JP2017079144A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2017079144A
JP2017079144A JP2015206570A JP2015206570A JP2017079144A JP 2017079144 A JP2017079144 A JP 2017079144A JP 2015206570 A JP2015206570 A JP 2015206570A JP 2015206570 A JP2015206570 A JP 2015206570A JP 2017079144 A JP2017079144 A JP 2017079144A
Authority
JP
Japan
Prior art keywords
positive electrode
mass
carbon
utilization rate
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015206570A
Other languages
Japanese (ja)
Other versions
JP6701600B2 (en
Inventor
潤基 本田
Junki Honda
潤基 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2015206570A priority Critical patent/JP6701600B2/en
Priority to CN201610911645.XA priority patent/CN106602002A/en
Publication of JP2017079144A publication Critical patent/JP2017079144A/en
Application granted granted Critical
Publication of JP6701600B2 publication Critical patent/JP6701600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead storage battery capable of maintaining a high positive electrode utilization rate even if charge/discharge is repeated.SOLUTION: A positive electrode material contains Sb of 0.05 mass% or more and carbon of 0.05 mass% or more. Carbon contains at least one of graphite, expanded graphite, activated carbon and coke. The density of the positive electrode material is 3.45 g/cm3 or less and the positive electrode is a clad type.SELECTED DRAWING: Figure 1

Description

この発明は鉛蓄電池に関する。   The present invention relates to a lead storage battery.

出願人は、特許文献1(JP2010-277799)において、ペースト式の正極板の電極材料に、0.005mass%以上0.5mass%以下のSbと、0.05mass%以上0.5mass%以下のガラス短繊維とを含有させることを提案した。これによって、Sbとガラス短繊維とを個々に含有させる場合よりも、充放電サイクル寿命が顕著に増加する。   In the patent document 1 (JP2010-277799), the applicant applies 0.005 mass% to 0.5 mass% Sb and 0.05 mass% to 0.5 mass% glass short fiber as the electrode material of the paste-type positive electrode plate. Proposed to contain. As a result, the charge / discharge cycle life is remarkably increased as compared with the case of containing Sb and short glass fibers individually.

特許文献2(JP2008-243480)は、ペースト式の正極板の電極材料に、0.01mass%以上0.5mass%以下のBiと、0.1mass%以上2.0mass%以下の膨張化黒鉛とを含有させることを提案している。特許文献2は、Biにより正極電極材料の軟化が抑制され、膨張化黒鉛は正極電極材料中で酸化されることにより消失し、残った空孔が正極利用率を向上させるとしている。   Patent Document 2 (JP2008-243480) states that the electrode material of the paste-type positive electrode plate contains Bi of 0.01 mass% to 0.5 mass% and expanded graphite of 0.1 mass% to 2.0 mass%. is suggesting. According to Patent Document 2, softening of the positive electrode material is suppressed by Bi, expanded graphite disappears when oxidized in the positive electrode material, and the remaining holes improve the positive electrode utilization rate.

JP2010-277799JP2010-277799 JP2008-243480JP2008-243480

この発明の課題は、充放電を繰り返しても高い正極利用率を維持できる鉛蓄電池を提供することにある。   The subject of this invention is providing the lead acid battery which can maintain a high positive electrode utilization factor even if charging / discharging is repeated.

この発明の鉛蓄電池は、正極電極材料がSbとカーボンとを含有することを特徴とする。
Sb含有量は金属換算で0.05mass%以上が好ましい。正極電極材料はカーボンを0.05mass%以上含有することが好ましい。
The lead acid battery of this invention is characterized in that the positive electrode material contains Sb and carbon.
The Sb content is preferably 0.05 mass% or more in terms of metal. The positive electrode material preferably contains 0.05 mass% or more of carbon.

この発明の鉛蓄電池用の正極は、正極電極材料がSbとカーボンとを含有することを特徴とする。Sb含有量は例えば金属換算で0.05mass%以上である。カーボンは例えば正極電極材料中に0.05mass%以上含有されることが好ましい。なおこの明細書において、鉛蓄電池での正極に関する記載は、鉛蓄電池に組み込まれる前の鉛蓄電池用の正極自体にも当てはまる。また鉛蓄電池用の正極に関する記載は、鉛蓄電池自体にも当てはまる。   The positive electrode for a lead storage battery according to the present invention is characterized in that the positive electrode material contains Sb and carbon. The Sb content is, for example, 0.05 mass% or more in terms of metal. Carbon is preferably contained, for example, in an amount of 0.05 mass% or more in the positive electrode material. In addition, in this specification, the description regarding the positive electrode in a lead acid battery is applicable also to the positive electrode itself for lead acid batteries before incorporating in a lead acid battery. Moreover, the description regarding the positive electrode for lead acid batteries is applicable also to lead acid batteries themselves.

鉛蓄電池の正極の正極電極材料にSbとカーボンとを含有させると、充放電を繰り返しても高い正極利用率を維持できる。しかもこの効果は、Sbのみを含有させた際の効果と、カーボンのみを含有させた際の効果の和よりも大きい。なおSb含有量はSb金属に換算し、正極電極材料に対する割合で示す。金属換算した割合で示すとは、化合物の量ではなく、元素の含有量で示す事である。   When Sb and carbon are contained in the positive electrode material of the positive electrode of the lead storage battery, a high positive electrode utilization rate can be maintained even if charge and discharge are repeated. Moreover, this effect is larger than the sum of the effect when only Sb is contained and the effect when only carbon is contained. In addition, Sb content is converted into Sb metal and shown as a ratio to the positive electrode material. To show the ratio in terms of metal means to show the content of the element, not the amount of the compound.

Sbの効果は存在することで発現し、0.5mass%では逆に正極利用率が低下しているので、好ましくは上限を0.3mass%とする。このため、正極電極材料が金属換算で0.3mass%以下のSbを含有することが好ましい。また、0.05mass%で効果が大きく表れるので、0.05mass%以上含有することが好ましい。   The effect of Sb is manifested by the presence, and at 0.5 mass%, the positive electrode utilization rate is conversely reduced, so the upper limit is preferably set to 0.3 mass%. For this reason, it is preferable that positive electrode material contains 0.3 mass% or less Sb in metal conversion. Moreover, since an effect appears largely at 0.05 mass%, it is preferable to contain 0.05 mass% or more.

またカーボンの効果は存在することで発現し、1.3mass%では逆に正極利用率が低下するので、好ましくは上限を1.0mass%とする。また、0.05mass%で効果が表れるので、正極電極材料が0.05mass%以上のカーボンを含有することが好ましい。   Further, the effect of carbon is manifested by the presence, and at 1.3 mass%, on the contrary, the positive electrode utilization factor decreases, so the upper limit is preferably set to 1.0 mass%. In addition, since the effect appears at 0.05 mass%, the positive electrode material preferably contains 0.05 mass% or more of carbon.

特に好ましくは、正極電極材料が、金属換算で0.05mass%以上0.3mass%以下のSbと、0.05mass%以上1.0mass%以下のカーボンとを含有する。この条件を満たす場合に、充放電を繰り返した際の、正極利用率の維持率を特に高くできる。   Particularly preferably, the positive electrode material contains 0.05 mass% to 0.3 mass% Sb and 0.05 mass% to 1.0 mass% carbon in terms of metal. When this condition is satisfied, the maintenance factor of the positive electrode utilization rate when charging / discharging is repeated can be made particularly high.

カーボンの種類は任意で、例えばグラファイト、活性炭、コークス等であり、好ましくはグラファイトとし、最も好ましくは膨張していないグラファイトとする。正極利用率の維持効果は、膨張していないグラファイトで最大で、膨張済みのグラファイトがこれに続き、活性炭等の電気伝導率が低いものでは、グラファイトよりも効果が小さくなる。   The type of carbon is arbitrary and is, for example, graphite, activated carbon, coke, etc., preferably graphite, and most preferably unexpanded graphite. The effect of maintaining the positive electrode utilization rate is the largest for unexpanded graphite, followed by expanded graphite, and the effect of low electrical conductivity such as activated carbon is smaller than that of graphite.

この発明の効果は低密度の正極電極材料で大きくなり、実験によると、密度が3.55g/cm3ではSbとカーボンの効果は小さかったので、正極電極材料の密度は3.45g/cm3以下が好ましい。なお密度が3.16g/cm3まで特に問題なく実用的な鉛蓄電池を製造できたので、正極電極材料の密度は3.16g/cm3以上3.45g/cm3以下であることがより好ましい。 The effect of the present invention is increased with a low-density positive electrode material. According to experiments, when the density is 3.55 g / cm 3 , the effect of Sb and carbon is small, so the density of the positive electrode material is 3.45 g / cm 3 or less. preferable. Note the density could produce a practical lead-acid battery without any particular problem to 3.16 g / cm 3, and more preferably the density of the positive electrode material is not more than 3.16 g / cm 3 or more 3.45 g / cm 3.

上記の正極を、ペースト式ではなく、クラッド式とすると、充放電サイクルを繰り返した際の正極利用率をより高く維持できる。このため、上記の正極はクラッド式であることが好ましい。   If said positive electrode is made into a clad type instead of a paste type, the positive electrode utilization factor at the time of repeating a charging / discharging cycle can be maintained higher. For this reason, it is preferable that said positive electrode is a clad type.

Sbは正極電極材料の軟化を抑制し、電極材料よりも低密度のカーボンは正極電極材料の密度を均一に低下させると共に、その導電性により正極利用率を向上させると考えられる。   It is considered that Sb suppresses softening of the positive electrode material, and carbon having a lower density than the electrode material uniformly lowers the density of the positive electrode material and improves the positive electrode utilization rate due to its conductivity.

さらにクラッド式の正極では、カーボンが正極電極材料内で膨張することにより、硝子繊維チューブに正極電極材料が押しつけられて、その構造が維持されると考えられる、またカーボンが酸化により消失すると、生じた空孔に電解液が保持されて、正極利用率に寄与すると考えられる。   Furthermore, in the clad positive electrode, it is considered that the carbon expands in the positive electrode material, so that the positive electrode material is pressed against the glass fiber tube and the structure is maintained, and the carbon disappears due to oxidation. It is considered that the electrolyte is held in the pores and contributes to the positive electrode utilization rate.

しかしながら、これらはSbとカーボン各々の単独での効果であり、Sbとカーボンとの相乗効果が生じる機構は不明である。以下に、本発明の実施形態を例示する。   However, these are the effects of Sb and carbon alone, and the mechanism for the synergistic effect of Sb and carbon is unknown. Hereinafter, embodiments of the present invention will be exemplified.

形態1:
鉛蓄電池であって、正極電極材料がSbとカーボンとを含有することを特徴とする。
Form 1:
A lead-acid battery, wherein the positive electrode material contains Sb and carbon.

形態2:
形態1の鉛蓄電池であって、前記Sbは金属換算で0.05mass%以上であることを特徴とする。
Form 2:
The lead-acid battery according to aspect 1, wherein the Sb is 0.05 mass% or more in terms of metal.

形態3:
形態1の鉛蓄電池であって、前記カーボンは金属換算で0.05mass%以上であることを特徴とする。
Form 3:
The lead-acid battery according to aspect 1, wherein the carbon is 0.05 mass% or more in terms of metal.

形態4:
形態1または2に記載の鉛蓄電池鉛蓄電池であって、正極電極材料が、金属換算で0.3mass%以下のSbを含有することを特徴とする。
Form 4:
The lead-acid battery according to Form 1 or 2, wherein the positive electrode material contains 0.3 mass% or less of Sb in terms of metal.

形態5:
形態1または3に記載の鉛蓄電池であって、正極電極材料が、1.0mass%以下のカーボンを含有することを特徴とする。
Form 5:
The lead-acid battery according to aspect 1 or 3, wherein the positive electrode material contains 1.0 mass% or less of carbon.

形態6:
形態1〜5のいずれかに記載の鉛蓄電池であって、正極電極材料が、金属換算で0.05mass%以上のSbと、0.05mass%以上のカーボンとを含有することを特徴とする。
形態7:
Form 6:
It is a lead acid battery in any one of form 1-5, Comprising: Positive electrode material contains Sb of 0.05 mass% or more and carbon of 0.05 mass% or more in metal conversion, It is characterized by the above-mentioned.
Form 7:

形態1〜6のいずれかに記載の鉛蓄電池であって、正極電極材料が、金属換算で0.3mass%以下のSbと、1.0mass%以下のカーボンとを含有することを特徴とする。   It is a lead acid battery in any one of form 1-6, Comprising: Positive electrode material contains Sb of 0.3 mass% or less and carbon of 1.0 mass% or less in conversion of a metal, It is characterized by the above-mentioned.

形態8:
形態1〜7のいずれかに記載の鉛蓄電池であって、前記カーボンがグラファイト、エキスパンデットグラファイト、活性炭、コークスのうち少なくとも1種を含むことを特徴とする。
Form 8:
It is a lead acid battery in any one of form 1-7, Comprising: The said carbon contains at least 1 sort (s) among graphite, expanded graphite, activated carbon, and coke, It is characterized by the above-mentioned.

形態9:
形態1〜8のいずれかに記載の鉛蓄電池であって、前記正極電極材料の密度が3.45g/cm3以下であることを特徴とする。
Form 9:
It is a lead acid battery in any one of form 1-8, Comprising: The density of the said positive electrode material is 3.45 g / cm < 3 > or less.

形態10:
形態1〜9のいずれかに記載の鉛蓄電池であって、前記正極電極材料の密度が3.16g/cm3以上であることを特徴とする。
Form 10:
It is a lead acid battery in any one of form 1-9, Comprising: The density of the said positive electrode material is 3.16 g / cm < 3 > or more.

形態11:
形態1〜10のいずれかに記載の鉛蓄電池であって、正極がクラッド式であることを特徴とする。
Form 11:
It is a lead acid battery in any one of form 1-10, Comprising: A positive electrode is a clad type, It is characterized by the above-mentioned.

形態12:
鉛蓄電池用正極であって、正極電極材料がSbとカーボンとを含有することを特徴とする。
Form 12:
A positive electrode for a lead storage battery, wherein the positive electrode material contains Sb and carbon.

形態13:
形態12に記載の鉛蓄電池用正極であって、前記Sbは、金属換算で0.05mass%以上であることを特徴とする。
Form 13:
The positive electrode for a lead storage battery according to the twelfth aspect, wherein the Sb is 0.05 mass% or more in terms of metal.

形態14:
形態12に記載の鉛蓄電池用正極であって、前記カーボンは、金属換算で0.05mass%以上であることを特徴とする。
Form 14:
The positive electrode for a lead storage battery according to the twelfth aspect, wherein the carbon is 0.05 mass% or more in terms of metal.

形態15:
形態12〜14のいずれかに記載の鉛蓄電池であって、正極電極材料が、金属換算で0.3mass%以下のSbを含有することを特徴とする。
Form 15:
It is a lead acid battery in any one of form 12-14, Comprising: Positive electrode material contains 0.3 mass% or less Sb in metal conversion, It is characterized by the above-mentioned.

形態16:
形態12〜15のいずれかに記載の鉛蓄電池であって、正極電極材料が、1.0mass%以下のカーボンを含有することを特徴とする、形態12〜15に記載の鉛蓄電池用正極。
Form 16:
16. The lead-acid battery according to any one of Forms 12 to 15, wherein the positive electrode material contains 1.0 mass% or less of carbon.

形態17:
形態10に記載の鉛蓄電池であって、正極電極材料が、金属換算で0.05mass%以上のSbと、0.05mass%以上のカーボンとを含有することを特徴とする。
Form 17:
The lead-acid battery according to Form 10, wherein the positive electrode material contains 0.05 mass% or more of Sb and 0.05 mass% or more of carbon in terms of metal.

形態18:
形態12〜17のいずれかに記載の鉛蓄電池であって、形態1の鉛蓄電池であって、正極電極材料が、金属換算で0.3mass%以下のSbと、1.0mass%以下のカーボンとを含有することを特徴とする。
Form 18:
It is a lead acid battery in any one of form 12-17, Comprising: It is a lead acid battery of form 1, Comprising: Positive electrode material contains Sb of 0.3 mass% or less in conversion of metal, and carbon of 1.0 mass% or less It is characterized by doing.

形態19:
形態12〜18のいずれかに記載の鉛蓄電池であって、用正極前記カーボンがグラファイト、エキスパンデットグラファイト、活性炭、コークスのうち少なくとも1種を含有することを特徴とする。
Form 19:
It is a lead acid battery in any one of form 12-18, Comprising: The positive electrode for said carbon contains at least 1 sort (s) among graphite, expanded graphite, activated carbon, and coke, It is characterized by the above-mentioned.

形態20:
形態12〜19のいずれかに記載の鉛蓄電池であって、前記正極電極材料の密度が3.45g/cm3以下であることを特徴とする。
Form 20:
20. The lead-acid battery according to any one of forms 12 to 19, wherein the positive electrode material has a density of 3.45 g / cm 3 or less.

形態21:
形態12〜20のいずれかに記載の鉛蓄電池であって、前記正極電極材料の密度が3.16g/cm3以上であることを特徴とする。
Form 21:
21. The lead acid battery according to any one of Forms 12 to 20, wherein the positive electrode material has a density of 3.16 g / cm 3 or more.

形態22:
形態12〜21のいずれかに記載の鉛蓄電池用正極であって、正極がクラッド式であることを特徴とする。
Form 22:
The positive electrode for a lead storage battery according to any one of Forms 12 to 21, wherein the positive electrode is a clad type.

電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、100サイクル後の、30℃の水槽中における正極利用率とカーボン含有量との関係を、Sb含有量が0mass%及び0.2mass%の場合に対して示す特性図The specific gravity of the electrolytic solution is 1.320, the density of the positive electrode active material is 3.41 g / cm 3, and after 100 cycles, the relationship between the positive electrode utilization rate and the carbon content in a 30 ° C. water bath is as follows. Characteristic diagram for 0.2 mass% 図1のデータを、カーボン含有量もSb含有量も0の場合を100%とする相対値で示す特性図Fig. 1 is a characteristic diagram showing the data in Fig. 1 as relative values when the carbon content and Sb content are both 0. 電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、100サイクル後の、30℃の水槽中における正極利用率とSb含有量との関係を、カーボン含有量が0mass%及び0.3mass%の場合に対して示す特性図The specific gravity of the electrolytic solution is 1.320, the density of the positive electrode active material is 3.41 g / cm 3, and after 100 cycles, the relationship between the positive electrode utilization rate and the Sb content in a 30 ° C. water bath, the carbon content is 0 mass% and Characteristic diagram for the case of 0.3 mass% 図3のデータを、カーボン含有量もSb含有量も0の場合を100%とする相対値で示す特性図Characteristic diagram showing the data in Fig. 3 as relative values when the carbon content and Sb content are both 0. 電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、30℃の水槽中での正極利用率の初期値とカーボン含有量との関係を、Sb含有量が0mass%及び0.2mass%の場合に対して示す特性図The specific gravity of the electrolyte is 1.320, the density of the positive electrode active material is 3.41 g / cm 3 , and the relationship between the initial value of the positive electrode utilization rate and the carbon content in a water bath at 30 ° C., the Sb content is 0 mass% and 0.2 Characteristic diagram for mass% 図5のデータを、カーボン含有量もSb含有量も0の場合を100%とする相対値で示す特性図Fig. 5 is a characteristic diagram showing the relative values with 100% when the carbon content and Sb content are 0. 電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、30℃の水槽中での正極利用率の初期値とSb含有量との関係を、カーボン含有量が0mass%及び0.3mass%の場合に対して示す特性図The specific gravity of the electrolyte is 1.320, the density of the positive electrode active material is 3.41 g / cm 3 , and the relationship between the initial value of the positive electrode utilization rate and the Sb content in a water bath at 30 ° C., the carbon content is 0 mass% and 0.3%. Characteristic diagram for mass% 図7のデータを、カーボン含有量もSb含有量も0の場合を100%とする相対値で示す特性図Fig. 7 is a characteristic diagram showing the data in Fig. 7 as relative values when the carbon content and Sb content are both 0. 電解液の比重を1.320とし、100サイクル後の、30℃の水槽中における正極利用率と正極活物質密度との関係を、カーボン0.3mass%とSb0.2mass%を含有するSb,C添加品と、カーボンもSbも含有しない無添加品とに対して示す特性図The specific gravity of the electrolytic solution is set to 1.320, and after 100 cycles, the relationship between the positive electrode utilization rate and the positive electrode active material density in a 30 ° C. water bath is as follows. , Characteristic diagram shown for additive-free products containing neither carbon nor Sb 電解液の比重を1.320、正極活物質の密度が3.41g/cm3とし、100サイクル後の、30℃の水槽中における正極利用率を、カーボンもSbも含有しない無添加品を100%とする相対値で、クラッド式とペースト式について示す特性図The specific gravity of the electrolyte is 1.320, the density of the positive electrode active material is 3.41 g / cm 3, and the utilization rate of the positive electrode in a water bath at 30 ° C. after 100 cycles is 100% for the additive-free product containing neither carbon nor Sb. Relative value, characteristic diagram for clad and paste types

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。なお実施例では、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶことがある。正極板がクラッド式の時は、正極板(正極)は、正極集電体(芯金や正極格子など)、正極電極材料(正極活物質)、及び硝子繊維チューブ、上下のフレーム等から成り、硝子繊維チューブ内の芯金以外の固形成分は正極電極材料に属するものとし、負極板(負極)は、負極集電体(負極格子など)と負極電極材料(負極活物質)とから成るものとする。正極がペースト式の時は、負極板(負極)は、負極集電体(負極格子など)と負極電極材料(負極活物質)とから成り、正極板(正極)は、正極集電体(正極格子など)と正極電極材料(正極活物質)から成る。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art. In Examples, the negative electrode material may be referred to as a negative electrode active material, and the positive electrode material may be referred to as a positive electrode active material. When the positive electrode plate is a clad type, the positive electrode plate (positive electrode) is composed of a positive electrode current collector (core metal, positive electrode lattice, etc.), a positive electrode material (positive electrode active material), a glass fiber tube, upper and lower frames, etc. Solid components other than the cored bar in the glass fiber tube belong to the positive electrode material, and the negative electrode plate (negative electrode) is composed of a negative electrode current collector (negative electrode lattice, etc.) and a negative electrode material (negative electrode active material). To do. When the positive electrode is a paste type, the negative electrode plate (negative electrode) is composed of a negative electrode current collector (negative electrode lattice, etc.) and a negative electrode material (negative electrode active material), and the positive electrode plate (positive electrode) is a positive electrode current collector (positive electrode). Lattice) and a positive electrode material (positive electrode active material).

鉛蓄電池の製造
鉛粉とSb源としてのSb2O3粉末の混合粉を、Pb-Ca-Sn系の芯金を有する硝子繊維のチューブが並んだクラッド式極板に充填した。そして充填条件を変えて化成後の正極活物質の密度を変化させた。化成後のSb含有量が0(より正確には0.005mass%以下)から0.5mass%の範囲となるように含有量を変化させた。活物質材料を充填後、希硫酸に浸漬した後に、空気中で乾燥し、未化成の正極とした。以下、組成は化成後の組成で示す。
Manufacture of lead-acid batteries A mixed powder of lead powder and Sb 2 O 3 powder as an Sb source was filled into a clad electrode plate in which glass fiber tubes having Pb—Ca—Sn-based metal cores were arranged. And the density of the positive electrode active material after chemical conversion was changed by changing filling conditions. The content was changed so that the Sb content after chemical conversion was in the range of 0 (more precisely, 0.005 mass% or less) to 0.5 mass%. After filling the active material, it was immersed in dilute sulfuric acid and then dried in the air to obtain an unchemically formed positive electrode. Hereinafter, a composition is shown by the composition after chemical conversion.

鉛粉の種類と製造条件は任意で、合成繊維補強剤等の有無と含有量とは任意、Sb源は金属Sb、SbOOH、Sb2O5等でも良く、またPb-Sb合金を鉛粉材料として、鉛粉からSb元素が供給されるようにしても良い。カーボンは、膨張の準備となる硫酸処理等を施していない通常のグラファイト、膨張済みのグラファイト、活性炭、コークス、カーボンブラックを検討した。活性炭とコークスは同等であったので、活性炭のデータを示す。またカーボンブラックは正極板から流出して電解液を濁らせ易かったので、これ以外のカーボンが好ましい。以下、単にカーボンあるいはグラファイトという場合、硫酸処理等を施していない通常のカーボンやグラファイトをいう。使用した通常のグラファイトの平均粒径は180μmであったが、好ましい範囲は10μm以上500μm以下である。 The type and production conditions of lead powder are arbitrary, the presence or absence and content of synthetic fiber reinforcement etc. are arbitrary, the Sb source may be metal Sb, SbOOH, Sb 2 O 5 etc., and Pb-Sb alloy is a lead powder material As an alternative, the Sb element may be supplied from lead powder. As for carbon, ordinary graphite not subjected to sulfuric acid treatment for preparing expansion, expanded graphite, activated carbon, coke, and carbon black were examined. Since activated carbon and coke were equivalent, the data for activated carbon is shown. Further, since carbon black easily flows out of the positive electrode plate and makes the electrolyte solution turbid, carbon other than this is preferable. Hereinafter, when simply referred to as carbon or graphite, it refers to normal carbon or graphite not subjected to sulfuric acid treatment or the like. The average particle diameter of ordinary graphite used was 180 μm, but a preferred range is 10 μm or more and 500 μm or less.

鉛粉と有機防縮剤と、硫酸バリウム、カーボンブラック、及び合成繊維補強材を、水と硫酸で混練し、負極活物質ペーストとした。化成後の負極活物質(厳密には負極電極材料)に対し、スルホン化リグニンを有機防縮剤として0.10mass%となるように含有させた。硫酸バリウムは1.0mass%、合成繊維補強材は0.05mass%、他にカーボンブラックを0.2mass%となるように(化成後の負極活物質(厳密には負極電極材料)に対し)含有させた。これらの成分の好ましい含有量の範囲は、有機防縮剤は0.05mass%以上0.3mass%以下、硫酸バリウムは0.5mass%以上2.0mass%以下、合成繊維補強材は0.03mass%以上0.2mass%以下で、カーボンブラック等のカーボンは3.0mass%以下である。負極活物質は、上記のもの以外の成分を含んでいても良い。負極活物質ペーストを、Pb-Ca-Sn系合金からなる鋳造格子に充填し、乾燥と熟成を施して未化成の負極板とした。   Lead powder, organic shrinkage agent, barium sulfate, carbon black, and synthetic fiber reinforcement were kneaded with water and sulfuric acid to obtain a negative electrode active material paste. Sulfonated lignin was added to the negative electrode active material after conversion (strictly, the negative electrode material) as an organic anti-shrink agent so as to be 0.10 mass%. Barium sulfate was contained at 1.0 mass%, synthetic fiber reinforcing material at 0.05 mass%, and carbon black at 0.2 mass% (relative to the negative electrode active material after conversion (strictly, the negative electrode material)). The preferred content range of these components is 0.05 mass% or more and 0.3 mass% or less for organic shrinkage agent, 0.5 mass% or more and 2.0 mass% or less for barium sulfate, and 0.03 mass% or more and 0.2 mass% or less for synthetic fiber reinforcement. Carbon such as carbon black is 3.0 mass% or less. The negative electrode active material may contain components other than those described above. The negative electrode active material paste was filled in a cast lattice made of a Pb—Ca—Sn alloy, dried and aged to obtain an unformed negative electrode plate.

未化成の負極板を微多孔質のポリエチレンセパレータで包み、クラッド式の正極と共に電槽にセットし、硫酸から成る電解液(化成後に20℃で比重1.32となるように調整)を加え電槽化成し、2V出力で5時間率容量(C5、以後Cと表記)が165Ahのクラッド式鉛蓄電池とした。 The unformed negative electrode plate is wrapped in a microporous polyethylene separator and set in a battery case together with a clad positive electrode, and an electrolytic solution consisting of sulfuric acid (adjusted to a specific gravity of 1.32 at 20 ° C after formation) is added to form a battery case. In addition, a clad lead-acid battery having a 2V output and a 5-hour rate capacity (C 5 , hereinafter referred to as C) of 165 Ah was obtained.

正極利用率の測定
正極利用率は、0.2CA放電容量(Ah)÷正極理論容量(Ah)のことであり、%単位で表す。なお正極理論容量は、正極活物質中のPbO2重量(g)÷4.463(g/Ah)で定まり、PbO2重量は、正極活物質中のPb量をPbO2量に換算して求める。新しい蓄電池の場合、初充電後に下記の条件で10サイクルの充放電を行う。
放電:0.2CAで、セル当たりの終止電圧は1.70V
充電:0.2CAで、放電電気量の135%
Measurement of Positive Electrode Utilization Rate The positive electrode utilization rate is 0.2CA discharge capacity (Ah) ÷ positive electrode theoretical capacity (Ah), and is expressed in%. Note the positive electrode theoretical capacity, Sadamari with PbO 2 weight in the positive electrode active material (g) ÷ 4.463 (g / Ah), PbO 2 weight is obtained by converting the amount of Pb in the positive electrode active material PbO 2 amount. In the case of a new storage battery, charge and discharge for 10 cycles under the following conditions after the initial charge.
Discharge: 0.2CA, final voltage per cell is 1.70V
Charging: 0.2 CA, 135% of discharged electricity

新しい蓄電池の場合、10サイクル後に満充電し、電解液の液面を調整し、1晩放置した。次いで30℃の水槽中で、0.2CAで終止電圧を1.70Vとして、容量を測定し、正極利用率の初期値を測定した。初期値の測定後に、鉛蓄電池を10℃の水槽中で、0.22CAで3時間放電し、0.18CAで放電電気量の115%分充電するサイクルを100サイクル経験させた。100サイクル後に、振動試験として上下方向に1.5±0.1Gの加速度で0.5時間振動させる試験を行い、その後に、上記の10サイクルの充放電を省略して満充電を行う他は、上記と同様にして容量を測定し、100サイクル後の正極利用率を測定した。   In the case of a new storage battery, the battery was fully charged after 10 cycles, the liquid level of the electrolyte was adjusted, and left overnight. Next, the capacity was measured in a 30 ° C. water bath with a final voltage of 1.70 V at 0.2 CA, and the initial value of the positive electrode utilization rate was measured. After measuring the initial value, the lead-acid battery was discharged in a water bath at 10 ° C. at 0.22 CA for 3 hours and charged at 115% of the amount of discharged electricity at 0.18 CA for 100 cycles. After 100 cycles, as a vibration test, perform a test that vibrates in the vertical direction at an acceleration of 1.5 ± 0.1G for 0.5 hours, and then perform the full charge by omitting the above 10 cycles of charge / discharge. Similarly, the capacity was measured, and the positive electrode utilization rate after 100 cycles was measured.

試験結果
表1〜表11に試験結果を示し、主なデータを図1〜図10に再掲する。表1,表2は、0.22CA×3時間の放電を含む上記のサイクルを100サイクル繰り返した後の正極利用率を示し、表1は利用率自体を、表2は利用率の相対値を示す。Sb含有量を0mass%と0.2mass%に固定し、カーボン含有量を変えた際の結果を図1(利用率自体),図2(利用率の相対値)に、カーボン含有量を0mass%と0.3mass%に固定し、Sb含有量を変えた際の結果を図3(利用率自体),図4(利用率の相対値)に示す。
Test results Tables 1 to 11 show the test results, and main data are shown again in FIGS. Tables 1 and 2 show the positive electrode utilization rate after 100 cycles of the above cycle including a discharge of 0.22 CA × 3 hours, Table 1 shows the utilization rate itself, and Table 2 shows the relative value of the utilization rate. . The results when the Sb content is fixed at 0 mass% and 0.2 mass% and the carbon content is changed are shown in Fig. 1 (utilization rate itself) and Fig. 2 (relative value of the utilization rate), and the carbon content is 0 mass%. Fig. 3 (utilization rate itself) and Fig. 4 (relative value of the utilization rate) show the results when the Sb content is changed while fixing at 0.3 mass%.

図1,図2から明らかなように、0.2mass%のSbを含有すると、カーボンの効果がより強く現れる。また図3,図4から明らかなように、0.3mass%のカーボンを含有すると、Sbの効果がより強く現れる。これらのことは、Sbとカーボンとが相乗作用して、充放電を繰り返した後の正極利用率を向上させたことを示している。   As is apparent from FIGS. 1 and 2, when 0.2 mass% Sb is contained, the effect of carbon appears more strongly. 3 and 4, when 0.3 mass% of carbon is contained, the effect of Sb appears more strongly. These facts indicate that Sb and carbon have a synergistic effect and have improved the positive electrode utilization rate after repeated charge and discharge.

Sbを含有する場合、カーボンが存在することで、カーボンの効果は発現し、0.05mass%で顕著となり0.1mass%でより明瞭になるので、カーボン含有量の下限は0.05mass%とし、より好ましくは0.1mass%とした。カーボンの効果は0.6mass%〜1.0mass%で上限に達し、1.3mass%では正極利用率が低下し始めるので、より好ましい範囲の上限を1.0mass%とした。   When Sb is contained, the effect of carbon is manifested by the presence of carbon, and becomes noticeable at 0.05 mass% and becomes clearer at 0.1 mass%, so the lower limit of the carbon content is 0.05 mass%, more preferably 0.1 mass%. The effect of carbon reaches the upper limit at 0.6 mass% to 1.0 mass%, and the positive electrode utilization starts to decrease at 1.3 mass%, so the upper limit of the more preferable range was set to 1.0 mass%.

カーボンを含有する場合、Sbの効果は存在することで発現し、0.05mass%で効果が大きく表れるので、Sb含有量の下限を0.05mass%とする。0.2mass%で効果が最大となり、0.5mass%では正極利用率が低下するので、上限を0.3mass%とした。   In the case of containing carbon, the effect of Sb is manifested by the presence, and the effect appears greatly at 0.05 mass%, so the lower limit of the Sb content is 0.05 mass%. The effect is maximum at 0.2 mass%, and the positive electrode utilization rate decreases at 0.5 mass%, so the upper limit was set to 0.3 mass%.

表3は利用率の初期値を、表4は利用率の初期値の相対値を示す。Sb含有量を0mass%と0.2mass%に固定し、カーボン含有量を変えた際の結果を図5,図6に示し、図5は利用率の初期値を、図6は利用率の初期値の相対値を示す。カーボン含有量を0mass%と0.3mass%に固定し、Sb含有量を変えた際の結果を図7,図8に示し、図7は利用率の初期値を、図8は利用率の初期値の相対値を示す。   Table 3 shows the initial value of the utilization rate, and Table 4 shows the relative value of the initial value of the utilization rate. 5 and 6 show the results when the Sb content is fixed at 0 mass% and 0.2 mass% and the carbon content is changed. FIG. 5 shows the initial value of the utilization rate, and FIG. 6 shows the initial value of the utilization rate. Indicates the relative value of. 7 and 8 show the results when the carbon content is fixed at 0 mass% and 0.3 mass% and the Sb content is changed. FIG. 7 shows the initial value of the utilization rate, and FIG. 8 shows the initial value of the utilization rate. Indicates the relative value of.

表5は、前記のサイクルを100サイクル経験した後の正極利用率への、カーボンの種類毎の効果を示す。Sb含有量は0.2mass%、カーボン含有量は0.3mass%とした。グラファイトで活性炭よりも良い結果が得られ、グラファイトの中でも、未膨張の通常のグラファイトが膨張済みのグラファイトよりも好ましいことが分かった。さらに各種のカーボンを複数種含有させた場合でも、未膨張の通常のグラファイトを含む組合せがより好ましいことが分かった。   Table 5 shows the effect of each type of carbon on the positive electrode utilization rate after experiencing 100 cycles of the above cycle. The Sb content was 0.2 mass% and the carbon content was 0.3 mass%. Graphite gave better results than activated charcoal, and among graphite, unexpanded normal graphite was found to be preferred over expanded graphite. Furthermore, it was found that even when a plurality of various carbons were contained, a combination containing unexpanded ordinary graphite was more preferable.

表6と図9は、前記のサイクルを100サイクル経験した後の正極利用率への、正極電極材料の密度の効果を示す。そして結果を、Sbを0.2mass%、カーボンを0.3mass%含有する実施例と、Sbもカーボンも含有しない比較例とに対して示す。Sbとカーボンとを含有させることにより、活物質密度が低くても高い利用率が得られ、活物質密度が低いほど利用率の差が増した。密度が3.29g/cm3と3.41g/cm3で特に優れた利用率が得られ、密度3.16g/cm3でも密度3.55g/cm3の比較例に匹敵する利用率が得られた。これらのことから正極活物質の密度は3.45g/cm3以下が好ましく、特に3.16g/cm3以上3.45g/cm3以下が好ましい。 Table 6 and FIG. 9 show the effect of the density of the positive electrode material on the positive electrode utilization after 100 cycles of the above cycle. And a result is shown with respect to the Example which contains 0.2 mass% of Sb, and 0.3 mass% of carbon, and the comparative example which does not contain Sb and carbon. By containing Sb and carbon, a high utilization factor was obtained even when the active material density was low, and the difference in utilization factor increased as the active material density was low. Density particularly good utilization is obtained at 3.29 g / cm 3 and 3.41 g / cm 3, utilization comparable to the comparative example of the density of 3.55 g / cm 3, even density 3.16 g / cm 3 was obtained. Accordingly, the density of the positive electrode active material is preferably 3.45 g / cm 3 or less, and particularly preferably 3.16 g / cm 3 or more and 3.45 g / cm 3 or less.

従来から、正極活物質の利用率を向上させるために正極活物質密度を低くすることは試みられていた。しかし初期には利用率が向上するものの、100サイクル程度経過すると利用率は低下し、継続的な効果を得られなかった。本発明においては正極活物質の密度を低下させるためにカーボンを用い、正極内で活物質を均一に低密度化させることにより、正極活物質の初期の利用率を向上させる。さらにアンチモンを同時に存在させることにより、低密度な正極活物質の構造を維持し、多数のサイクルを経過しても、利用率が低下しない電池となしえた。そのため、カーボンとアンチモンを同時に存在させた本発明では、正極活物質密度を下げても、100サイクル後の利用率を維持できたと推測している。   Conventionally, attempts have been made to lower the positive electrode active material density in order to improve the utilization rate of the positive electrode active material. However, although the utilization rate improved initially, the utilization rate decreased after about 100 cycles, and a continuous effect could not be obtained. In the present invention, carbon is used to lower the density of the positive electrode active material, and the active material is uniformly reduced in density within the positive electrode, thereby improving the initial utilization factor of the positive electrode active material. Furthermore, by having antimony present at the same time, the structure of the low-density positive electrode active material was maintained, and it was possible to obtain a battery in which the utilization rate did not decrease even after many cycles. Therefore, in the present invention in which carbon and antimony are simultaneously present, it is presumed that the utilization factor after 100 cycles could be maintained even if the positive electrode active material density was lowered.

Sbとカーボンを含有する場合、密度が3.16g/cm3でも100サイクル以上動作したが、Sbもカーボンも含有しない場合、3.16g/cm3では100サイクルの動作に鉛蓄電池が耐えなかった。このことは、カーボンとSbとを含有させることにより、より低密度の正極活物質を使用できることを意味し、3.16g/cm3でよりよい結果が得られたので、密度のより好ましい範囲を例えば3.16g/cm3以上とする。 When Sb and carbon were included, the operation was over 100 cycles even at a density of 3.16 g / cm 3 , but when neither Sb nor carbon was contained, the lead storage battery could not withstand 100 cycles at 3.16 g / cm 3 . This means that a lower density positive electrode active material can be used by containing carbon and Sb, and a better result was obtained at 3.16 g / cm 3 , so a more preferable range of density is, for example, 3.16g / cm 3 or more.

表7は 20 ℃(充電状態)での電解液の比重と100サイクル後の正極利用率との関係を示す。無添加品は電解液が高比重であるほど正極利用率を維持しにくいのに比べ、Sbとカーボンとを含有する場合、高比重の電解液の方が正極利用率を維持しやすく、電解液の比重は20℃で1.30以上が好ましいことが分かった。20℃で1.30以上1.34以下がより好ましい。   Table 7 shows the relationship between the specific gravity of the electrolyte at 20 ° C (charged state) and the positive electrode utilization rate after 100 cycles. In the case of containing Sb and carbon, the additive-free product has a higher specific gravity, and it is more difficult to maintain the positive electrode utilization rate. The specific gravity of was found to be preferably 1.30 or more at 20 ° C. More preferably, it is 1.30 or more and 1.34 or less at 20 ° C.

表8は電解液の比重が1.32での、試験温度と100サイクル後の正極利用率との関係を示す。Sbとカーボンとを含有する場合、低温にしても正極利用率を維持しやすいことが分かった。   Table 8 shows the relationship between the test temperature and the positive electrode utilization rate after 100 cycles when the specific gravity of the electrolytic solution is 1.32. It has been found that when Sb and carbon are contained, the positive electrode utilization rate is easily maintained even at low temperatures.

表9は、比重1.32の電解液での、1000サイクル後のセジメント(沈降物)量を示し、セジメント量は正極活物質の軟化脱落の指標である。正極活物質の密度を低下させるとセジメントが増すが、Sbとカーボンとを加えると、密度を低下させてもセジメントを減少させることができた。   Table 9 shows the amount of sediment (precipitate) after 1000 cycles in the electrolytic solution having a specific gravity of 1.32. The amount of sediment is an indicator of softening and dropping of the positive electrode active material. When the density of the positive electrode active material is lowered, the sediment increases. However, when Sb and carbon are added, the sediment can be reduced even if the density is lowered.

図10に、正極活物質密度を3.41g/cm、電解液の比重を1.320とし、30℃の水槽中で100サイクル後の正極利用率を、カーボンもSbも含有しない無添加品を100%とする相対値で、クラッド式とペースト式について示す。またカーボン濃度とSb濃度はmass%単位である。0.3mass%のカーボンと0.2mass%のSbとを含有する実施例では100サイクル後の正極利用率が増加し、しかも0.3mass%のカーボンによる増加と0.2mass%のSbによる増加との和よりも大きく、正極利用率が増加した。さらに100サイクル後の正極利用率の増加は、クラッド式でペースト式よりも著しかった。 Figure 10 shows that the positive electrode active material density is 3.41 g / cm 3 , the specific gravity of the electrolyte is 1.320, the positive electrode utilization rate after 100 cycles in a 30 ° C water bath is 100% for the additive-free product containing neither carbon nor Sb. The relative values are shown for the clad type and paste type. Carbon concentration and Sb concentration are in units of mass%. In the example containing 0.3 mass% carbon and 0.2 mass% Sb, the positive electrode utilization rate increased after 100 cycles, and more than the sum of the increase by 0.3 mass% carbon and the increase by 0.2 mass% Sb. Largely, the positive electrode utilization rate increased. Furthermore, the increase in positive electrode utilization after 100 cycles was more marked in the clad type than in the paste type.

表10は、100サイクル後の正極利用率が、カーボン含有量によりどのように変化するかを示し、カーボン0.1mass%に対する正極利用率の変化に換算して示す。カーボン含有量による利用率の変化は、カーボン含有量が低いほど大きく、カーボン含有量が0.6mass%から1.0mass%の区間では、利用率はカーボン含有量によらずほぼ一定で、カーボン含有量が1.0mass%を超えると、利用率が低下し始めることが分かる。   Table 10 shows how the utilization rate of the positive electrode after 100 cycles changes depending on the carbon content, and shows the change in the utilization rate of the positive electrode with respect to 0.1 mass% of carbon. The change in the utilization rate due to the carbon content increases as the carbon content decreases.In the section where the carbon content is 0.6 mass% to 1.0 mass%, the utilization rate is almost constant regardless of the carbon content, and the carbon content is When it exceeds 1.0 mass%, it turns out that a utilization rate begins to fall.

表11は、正極利用率の初期値が、カーボン含有量によりどのように変化するかを示し、カーボン含有量が1.0mass%を超えると、利用率の初期値が低下し始めることが分かる。   Table 11 shows how the initial value of the positive electrode utilization rate changes depending on the carbon content. It can be seen that when the carbon content exceeds 1.0 mass%, the initial value of the utilization rate starts to decrease.

ペースト式の正極板を実施例と同様に試作し、鉛蓄電池の正極利用率の維持率を評価した。クラッド式と同様に、カーボンとSbとにより100サイクル後の利用率を高く維持できる。   A paste type positive electrode plate was made in the same manner as in the example, and the maintenance rate of the positive electrode utilization rate of the lead storage battery was evaluated. Similar to the clad type, the utilization rate after 100 cycles can be kept high with carbon and Sb.

なお電解液はアルミニウムイオン、ナトリウムイオン、リチウムイオン等の公知の添加物を含有していても良く、蓄電池は制御弁式としても良い。尚、この明細書において電解液比重は、20℃における比重で示す。   In addition, electrolyte solution may contain well-known additives, such as aluminum ion, sodium ion, and lithium ion, and a storage battery is good also as a control valve type. In this specification, the specific gravity of the electrolyte is indicated by specific gravity at 20 ° C.

Sb元素とカーボン等の定量法
以下に、Sb元素等の定量法と、正極電極材料密度の測定法を説明する。満充電された鉛蓄電池から正極を取り出し、水洗により硫酸分を除去し、乾燥重量を測定する。正極から正極活物質10gを取り出し、20gの酒石酸と20mLの(1+3)硝酸の溶液中に、加熱下に溶解して濾過する。なお(1+3)硝酸は、濃硝酸とイオン交換水の、容積比で1:3の混合物である。濾液をイオン交換水で希釈し、ICPにより原子吸光測定を行い、検量線によりSb含有量とPb含有量とを求める。
Quantitative method for Sb element and carbon, etc. A quantitative method for Sb element and the like, and a method for measuring the density of the positive electrode material will be described below. The positive electrode is taken out from the fully charged lead acid battery, the sulfuric acid content is removed by washing with water, and the dry weight is measured. 10 g of the positive electrode active material is taken out from the positive electrode, dissolved in a solution of 20 g of tartaric acid and 20 mL of (1 + 3) nitric acid under heating, and filtered. Note that (1 + 3) nitric acid is a 1: 3 mixture of concentrated nitric acid and ion-exchanged water. The filtrate is diluted with ion-exchanged water, atomic absorption measurement is performed by ICP, and Sb content and Pb content are obtained by a calibration curve.

濾別した固形分を純水で抽出し、遠心分離により固形分の種類毎に分離する。これによって、グラファイト、膨張化したグラファイト、活性炭等、カーボンの密度に応じて分離できる。繊維成分等を含む場合、密度の差によりカーボンと分離できる。グラファイトとカーボンブラック等のように、密度の差が小さく分離が不完全な場合、遠心分離を再度行って分離する。カーボンの種類は電子顕微鏡により確認できる。   The solid content separated by filtration is extracted with pure water, and separated for each type of solid content by centrifugation. Accordingly, graphite, expanded graphite, activated carbon, etc. can be separated according to the density of carbon. When a fiber component or the like is included, it can be separated from carbon due to a difference in density. If the density difference is small and the separation is incomplete, such as graphite and carbon black, the separation is performed again by centrifugation. The type of carbon can be confirmed with an electron microscope.

正極電極材料密度の測定方法
電極材料の密度は以下の様にして測定する。既化成で満充電状態の電極を解体して取り出し、水洗及び乾燥する。電極材料を未粉砕の状態で水銀圧入法により、1g当たり見かけの体積vと1g当たりの全細孔容積uを測定する。なお見かけの体積vは、電極材料の固体容積と閉気孔の容積との和である。電極材料を容積V1が既知の容器に充填し、水銀圧入法により細孔径が100μm以上に相当する容積V2を測定する。水銀の圧入を続け、全細孔容積uを測定し、(V1-V2)-uを見かけの容積vとし、正極電極材料の密度dを d=1/(v+u)=1/(V1-V2) により求める。
Method for Measuring Positive Electrode Material Density The density of the electrode material is measured as follows. Disassemble and take out fully formed and fully charged electrodes, wash with water and dry. The apparent volume v per gram and the total pore volume u per gram are measured by mercury porosimetry with the electrode material in an unground state. The apparent volume v is the sum of the solid volume of the electrode material and the closed pore volume. A container with a known volume V1 is filled with the electrode material, and a volume V2 corresponding to a pore diameter of 100 μm or more is measured by mercury porosimetry. Continue to inject mercury, measure the total pore volume u, set (V1-V2) -u to the apparent volume v, and set the density d of the positive electrode material to d = 1 / (v + u) = 1 / (V1 -V2).

Claims (5)

鉛蓄電池であって、
正極電極材料がSbとカーボンとを含有することを特徴とする鉛蓄電池。
A lead acid battery,
A lead-acid battery, wherein the positive electrode material contains Sb and carbon.
鉛蓄電池であって、
正極電極材料が0.05mass%以上のSbと0.05mass%以上のカーボンとを含有することを特徴とする鉛蓄電池。
A lead acid battery,
A lead storage battery characterized in that the positive electrode material contains 0.05 mass% or more of Sb and 0.05 mass% or more of carbon.
前記カーボンがグラファイト、エキスパンデットグラファイト、活性炭、コークスのうち少なくとも1種を含むことを特徴とする、請求項1または2に記載の鉛蓄電池。   The lead acid battery according to claim 1 or 2, wherein the carbon includes at least one of graphite, expanded graphite, activated carbon, and coke. 前記正極電極材料の密度が3.45g/cm3以下であることを特徴とする、請求項1〜3のいずれかに記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the density of the positive electrode material is 3.45 g / cm 3 or less. 正極がクラッド式であることを特徴とする、請求項1〜4のいずれかに記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 4, wherein the positive electrode is a clad type.
JP2015206570A 2015-10-20 2015-10-20 Lead acid battery Active JP6701600B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015206570A JP6701600B2 (en) 2015-10-20 2015-10-20 Lead acid battery
CN201610911645.XA CN106602002A (en) 2015-10-20 2016-10-19 Lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206570A JP6701600B2 (en) 2015-10-20 2015-10-20 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2017079144A true JP2017079144A (en) 2017-04-27
JP6701600B2 JP6701600B2 (en) 2020-05-27

Family

ID=58555902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206570A Active JP6701600B2 (en) 2015-10-20 2015-10-20 Lead acid battery

Country Status (2)

Country Link
JP (1) JP6701600B2 (en)
CN (1) CN106602002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084878A1 (en) * 2019-10-28 2021-05-06 株式会社Gsユアサ Lead storage battery
WO2022137700A1 (en) * 2020-12-21 2022-06-30 株式会社Gsユアサ Clad positive-electrode plate for lead storage battery, and lead storage battery
WO2022196566A1 (en) * 2021-03-16 2022-09-22 株式会社Gsユアサ Lead acid storage battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532964A (en) * 2003-03-25 2004-09-29 浙江南都电源动力股份有限公司 Accumulator positive pole active material
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
CN102244248A (en) * 2011-06-10 2011-11-16 江苏双登集团有限公司 Positive plate of lead storage battery for electric bicycle
JP2013093312A (en) * 2011-10-06 2013-05-16 Gs Yuasa Corp Lead acid battery
CN103594738A (en) * 2013-12-12 2014-02-19 湖南丰日电源电气股份有限公司 High-temperature valve regulated sealed lead-acid storage battery
CN103633332A (en) * 2013-12-12 2014-03-12 湖南丰日电源电气股份有限公司 Anode active material for high-temperature valve-regulated sealed lead-acid storage battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035956B (en) * 2011-10-06 2017-06-30 株式会社杰士汤浅国际 Lead accumulator
CN104681879B (en) * 2013-11-29 2020-07-10 株式会社杰士汤浅国际 Lead-acid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532964A (en) * 2003-03-25 2004-09-29 浙江南都电源动力股份有限公司 Accumulator positive pole active material
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
CN102244248A (en) * 2011-06-10 2011-11-16 江苏双登集团有限公司 Positive plate of lead storage battery for electric bicycle
JP2013093312A (en) * 2011-10-06 2013-05-16 Gs Yuasa Corp Lead acid battery
CN103594738A (en) * 2013-12-12 2014-02-19 湖南丰日电源电气股份有限公司 High-temperature valve regulated sealed lead-acid storage battery
CN103633332A (en) * 2013-12-12 2014-03-12 湖南丰日电源电气股份有限公司 Anode active material for high-temperature valve-regulated sealed lead-acid storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084878A1 (en) * 2019-10-28 2021-05-06 株式会社Gsユアサ Lead storage battery
WO2022137700A1 (en) * 2020-12-21 2022-06-30 株式会社Gsユアサ Clad positive-electrode plate for lead storage battery, and lead storage battery
WO2022196566A1 (en) * 2021-03-16 2022-09-22 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
JP6701600B2 (en) 2020-05-27
CN106602002A (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5190562B1 (en) Lead-acid battery for energy storage
JP6015427B2 (en) Negative electrode plate for lead acid battery and method for producing the same
JP6413703B2 (en) Lead acid battery and negative electrode plate thereof
JP6202477B1 (en) Lead acid battery
JP2013218894A (en) Lead acid battery
JP5748091B2 (en) Lead acid battery
JP6701600B2 (en) Lead acid battery
JP6060909B2 (en) Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
JP2014216115A (en) Negative electrode plate for lead-acid battery, liquid type lead-acid battery using the same, and method of manufacturing lead-acid battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP5720947B2 (en) Lead acid battery
JP5780106B2 (en) Lead-acid battery and method for manufacturing the same
JP6653060B2 (en) Lead storage battery
JP5578123B2 (en) Liquid lead-acid battery
JP5787181B2 (en) Lead acid battery
CN105720240B (en) Lead-acid battery
WO2019225161A1 (en) Lead-acid battery
JP5598368B2 (en) Lead acid battery and negative electrode active material thereof
JP2014137970A (en) Lead-acid battery
JP6607344B2 (en) Lead acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2019053998A (en) Lead acid storage battery
JP6164502B2 (en) Lead acid battery
JP6649690B2 (en) Lead storage battery
JPWO2018199207A1 (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200419

R150 Certificate of patent or registration of utility model

Ref document number: 6701600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150