接着により固定する。電槽を30℃±2℃の水槽内に保持した状態で化成を行う。このようにして定格電圧が2Vで定格容量(5時間率)が165Ahである鉛蓄電池E1~E19、C1~C6、およびR1~R2を得る。鉛蓄電池は、化成によりほぼ満充電状態となる。 The electrode plate group is housed in a polypropylene electric tank, dilute sulfuric acid having a specific gravity of 1.280 at 20 ° C. is injected, and the lid is fixed to the opening of the electric tank by adhesion. Chemicalization is performed while the electric tank is held in a water tank at 30 ° C ± 2 ° C. In this way, lead-acid batteries E1 to E19, C1 to C6, and R1 to R2 having a rated voltage of 2 V and a rated capacity (5-hour rate) of 165 Ah are obtained. Lead-acid batteries are almost fully charged due to chemical formation.
(4)評価
(a)高温深放電サイクルでの電圧上昇の発生率
 満充電状態の化成後の鉛蓄電池を用いて、高温深放電サイクル試験を行う。高温深放電サイクル試験では、鉛蓄電池を、温度75℃±5℃の水槽内に保持した状態で、41.25Aの電流で3時間放電し、29.7Aの電流で5.44時間充電する。この放電および充電のサイクルを1サイクルとして200サイクル充放電を繰り返す。
(4) Evaluation (a) Incidence rate of voltage rise in high-temperature deep discharge cycle A high-temperature deep discharge cycle test is performed using a fully charged lead-acid battery. In the high-temperature deep discharge cycle test, the lead-acid battery is discharged at a current of 41.25 A for 3 hours and charged at a current of 29.7 A for 5.44 hours while being held in a water tank having a temperature of 75 ° C. ± 5 ° C. This discharge and charge cycle is regarded as one cycle, and 200 cycles of charging and discharging are repeated.
 200サイクルの充放電の間で、充電時に鉛蓄電池の端子電圧が2.4Vに到達するまでの時間が3.5時間を下回るサイクルの比率(%)を求める。この比率が、高温深放電サイクル試験における充電時の電圧上昇の発生率に相当し、高温深放電サイクルでの電圧上昇を評価する指標となる。 Calculate the ratio (%) of cycles in which the time required for the terminal voltage of the lead-acid battery to reach 2.4V during charging is less than 3.5 hours during charging and discharging of 200 cycles. This ratio corresponds to the rate of occurrence of voltage rise during charging in the high temperature deep discharge cycle test, and is an index for evaluating the voltage rise in the high temperature deep discharge cycle.
(b)初期容量
 鉛蓄電池C1、E1、およびE14~E19については、初期容量を下記の手順で測定する。
 まず、満充電状態の化成後の鉛蓄電池を、温度30℃±2℃の水槽内に保持した状態で、33Aの電流で70Vまで放電し、次いで33Aの電流で放電電気量に対して135%の電気量となるまで充電する。再度、33Aの電流で1.70Vまで放電し、このときの放電容量を測定し、初期容量とする。初期容量は、鉛蓄電池C1の初期容量を100%としたときの比率で評価する。
 結果を表1~表4および図3~図9に示す。
(B) Initial capacity For lead-acid batteries C1, E1 and E14 to E19, the initial capacity is measured by the following procedure.
First, the fully charged lead-acid battery is discharged to 70V with a current of 33A while being held in a water tank with a temperature of 30 ° C ± 2 ° C, and then 135% with respect to the amount of discharged electricity with a current of 33A. Charge until the amount of electricity reaches. Discharge to 1.70 V again with a current of 33 A, measure the discharge capacity at this time, and use this as the initial capacity. The initial capacity is evaluated by the ratio when the initial capacity of the lead storage battery C1 is 100%.
The results are shown in Tables 1 to 4 and FIGS. 3 to 9.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図3に示されるように、クラッド式正極板の正極電極材料において、密度が3.75g/cm以下になると、高温深放電サイクルでの電圧上昇の発生率が増加する(C1~C4とC5~C6との比較)。それに対し、正極電極材料が有機繊維を含むことで、密度が3.75g/cm以下である場合の高温深放電サイクルでの電圧上昇の発生率を大幅に低減できる(C1~C4とE1~E4との比較)。これは、正極電極材料中に有機繊維が存在することで、イオンの移動が妨げられ、抵抗成分が生成しにくくなるためと考えられる。なお、正極電極材料の密度が3.75g/cmを超える場合には、有機繊維の有無により高温深放電サイクルでの電圧上昇の発生率に差異は見られない(C5~C6とR1~R2との比較)。換言すると、高温深放電サイクルでの電圧上昇の課題自体が存在しない。 As shown in Table 1 and FIG. 3, in the positive electrode material of the clad type positive electrode plate, when the density is 3.75 g / cm 3 or less, the occurrence rate of the voltage increase in the high temperature deep discharge cycle increases (C1 to C1 to 3). Comparison of C4 and C5 to C6). On the other hand, since the positive electrode material contains organic fibers, the rate of voltage increase in the high temperature deep discharge cycle when the density is 3.75 g / cm 3 or less can be significantly reduced (C1 to C4 and E1 to). Comparison with E4). It is considered that this is because the presence of organic fibers in the positive electrode electrode material hinders the movement of ions and makes it difficult to generate a resistance component. When the density of the positive electrode material exceeds 3.75 g / cm 3 , there is no difference in the rate of voltage increase in the high temperature deep discharge cycle depending on the presence or absence of organic fibers (C5 to C6 and R1 to R2). Comparison with). In other words, there is no problem of voltage rise in the high temperature deep discharge cycle.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2、図4および図5に示されるように、高温深放電サイクルでの電圧上昇の低減効果は、正極電極材料の単位体積(cm)当たりの有機繊維の本数が400以上および/または正極電極材料に占める有機繊維の比率が0.013体積%以上の場合に得ることができる。高温深放電サイクルでの電圧上昇の発生率をさらに低減する観点からは、正極電極材料の単位体積(cm)当たりの有機繊維の本数は800以上および/または正極電極材料に占める有機繊維の比率は0.026体積%以上が好ましい。 As shown in Table 2, FIG. 4 and FIG. 5, the effect of reducing the voltage rise in the high temperature deep discharge cycle is that the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more and / or the positive electrode. It can be obtained when the ratio of organic fibers to the electrode material is 0.013% by volume or more. From the viewpoint of further reducing the rate of voltage rise in the high temperature deep discharge cycle, the number of organic fibers per unit volume (cm 3 ) of the positive electrode material is 800 or more and / or the ratio of organic fibers to the positive electrode material. Is preferably 0.026% by volume or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3および図6に示されるように、有機繊維の比重が1.2以上(好ましくは1.25以上または1.26以上)の場合には、高温深放電サイクルでの電圧上昇の発生率をさらに低減することができる。 As shown in Table 3 and FIG. 6, when the specific gravity of the organic fiber is 1.2 or more (preferably 1.25 or more or 1.26 or more), the occurrence rate of the voltage increase in the high temperature deep discharge cycle is determined. It can be further reduced.
 表3および図7に示されるように、有機繊維の酸素元素含有量が15000μmol/g以上(好ましくは17000μmol/g以上または17400μmol/g以上)の場合には、高温深放電サイクルでの電圧上昇の発生率をさらに低減することができる。 As shown in Table 3 and FIG. 7, when the oxygen element content of the organic fiber is 15,000 μmol / g or more (preferably 17,000 μmol / g or more or 17,400 μmol / g or more), the voltage rise in the high temperature deep discharge cycle. The incidence can be further reduced.
 これらの効果は、正極電極材料における有機繊維の分散性が高まることで、イオンの移動がさらに制限されることによると考えられる。 It is considered that these effects are due to the increased dispersibility of the organic fibers in the positive electrode material, which further limits the movement of ions.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4および図8に示されるように、より高い初期容量を確保し易い観点からは、正極電極材料の単位体積当たりの有機繊維の本数は、7500以下または7200以下がより好ましい。同様の観点から、正極電極材料に占める有機繊維の比率は、0.25体積%以下または0.23体積%以下がより好ましい(表4および図9)。 As shown in Table 4 and FIG. 8, the number of organic fibers per unit volume of the positive electrode material is more preferably 7500 or less or 7200 or less from the viewpoint of easily securing a higher initial capacity. From the same viewpoint, the ratio of the organic fiber to the positive electrode material is more preferably 0.25% by volume or less or 0.23% by volume or less (Tables 4 and 9).
 本発明の一側面に係るクラッド式正極板は、産業用の長寿命型の鉛蓄電池または電動車両(フォークリフトなど)用の鉛蓄電池などに好適に利用できる。また、クラッド式正極板は、例えば、自動車、バイクなどの車両用の鉛蓄電池に用いてもよい。しかし、これらの用途は、一例であり、クラッド式正極板およびこれを備える鉛蓄電池の用途はこれらに限定されない。 The clad type positive electrode plate according to one aspect of the present invention can be suitably used for an industrial long-life lead-acid battery or a lead-acid battery for an electric vehicle (forklift, etc.). Further, the clad type positive electrode plate may be used for a lead storage battery for a vehicle such as an automobile or a motorcycle, for example. However, these applications are merely examples, and the applications of the clad type positive electrode plate and the lead storage battery provided with the clad type positive electrode plate are not limited to these.
 1:鉛蓄電池
 2:負極板
 3:正極板
 4:セパレータ
 5a:負極用ストラップ
 5b:正極用ストラップ
 6a:負極柱
 6b:正極柱
 10:電槽
 11:極板群
 12:電解液
1: Lead-acid battery 2: Negative electrode plate 3: Positive electrode plate 4: Separator 5a: Negative electrode strap 5b: Positive electrode strap 6a: Negative electrode column 6b: Positive electrode column 10: Electrode tank 11: Electrode plate group 12: Electrolyte

Claims (14)

  1.  鉛蓄電池用クラッド式正極板であって、
     前記正極板は、複数の多孔質のチューブと、前記チューブ内に収容された芯金と、前記チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の前記芯金の長さ方向の一端部を連結する集電部とを備え、
     前記正極電極材料は、有機繊維を含み、
     前記正極電極材料の密度は、3.75g/cm以下であり、
     前記正極電極材料の単位体積(cm)当たりの前記有機繊維の本数は、400以上15000以下である、鉛蓄電池用クラッド式正極板。
    A clad type positive electrode plate for lead-acid batteries,
    The positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
    The positive electrode material contains organic fibers and contains
    The density of the positive electrode material is 3.75 g / cm 3 or less.
    A clad type positive electrode plate for a lead storage battery, wherein the number of the organic fibers per unit volume (cm 3 ) of the positive electrode material is 400 or more and 15,000 or less.
  2.  前記正極電極材料の単位体積当たりの前記有機繊維の本数は、800以上である、請求項1に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to claim 1, wherein the number of the organic fibers per unit volume of the positive electrode material is 800 or more.
  3.  前記正極電極材料の単位体積当たりの前記有機繊維の本数は、10000以下である、請求項1または2に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to claim 1 or 2, wherein the number of the organic fibers per unit volume of the positive electrode material is 10,000 or less.
  4.  前記正極電極材料に占める前記有機繊維の比率は、0.013体積%以上0.5体積%以下である、請求項1~3のいずれか1項に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to any one of claims 1 to 3, wherein the ratio of the organic fiber to the positive electrode material is 0.013% by volume or more and 0.5% by volume or less.
  5.  鉛蓄電池用クラッド式正極板であって、
     前記正極板は、複数の多孔質のチューブと、前記チューブ内に収容された芯金と、前記チューブ内に充填された正極電極材料と、一列に並んだ状態の複数の前記芯金の長さ方向の一端部を連結する集電部とを備え、
     前記正極電極材料は、有機繊維を含み、
     前記正極電極材料の密度は、3.75g/cm以下であり、
     前記正極電極材料に占める前記有機繊維の比率は、0.013体積%以上0.5体積%以下である、鉛蓄電池用クラッド式正極板。
    A clad type positive electrode plate for lead-acid batteries,
    The positive electrode plate has a plurality of porous tubes, a core metal housed in the tube, a positive electrode material filled in the tube, and a plurality of core metal lengths arranged in a row. Equipped with a current collector that connects one end in the direction
    The positive electrode material contains organic fibers and contains
    The density of the positive electrode material is 3.75 g / cm 3 or less.
    A clad type positive electrode plate for a lead storage battery, wherein the ratio of the organic fiber to the positive electrode electrode material is 0.013% by volume or more and 0.5% by volume or less.
  6.  前記正極電極材料に占める前記有機繊維の比率は、0.026体積%以上である、請求項1~5のいずれか1項に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to any one of claims 1 to 5, wherein the ratio of the organic fiber to the positive electrode material is 0.026% by volume or more.
  7.  前記正極電極材料に占める前記有機繊維の比率は、0.32体積%以下である、請求項1~6のいずれか1項に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to any one of claims 1 to 6, wherein the ratio of the organic fiber to the positive electrode material is 0.32% by volume or less.
  8.  前記有機繊維は、比重が1.2以上の繊維を含む、請求項1~7のいずれか1項に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to any one of claims 1 to 7, wherein the organic fiber contains a fiber having a specific gravity of 1.2 or more.
  9.  前記有機繊維は、酸素元素を含み、
     前記有機繊維中の前記酸素元素の含有量は、10000μmol/g以上である、請求項1~8のいずれか1項に記載の鉛蓄電池用クラッド式正極板。
    The organic fiber contains an oxygen element and contains
    The clad type positive electrode plate for a lead storage battery according to any one of claims 1 to 8, wherein the content of the oxygen element in the organic fiber is 10,000 μmol / g or more.
  10.  前記有機繊維中の前記酸素元素の含有量は、35000μmol/g以下である、請求項9に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to claim 9, wherein the content of the oxygen element in the organic fiber is 35,000 μmol / g or less.
  11.  前記有機繊維は、ポリエステル繊維、アセタール化ポリビニルアルコール繊維、ポリウレタン繊維、およびセルロース繊維からなる群より選択される少なくとも一種を含む、請求項1~10のいずれか1項に記載の鉛蓄電池用クラッド式正極板。 The clad type for a lead storage battery according to any one of claims 1 to 10, wherein the organic fiber contains at least one selected from the group consisting of polyester fiber, acetalized polyvinyl alcohol fiber, polyurethane fiber, and cellulose fiber. Positive plate.
  12.  前記正極電極材料の密度は、3.7g/cm以下である、請求項1~11のいずれか1項に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to any one of claims 1 to 11, wherein the density of the positive electrode material is 3.7 g / cm 3 or less.
  13.  前記正極電極材料の密度は、3.3g/cm以上である、請求項1~12のいずれか1項に記載の鉛蓄電池用クラッド式正極板。 The clad type positive electrode plate for a lead storage battery according to any one of claims 1 to 12, wherein the density of the positive electrode material is 3.3 g / cm 3 or more.
  14.  鉛蓄電池であって、
     前記鉛蓄電池は、少なくとも1つの極板群および電解液を備え、
     前記極板群は、少なくとも1つの、請求項1~13のいずれか1項に記載のクラッド式正極板と、少なくとも1つの負極板と、前記クラッド式正極板および前記負極板の間に介在するセパレータとを備える、鉛蓄電池。
    It ’s a lead-acid battery.
    The lead-acid battery comprises at least one group of plates and an electrolytic solution.
    The electrode plate group includes at least one clad type positive electrode plate according to any one of claims 1 to 13, at least one negative electrode plate, and a separator interposed between the clad type positive electrode plate and the negative electrode plate. A lead-acid battery.
PCT/JP2021/035798 2020-12-21 2021-09-29 Clad positive-electrode plate for lead storage battery, and lead storage battery WO2022137700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022571060A JPWO2022137700A1 (en) 2020-12-21 2021-09-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-211791 2020-12-21
JP2020211791 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022137700A1 true WO2022137700A1 (en) 2022-06-30

Family

ID=82157486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035798 WO2022137700A1 (en) 2020-12-21 2021-09-29 Clad positive-electrode plate for lead storage battery, and lead storage battery

Country Status (2)

Country Link
JP (1) JPWO2022137700A1 (en)
WO (1) WO2022137700A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253236A (en) * 1975-10-28 1977-04-28 Shin Kobe Electric Machinery Clad battery plate
JPS61114471A (en) * 1984-11-07 1986-06-02 Japan Storage Battery Co Ltd Positive plate of clad type lead storage battery
JP2015191691A (en) * 2014-03-27 2015-11-02 株式会社Gsユアサ Lead storage battery, and positive electrode plate thereof
JP2016225113A (en) * 2015-05-29 2016-12-28 株式会社Gsユアサ Lead storage battery
JP2017079144A (en) * 2015-10-20 2017-04-27 株式会社Gsユアサ Lead storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253236A (en) * 1975-10-28 1977-04-28 Shin Kobe Electric Machinery Clad battery plate
JPS61114471A (en) * 1984-11-07 1986-06-02 Japan Storage Battery Co Ltd Positive plate of clad type lead storage battery
JP2015191691A (en) * 2014-03-27 2015-11-02 株式会社Gsユアサ Lead storage battery, and positive electrode plate thereof
JP2016225113A (en) * 2015-05-29 2016-12-28 株式会社Gsユアサ Lead storage battery
JP2017079144A (en) * 2015-10-20 2017-04-27 株式会社Gsユアサ Lead storage battery

Also Published As

Publication number Publication date
JPWO2022137700A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP7143927B2 (en) lead acid battery
JP6756182B2 (en) Lead-acid battery
JP6766504B2 (en) Lead-acid battery
JP6954353B2 (en) Lead-acid battery
JP7099450B2 (en) Lead-acid battery
WO2022137700A1 (en) Clad positive-electrode plate for lead storage battery, and lead storage battery
JP6750377B2 (en) Lead acid battery
JP7424310B2 (en) lead acid battery
JP7099448B2 (en) Lead-acid battery
WO2021060386A1 (en) Negative plate for lead-acid battery, lead-acid battery, and production method for negative plate for lead-acid battery
JP7099452B2 (en) Lead-acid battery
CN110998924B (en) Lead storage battery
JP6958034B2 (en) Lead-acid battery
JPWO2019225161A1 (en) Lead-acid battery
JP7388110B2 (en) lead acid battery
JP6756181B2 (en) Lead-acid battery
JP7099451B2 (en) Lead-acid battery
WO2023210635A1 (en) Lead storage battery
JP7347042B2 (en) Clad-type positive electrode plate for lead-acid batteries and lead-acid batteries equipped with the same
WO2021060327A1 (en) Lead acid storage battery
JP2024029809A (en) Lead accumulator battery
JP2024029810A (en) Lead accumulator battery
JP2022085748A (en) Lead acid battery
JP2024104758A (en) Lead-acid battery
JP2020102359A (en) Lead-acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909858

Country of ref document: EP

Kind code of ref document: A1