JP5787181B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5787181B2
JP5787181B2 JP2012192069A JP2012192069A JP5787181B2 JP 5787181 B2 JP5787181 B2 JP 5787181B2 JP 2012192069 A JP2012192069 A JP 2012192069A JP 2012192069 A JP2012192069 A JP 2012192069A JP 5787181 B2 JP5787181 B2 JP 5787181B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
chemical conversion
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012192069A
Other languages
Japanese (ja)
Other versions
JP2013093312A (en
Inventor
仁 渡邉
仁 渡邉
晃平 藤田
晃平 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2012192069A priority Critical patent/JP5787181B2/en
Priority to CN201210375015.7A priority patent/CN103035956B/en
Publication of JP2013093312A publication Critical patent/JP2013093312A/en
Application granted granted Critical
Publication of JP5787181B2 publication Critical patent/JP5787181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は、湿式充填法により作製されたクラッド式正極板を備えた鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery including a clad positive plate manufactured by a wet filling method.

フォークリフト用電池等のサイクル用途の電池で使用されているクラッド式正極板は、ガラス繊維等からなる多孔性の円筒形チューブの中心に鉛合金製の芯金を通し、その周囲に活物質原料を充填し、化成等の工程を経て製造されるものである。チューブ内へ活物質原料を充填する方法としては、振動を加えながら鉛酸化物を充填する乾式充填法と、鉛酸化物を希硫酸等で混練してペースト状(又はスラリー状)にし、得られたペースト(又はスラリー)をチューブ内へ充填する湿式充填法とが挙げられるが(特許文献1)、乾式充填法では充填作業の際に鉛酸化物の粉じんが発生するため、作業環境の面では湿式充填法の方がよいとされている。   The clad positive plate used in batteries for cycle applications, such as forklift batteries, passes a lead alloy cored bar through the center of a porous cylindrical tube made of glass fiber, etc. It is manufactured through filling and chemical conversion. As a method of filling the active material raw material into the tube, a dry filling method in which lead oxide is filled while applying vibration, and a paste (or slurry) obtained by kneading lead oxide with dilute sulfuric acid or the like is obtained. (Patent Document 1), but in the dry filling method, lead oxide dust is generated during the filling operation, so in terms of the working environment. It is said that the wet filling method is better.

湿式充填法には、ペースト状(又はスラリー状)の活物質原料をチューブに充填するためのノズルをチューブの奥まで挿入し、引き出しながら充填する方法や、チューブ下端部のみに挿入したノズルからペースト状(又はスラリー状)の活物質原料を勢いよく吐出して余剰水分をチューブから排出しながら充填する方法等がある。いずれの方法でも、チューブ内に均一に活物質原料を充填し、かつノズル内に活物質原料が固着しないように、ペースト状(又はスラリー状)の活物質原料の流動性制御が重要である。   In the wet filling method, the nozzle for filling the tube with the paste (or slurry) active material raw material is inserted into the tube and filled while being pulled out, or the paste is drawn from the nozzle inserted only in the lower end of the tube. For example, there is a method in which the active material material in the form of a slurry (or slurry) is ejected vigorously and the excess water is discharged while being discharged from the tube. In any method, it is important to control the fluidity of the paste-form (or slurry-form) active material raw material so that the active material raw material is uniformly filled in the tube and the active material raw material is not fixed in the nozzle.

このような湿式充填法を用いてクラッド式正極板を作製する場合は、正極活物質原料ペースト(又はスラリー)の流動性が低下すると、充填量のばらつきや充填密度の不均一化が起こりやすくなる。また、正極活物質原料ペースト(又はスラリー)の密度が低い場合は、ペースト(又はスラリー)の固液分離が起こりやすいので、充填量のばらつきや充填密度の不均一化が起こりやすくなる。   When a clad positive electrode plate is produced using such a wet filling method, if the fluidity of the positive electrode active material raw material paste (or slurry) is lowered, variations in filling amount and nonuniform packing density are likely to occur. . In addition, when the density of the positive electrode active material raw material paste (or slurry) is low, solid-liquid separation of the paste (or slurry) is likely to occur, so that variation in the filling amount and non-uniformity in the filling density are likely to occur.

特開平8−171906号公報JP-A-8-171906

そこで本発明は、上記現状に鑑み、湿式充填法を用いて作製された正極板における活物質の充填量や充填密度のばらつきが抑制されたクラッド式鉛蓄電池を提供すべく図ったものである。   Therefore, in view of the above situation, the present invention is intended to provide a clad lead storage battery in which variations in the amount of filling and filling density of an active material in a positive electrode plate manufactured using a wet filling method are suppressed.

本発明者らは、鋭意検討を重ねた結果、クラッド式正極板を湿式充填法を用いて作製する際、正極活物質原料ペースト(以下スラリー状のものも含む。)にアンチモン(Sb)を配合すると、高い流動性を保ったまま固液分離しにくいペーストが得られ、これにより正極板への充填量や充填密度にばらつきが生じにくくなることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the inventors of the present invention blended antimony (Sb) into a positive electrode active material raw material paste (hereinafter also including a slurry) when a clad positive electrode plate is produced using a wet filling method. As a result, a paste that is difficult to separate into solid and liquid while maintaining high fluidity is obtained, and it has been found that the amount of filling and filling density of the positive electrode plate is less likely to vary, and the present invention has been completed.

すなわち本発明に係る鉛蓄電池は、湿式充填法により作製されたクラッド式正極板を備えた鉛蓄電池であって、前記クラッド式正極板は、化成後の正極活物質中に0.02質量%以上のアンチモンを含有していることを特徴とする。なお、化成とは、SBA用語定義によれば、極板を適当な電解液中で電解して正極板・負極板にそれぞれの極性を付与することをいう。例えば、鉛蓄電池では、乾燥された充填板を希硫酸の中で電解し、酸化及び還元によって正極板の鉛酸化物を二酸化鉛、負極板のそれを海綿状鉛に変化させることである。本明細書中における化成後とは、使用できる(放電できる)ようになった状態から後であることを示し、製品として使用、未使用にはかかわらない。   That is, the lead storage battery according to the present invention is a lead storage battery including a clad positive plate manufactured by a wet filling method, and the clad positive plate is 0.02% by mass or more in the positive electrode active material after conversion. The antimony is contained. In addition, according to the SBA term definition, chemical conversion refers to electrolyzing an electrode plate in an appropriate electrolytic solution to impart the respective polarities to the positive electrode plate and the negative electrode plate. For example, in a lead storage battery, the dried filling plate is electrolyzed in dilute sulfuric acid, and the lead oxide of the positive electrode plate is changed to lead dioxide and that of the negative electrode plate is changed to spongy lead by oxidation and reduction. In the present specification, the term “after chemical conversion” means that the product can be used (can be discharged) and is used later, and it does not matter whether the product is used or not used.

前記化成後の正極活物質のアンチモン含有量の上限は、0.8質量%未満であることが好ましい。   The upper limit of the antimony content of the positive electrode active material after the formation is preferably less than 0.8% by mass.

本発明は、前記化成後の正極活物質の密度が3.2〜3.6g/cmである場合に特に有効である。 The present invention is particularly effective when the density of the positive electrode active material after the chemical conversion is 3.2 to 3.6 g / cm 3 .

前記クラッド式正極板の芯金は、Pb−Sb系合金からなるものであってもよい。   The metal core of the clad positive plate may be made of a Pb—Sb alloy.

本発明に係る鉛蓄電池の製造方法もまた、本発明の一つである。すなわち本発明に係る鉛蓄電池の製造方法は、湿式充填法による鉛蓄電池の製造方法であって、化成後の正極活物質におけるアンチモン含有量が0.02質量%以上になるようにアンチモン化合物を添加して、ペースト状又はスラリー状の正極活物質原料を調製する工程を有することを特徴とする。   The method for producing a lead storage battery according to the present invention is also one aspect of the present invention. That is, the method for producing a lead-acid battery according to the present invention is a method for producing a lead-acid battery by a wet filling method, and an antimony compound is added so that the antimony content in the positive electrode active material after chemical conversion is 0.02% by mass or more. And it has the process of preparing the paste-form or slurry-form positive electrode active material raw material, It is characterized by the above-mentioned.

本発明は、上述した構成よりなるので、流動性が高く固液分離しにくい正極活物質原料ペーストを得ることができ、湿式充填法によりクラッド式正極板を作製するに際し、活物質の充填量や充填密度のばらつきを抑制することができる。そして、その結果、正極活物質が均一な密度で充填された寿命性能に優れたクラッド式鉛蓄電池を高い歩留まりで提供することを可能とする。   Since the present invention has the above-described configuration, it is possible to obtain a positive electrode active material raw material paste that is highly fluid and difficult to separate into solid and liquid, and when producing a clad positive electrode plate by a wet filling method, Variation in packing density can be suppressed. As a result, it is possible to provide a high-yield clad lead-acid battery that is filled with a positive electrode active material at a uniform density and has excellent life performance.

クラッド式正極板の上部と下部とにおける正極活物質の質量差(化成後)の測定方法を示す図である。It is a figure which shows the measuring method of the mass difference (after chemical conversion) of the positive electrode active material in the upper part and lower part of a clad type positive electrode plate.

以下に本発明に係る鉛蓄電池の実施形態について説明する。   Embodiments of the lead storage battery according to the present invention will be described below.

本発明に係る鉛蓄電池は、例えば、二酸化鉛を活物質の主成分とする正極板と、鉛を活物質の主成分とする負極板と、これら極板の間に介在する不織布状又は多孔性のセパレータとからなる極板群を備えたものであり、当該極板群が希硫酸を主成分とする電解液に浸漬されてなるものである。   The lead storage battery according to the present invention includes, for example, a positive electrode plate containing lead dioxide as a main component of an active material, a negative electrode plate containing lead as a main component of an active material, and a non-woven or porous separator interposed between these electrode plates And the electrode plate group is immersed in an electrolyte containing dilute sulfuric acid as a main component.

前記正極板は、湿式充填法により作製されたクラッド式のものであり、ガラス繊維等からなる多孔性の円筒形チューブと、鉛合金からなる芯金との間にペースト状の活物質原料を充填することにより形成される。一方、前記負極板は、Pb−Sb系合金やPb−Ca系合金等からなる格子体を備えたものであり、当該格子体にペースト状の活物質原料を充填することにより形成される。これらのチューブ、芯金、格子体、負極活物質原料ペースト、セパレータ、電解液等としては特に限定されず、目的・用途に応じて適宜公知のものから選択して用いることができる。   The positive electrode plate is of a clad type manufactured by a wet filling method, and a paste-like active material raw material is filled between a porous cylindrical tube made of glass fiber or the like and a cored bar made of a lead alloy. It is formed by doing. On the other hand, the negative electrode plate includes a lattice body made of a Pb—Sb alloy, a Pb—Ca alloy, or the like, and is formed by filling the lattice body with a pasty active material material. These tubes, metal cores, grids, negative electrode active material raw material paste, separators, electrolytes and the like are not particularly limited, and can be appropriately selected from known materials depending on the purpose and application.

本発明におけるクラッド式正極板は、正極活物質(化成後)中に0.02質量%以上のアンチモンを含有しているものである。アンチモン含有量(化成後)が0.02質量%以上になるように正極活物質原料ペーストにアンチモンを配合すれば、高い流動性を保ったまま固液分離しにくいペーストが得られ、これにより正極板への充填量や充填密度にばらつきが生じにくくなる。そして、正極活物質の充填密度が均一となる結果、得られる鉛蓄電池の寿命性能も向上し、また、充填量のばらつきが抑制されることにより、安定した性能のクラッド式鉛蓄電池を高い歩留まりで製造することができる。なお、アンチモン含有量(化成後)が0.02質量%未満であると、このような効果は甚だ不充分なものとなる。   The clad positive electrode plate in the present invention contains 0.02% by mass or more of antimony in the positive electrode active material (after chemical conversion). If antimony is added to the positive electrode active material raw material paste so that the antimony content (after chemical conversion) is 0.02% by mass or more, a paste that is difficult to separate into solid and liquid while maintaining high fluidity can be obtained. Variations in the amount and density of filling the plate are less likely to occur. As a result of the uniform filling density of the positive electrode active material, the life performance of the obtained lead storage battery is improved, and the variation in filling amount is suppressed, so that a stable performance clad type lead storage battery can be obtained at a high yield. Can be manufactured. If the antimony content (after chemical conversion) is less than 0.02% by mass, such an effect is extremely insufficient.

なお、正極活物質原料ペースト中の固体粒子が凝集すると、粒子に捕捉されずに自由に動くことができる水分が多くなり、流動性が高まるが、固液分離しやすくなるので、均一な充填が困難になる。従って、正極活物質原料ペーストの性状としては、単に柔らかかったり、流動性があったりするだけでは不充分であり、流動性があるとともに固液分離しにくいことが重要である。   In addition, when solid particles in the positive electrode active material raw material paste are aggregated, moisture that can move freely without being trapped by the particles is increased, and fluidity is increased, but since solid-liquid separation is facilitated, uniform filling is possible. It becomes difficult. Therefore, as the properties of the positive electrode active material raw material paste, it is not sufficient that it is merely soft or fluid, and it is important that it is fluid and difficult to separate into solid and liquid.

一方、正極活物質のアンチモン含有量の上限は、化成後において、0.8質量%未満であることが好ましく、より好ましくは0.5質量%である。アンチモン含有量(化成後)が0.8質量%以上であると、自己放電の増加によりJIS D5303−1に規定された容量保存特性を満たしにくくなるとともに、正極活物質の利用率が低下し、また、0.5質量%(化成後)を超えてアンチモンを含有させても、充填量や充填密度のばらつき抑制効果のより一層の伸びは得られにくくなる。   On the other hand, the upper limit of the antimony content of the positive electrode active material is preferably less than 0.8% by mass, more preferably 0.5% by mass after chemical conversion. When the antimony content (after chemical conversion) is 0.8% by mass or more, it becomes difficult to satisfy the capacity storage characteristics defined in JIS D5303-1 due to an increase in self-discharge, and the utilization factor of the positive electrode active material is reduced. Moreover, even if it contains antimony exceeding 0.5 mass% (after chemical conversion), it will become difficult to obtain the further elongation of the variation suppression effect of a filling amount or a filling density.

なお、正極活物質原料ペーストにアンチモンを配合すると、上述のように、正極板への充填密度が均一化され、その結果、得られる鉛蓄電池の寿命性能も向上するが、一方で、アンチモンは負極板の水素過電圧を低下させて、水素ガス発生を伴う自己放電を増加させ、その結果、放置後の鉛蓄電池の放電性能を低下させるという負の要因ともなる。しかし、正極活物質(化成後)のアンチモン含有量を0.8質量%未満にすることにより、放置後の放電性能の低下を許容範囲内にとどめ、かつ正極活物質の利用率を維持することが可能となる。このため、正極活物質(化成後)のアンチモン含有量が0.02質量%以上0.8質量%未満であれば、相反する性能である寿命性能と放置後の放電性能とを両立することも可能となる。   In addition, when antimony is blended with the positive electrode active material raw material paste, as described above, the filling density into the positive electrode plate is made uniform, and as a result, the life performance of the obtained lead storage battery is improved. Lowering the hydrogen overvoltage of the plate increases the self-discharge accompanied by the generation of hydrogen gas, which results in a negative factor of lowering the discharge performance of the lead-acid battery after standing. However, by reducing the antimony content of the positive electrode active material (after chemical conversion) to less than 0.8% by mass, the deterioration of the discharge performance after being left is kept within an allowable range, and the utilization rate of the positive electrode active material is maintained. Is possible. For this reason, if the antimony content of the positive electrode active material (after chemical conversion) is 0.02% by mass or more and less than 0.8% by mass, it is possible to achieve both life performance that is contradictory performance and discharge performance after being left standing. It becomes possible.

正極活物質原料ペーストにアンチモンを配合するには、例えば、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、硫酸アンチモン等のアンチモン化合物を用いることが好ましい。   In order to mix antimony with the positive electrode active material raw material paste, for example, it is preferable to use an antimony compound such as antimony trioxide, antimony tetraoxide, antimony pentoxide, or antimony sulfate.

クラッド式正極板においては、活物質を有効利用するために活物質密度を低下させると活物質にクラックが生じやすく、その結果、得られる鉛蓄電池の寿命性能や放電性能が低下することがある。しかし、本発明者らは、正極活物質中にアンチモンを配合しておくと、クラックが生じても寿命性能や放電性能は低下せず、このため、活物質密度を低下させて活物質の有効利用することが可能になることを見出した。また、正極活物質密度が低い場合も、ペーストが固液分離しやすくなるので、充填量や充填密度にばらつきが生じやすくなるが、正極活物質原料ペーストにアンチモンを配合しておくと、活物質密度が低い場合であっても、固液分離しにくいペーストが得られるので、正極板への充填量や充填密度のばらつきを抑えて、得られる鉛蓄電池の寿命性能や歩留まりを向上させることが可能となる。このため、本発明は、正極活物質の密度(化成後)が3.2〜3.6g/cmと低い場合に特に有効である。正極活物質の密度(化成後)が3.2g/cm未満であると、ペーストにアンチモンを配合しても充分な寿命性能は得られず、一方、正極活物質の密度(化成後)が3.6g/cmを超えると、活物質の利用率が不充分である上、ペーストにアンチモンを配合しても寿命性能の向上効果は限定的なものとなる。 In the clad positive electrode plate, if the active material density is lowered in order to effectively use the active material, cracks are likely to occur in the active material, and as a result, the life performance and discharge performance of the resulting lead storage battery may be lowered. However, when the antimony is blended in the positive electrode active material, the present inventors do not reduce the life performance or the discharge performance even if cracks occur. I found out that it would be possible to use it. In addition, even when the positive electrode active material density is low, the paste is easily separated into solid and liquid, and thus the filling amount and the packing density are likely to vary. However, if antimony is added to the positive electrode active material raw material paste, the active material Even when the density is low, it is possible to obtain a paste that is difficult to separate into solid and liquid, so it is possible to improve the life performance and yield of the obtained lead storage battery by suppressing variations in the filling amount and filling density of the positive electrode plate It becomes. For this reason, the present invention is particularly effective when the density of the positive electrode active material (after chemical conversion) is as low as 3.2 to 3.6 g / cm 3 . If the density of the positive electrode active material (after chemical conversion) is less than 3.2 g / cm 3 , sufficient life performance cannot be obtained even if antimony is blended in the paste, while the density of the positive electrode active material (after chemical conversion) is high. When it exceeds 3.6 g / cm 3 , the utilization factor of the active material is insufficient, and even if antimony is added to the paste, the effect of improving the life performance is limited.

前記クラッド式正極板の芯金としては特に限定されず、例えば、Pb−Ca系合金製やPb−Sb系合金製の芯金を用いることができるが、Pb−Sb系合金製の芯金を用いた場合であっても、正極活物質の密度(化成後)が3.2〜3.6g/cmの範囲内であれば、正極活物質中にアンチモンを配合することにより、鉛蓄電池の寿命性能を向上させることができる。なお、正極活物質の密度(化成後)が3.2〜3.6g/cmの範囲外であっても、正極活物質(化成後)中に0.02質量%以上のアンチモンが含有されていれば、高い流動性を保ったまま固液分離しにくいペーストが得られることに変わりない。このため、正極活物質の密度(化成後)は目的に応じて任意に設定することができる。 The core metal of the clad positive electrode plate is not particularly limited. For example, a metal core made of Pb—Ca alloy or Pb—Sb alloy can be used, but a metal core made of Pb—Sb alloy can be used. Even if it is used, if the density (after chemical conversion) of the positive electrode active material is within the range of 3.2 to 3.6 g / cm 3 , antimony is mixed in the positive electrode active material, thereby Life performance can be improved. Even if the density of the positive electrode active material (after chemical conversion) is outside the range of 3.2 to 3.6 g / cm 3 , 0.02% by mass or more of antimony is contained in the positive electrode active material (after chemical conversion). If this is the case, a paste that is difficult to separate into solid and liquid while maintaining high fluidity can be obtained. For this reason, the density (after chemical conversion) of a positive electrode active material can be arbitrarily set according to the objective.

正極板への活物質原料ペーストの充填密度の上下差が大きく、規定値よりも密度の低い箇所がある場合は、そこが局所的に劣化する可能性がある。これを防ぐためには、充填密度が最も低くなる箇所でも規定値以上の値となるように正極板全体への活物質原料ペーストの充填量を増やさなければならない。これに対して、本発明に係るクラッド式鉛蓄電池は、正極板への活物質原料ペーストの充填密度にばらつきが生じにくいので、高形の鉛蓄電池であっても、正極板の上下方向にわたり均一な密度になるよう正極活物質原料ペーストを充填することが可能である。このように活物質(原料)が上下差なく均一に充填できれば、性能を確保したまま原料の削減も可能となる。従って、本発明に係るクラッド式鉛蓄電池は、上下差が生じやすい、例えばH(チューブの高さ)とR(チューブの半径)との比H/Rが48以上である場合等に好適である。なお、本発明はH/R比によらずに用いることができ、H/R比が小さいクラッド式鉛蓄電池にも良好に適用することができる。   If there is a large difference in the packing density of the active material raw material paste on the positive electrode plate and there is a portion where the density is lower than the specified value, there is a possibility of local degradation. In order to prevent this, it is necessary to increase the filling amount of the active material raw material paste to the whole positive electrode plate so that the value becomes more than the specified value even at the place where the filling density is lowest. In contrast, the clad lead storage battery according to the present invention is less likely to vary in the packing density of the active material raw material paste on the positive electrode plate, so even a high-quality lead storage battery is uniform over the positive electrode plate in the vertical direction. It is possible to fill the positive electrode active material raw material paste so as to obtain a high density. In this way, if the active material (raw material) can be filled uniformly without any difference in the upper and lower sides, it is possible to reduce the raw material while ensuring the performance. Therefore, the clad lead-acid battery according to the present invention is suitable for a case where a difference in height is likely to occur, for example, when the ratio H / R of H (tube height) to R (tube radius) is 48 or more. . The present invention can be used without depending on the H / R ratio, and can be favorably applied to a clad lead-acid battery having a small H / R ratio.

本発明に係る鉛蓄電池の製造方法としては特に限定されないが、例えば、まず、鉛合金からなる格子体にペースト状の活物質原料を充填することにより作製した負極板と、湿式充填法により作製した正極活物質中にアンチモンを含むクラッド式正極板とを、セパレータを介して交互に組み合わせて未化成の極板群を作製する。次いで、当該未化成の極板群を電槽に挿入した後、極板群の溶接(なお、モノブロック電池の場合は引き続きセル間の接続も行う。)、及び、蓋の接着を行い、端子溶接して組立てを完了してから、希硫酸を主成分とする電解液を注液し、電槽化成を行う。このようにして本発明に係る鉛蓄電池を製造することができる。   Although it does not specifically limit as a manufacturing method of the lead acid battery which concerns on this invention, For example, it produced first by the negative electrode plate produced by filling the grid | lattice consisting of a lead alloy with the paste-form active material raw material, and the wet filling method. A clad positive electrode plate containing antimony in the positive electrode active material is alternately combined via a separator to produce an unformed electrode plate group. Next, after inserting the unformed electrode plate group into the battery case, welding of the electrode plate group (in the case of a monoblock battery, connection between the cells is also performed) and bonding of the lid is performed. After completion of welding and assembly, an electrolytic solution containing dilute sulfuric acid as a main component is injected to form a battery case. Thus, the lead acid battery according to the present invention can be manufactured.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<試験1>
(サンプル1)
Sb(三酸化アンチモン)を添加して湿式充填用の正極活物質原料ペーストを調製し、芯金としてPb−Sb系合金(4質量%Sb)からなるものを使用して、ベント形鉛蓄電池用のクラッド式正極板(チューブ高さ(H):300mm、チューブ半径(R):4.8、参考)H/R=300/4.8=62.5)を従来よりも低密度となるように作製した。なお、化成は、正極活物質の理論容量の280%の電気量になるように、定電流で40時間行った。得られたクラッド式正極板の正極活物質中のアンチモン含有量は、化成後において、0.2質量%である。
<Test 1>
(Sample 1)
A positive electrode active material raw material paste for wet filling was prepared by adding Sb 2 O 3 (antimony trioxide), and a bent metal was used as a cored bar made of a Pb—Sb alloy (4 mass% Sb). Clad type positive electrode plate for lead-acid batteries (tube height (H): 300 mm, tube radius (R): 4.8, reference) H / R = 300 / 4.8 = 62.5) lower density than before It produced so that it might become. The chemical conversion was performed at a constant current for 40 hours so that the amount of electricity was 280% of the theoretical capacity of the positive electrode active material. The antimony content in the positive electrode active material of the obtained clad positive plate is 0.2% by mass after chemical conversion.

(サンプル2)
従来のベント形鉛蓄電池用のクラッド式正極板(チューブ高さ(H):300mm、チューブ半径(R):4.8)を試験に供した。なお、当該従来品であるクラッド式正極板は、正極活物質原料ペーストへのアンチモン配合の有無と正極活物質密度の違いを除けば、サンプル1と同様にして作製されたものである。
(Sample 2)
A clad positive electrode plate (tube height (H): 300 mm, tube radius (R): 4.8) for a conventional bent lead-acid battery was used for the test. The conventional clad-type positive electrode plate was produced in the same manner as Sample 1, except for the presence or absence of antimony in the positive electrode active material raw material paste and the difference in positive electrode active material density.

(サンプル3)
Sbを添加せずに湿式充填用の正極活物質原料ペーストを調製したこと以外は、サンプル1と同様にしてクラッド式正極板を作製した。なお、得られたクラッド式正極板の正極活物質中のアンチモン含有量は、化成後において、0.003質量%である。
(Sample 3)
A clad-type positive electrode plate was produced in the same manner as Sample 1, except that a positive electrode active material raw material paste for wet filling was prepared without adding Sb 2 O 3 . In addition, the antimony content in the positive electrode active material of the obtained clad type positive electrode plate is 0.003 mass% after chemical conversion.

各サンプルにつき10枚の正極板を用意して、正極活物質の全質量(化成後)を測定し、そのばらつきを調べた。なお、正極活物質原料ペーストの充填量の違いは、ペーストの詰まり具合(充填量のばらつきや充填密度の不均一化)を把握するに際しては、未化成及び既化成のどちらの状態で測定してもかまわないが、試験1及び下記試験2においては、既化成状態で正極活物質の質量を測定することにより確認した。得られた結果を表1に示した。なお、表1において、「正極活物質密度」は、同一ロットの極板の既化成活物質密度(平均値)を表し、「正極活物質質量(化成後)の標準偏差の比」は、サンプルNo.2のロットの極板の標準偏差を1としたときの相対値を表す。   Ten positive electrode plates were prepared for each sample, the total mass (after chemical conversion) of the positive electrode active material was measured, and the variation was examined. In addition, the difference in the filling amount of the positive electrode active material raw material paste is measured in either the unformed state or the already formed state when grasping the degree of paste clogging (variation in filling amount or non-uniform filling density). Although it does not matter, in Test 1 and Test 2 below, it was confirmed by measuring the mass of the positive electrode active material in an already formed state. The obtained results are shown in Table 1. In Table 1, “positive electrode active material density” represents the density of the formed active material (average value) of the electrode plates of the same lot, and “ratio of standard deviation of positive electrode active material mass (after chemical conversion)” is the sample No. This represents the relative value when the standard deviation of the electrode plate of lot 2 is taken as 1.

表1に示すように、正極活物質原料ペーストの活物質密度が低く、正極板への充填量にばらつきが生じやすい場合であっても、正極活物質中にアンチモンを配合することにより、充填量のばらつきを抑制することができた。   As shown in Table 1, even when the active material density of the positive electrode active material raw material paste is low and the filling amount into the positive electrode plate is likely to vary, the filling amount can be increased by adding antimony to the positive electrode active material. It was possible to suppress the variation of.

<試験2>
正極活物質原料ペーストへのアンチモン添加量を変えたこと以外は、試験1と同様にして、各サンプルのクラッド式正極板を作製し、得られたクラッド式正極板について、(1)クラッド式正極板の上部と下部とにおける正極活物質の質量差(化成後)、(2)相対寿命サイクル数、及び、(3)放置試験後容量維持率を測定した。また、対比として乾式充填法により作製したクラッド式正極板も用意し、同じ評価を行った。更に、水酸化ナトリウムを添加量を変えて正極活物質原料ペーストへ配合したクラッド式正極板も用意し、同じ評価を行った。
<Test 2>
Except that the amount of antimony added to the positive electrode active material raw material paste was changed, a clad positive plate of each sample was prepared in the same manner as in Test 1, and the obtained clad positive plate was obtained as follows: (1) Clad positive electrode The mass difference (after chemical conversion) of the positive electrode active material between the upper part and the lower part of the plate, (2) the relative life cycle number, and (3) the capacity retention rate after the standing test were measured. In addition, a clad positive plate prepared by a dry filling method was also prepared as a comparison, and the same evaluation was performed. Furthermore, a clad positive electrode plate in which sodium hydroxide was added to the positive electrode active material raw material paste by changing the addition amount was also prepared, and the same evaluation was performed.

(1)クラッド式正極板の上部と下部とにおける正極活物質の質量差(化成後)としては、図1に示すように、チューブの上下両端からそれぞれ25〜75mmの間の50mmの領域に充填された正極活物質の質量(化成後)を測定し、上部の質量から下部の質量を引いて得られた値(g)を評価した(n=10)。   (1) As the mass difference (after chemical conversion) of the positive electrode active material between the upper part and the lower part of the clad type positive electrode plate, as shown in FIG. The mass of the positive electrode active material (after chemical conversion) was measured, and the value (g) obtained by subtracting the mass of the lower portion from the mass of the upper portion was evaluated (n = 10).

(2)相対寿命サイクル数は、各サンプルのクラッド式正極板を用いて、公称電圧が2Vで、5時間率定格容量が200Ahで、電解液比重が1.28(20℃)であるベント形のクラッド式鉛蓄電池を組み立てて、これを供試電池として用い(n=2)、以下の条件下において寿命サイクル数を測定し、電池No.1を100とする相対値で表した。
周囲温度:15℃
放電:1CA−1分の放電と、30秒の休止とを1.2Vになるまで繰り返す。
充電:準定電圧充電
(2) The number of relative life cycles is a bent type using a clad positive plate of each sample, a nominal voltage of 2 V, a 5-hour rate rated capacity of 200 Ah, and an electrolyte specific gravity of 1.28 (20 ° C.). Was used as a test battery (n = 2), and the number of life cycles was measured under the following conditions. Expressed as a relative value where 1 is 100.
Ambient temperature: 15 ° C
Discharge: Repeat 1CA-1 minute discharge and 30 second rest until 1.2V.
Charging: Semi-constant voltage charging

(3)放置試験後容量維持率は、JIS D5303−1に準拠して測定した(n=3)。   (3) The capacity retention rate after the standing test was measured in accordance with JIS D5303-1 (n = 3).

得られた結果を表2に示した。なお、表2において、「正極活物質密度」は、化成後の極板における活物質密度を表し、「含有量」は、化成後の極板におけるSbの含有量(分析値)又はNaの含有量(分析値)を表し、「上下の正極活物質質量差(化成後)」は、化成後の極板における極板上部の質量と極板下部の質量との差分(極板上部質量−極板下部質量)を表す。いずれの結果も平均値による。   The obtained results are shown in Table 2. In Table 2, “positive electrode active material density” represents the active material density in the electrode plate after chemical conversion, and “content” represents the Sb content (analytical value) or Na content in the electrode plate after chemical conversion. This represents the amount (analytical value), and the “mass difference between upper and lower positive electrode active materials (after chemical conversion)” is the difference between the mass of the upper electrode plate and the lower mass of the electrode plate after chemical conversion (mass of electrode plate upper mass−electrode) Plate bottom mass). All results are based on average values.

表2に示すように、クラッド式正極板の上部−下部での正極活物質の質量差(化成後)は、正極活物質密度が低下すると、湿式充填の場合は負の方向に増大し、乾式充填の場合は正の方向に増大した。すなわち、湿式充填の場合は、上部−下部での正極活物質の質量差(化成後)がゼロ〜マイナスとなり、乾式充填の場合は、上部−下部での正極活物質の質量差(化成後)がプラスになり、このことから、湿式充填か、乾式充填かを知ることができる。   As shown in Table 2, the mass difference (after chemical conversion) of the positive electrode active material between the upper part and the lower part of the clad positive plate increases in the negative direction in the case of wet filling when the positive electrode active material density decreases. In the case of filling, it increased in the positive direction. That is, in the case of wet filling, the mass difference of the positive electrode active material in the upper part and the lower part (after chemical conversion) is zero to minus, and in the case of dry filling, the mass difference of the positive electrode active material in the upper part and lower part (after chemical conversion). From this, it is possible to know whether wet filling or dry filling.

また、湿式充填の場合は、ペーストへのアンチモン配合によって上部−下部での正極活物質の質量差(化成後)が縮小し、寿命性能も向上した。しかし、アンチモン含有量(化成後)が0.02質量%未満である場合の上部−下部での正極活物質の質量差(化成後)は、寿命性能に影響しなかった。一方、アンチモン含有量(化成後)が0.8質量%を超える場合は放置後の容量減少が顕著になった。   In addition, in the case of wet filling, the mass difference (after chemical conversion) of the positive electrode active material between the upper part and the lower part was reduced by adding antimony to the paste, and the life performance was also improved. However, the mass difference (after chemical conversion) of the positive electrode active material between the upper part and the lower part when the antimony content (after chemical conversion) is less than 0.02% by mass did not affect the life performance. On the other hand, when the content of antimony (after chemical conversion) exceeds 0.8% by mass, the capacity decrease after standing was remarkable.

更に、ペーストに水酸化ナトリウムを配合した場合は、上部−下部での正極活物質の質量差(化成後)は縮小するが、Na含有量が多いほど寿命性能が低下した。   Furthermore, when sodium hydroxide was blended in the paste, the mass difference (after chemical conversion) of the positive electrode active material between the upper part and the lower part decreased, but the life performance decreased as the Na content increased.

<試験3>
正極活物質密度を変えたこと以外は、試験2と同様にして供試電池を作製し(n=2)、(1)正極活物質利用率の変化、及び、(2)相対寿命サイクル数を測定した。
<Test 3>
A test battery was prepared in the same manner as in Test 2 except that the positive electrode active material density was changed (n = 2), (1) change in the positive electrode active material utilization rate, and (2) relative life cycle number. It was measured.

(1)正極活物質利用率は、化成後に0.2CA完全放電を5サイクル繰り返し、5サイクル目の容量から算出した。また、(2)相対寿命サイクル数は、電池No.13を100として、試験2と同様にして算出した。得られた結果を表3に示した。なお、表3において、「正極活物質密度」は、化成後の極板における活物質密度を表し、「Sb含有量」は、化成後の極板におけるSb含有量(分析値)を表し、「正極活物質利用率の変化」は、活物質密度の変化に伴う正極活物質利用率の変化を、電池No.13の正極活物質利用率を平均したものを基準とし、各正極活物質密度における正極活物質利用率を平均した値から差し引いた値として表す。いずれの結果も平均値による。   (1) The utilization rate of the positive electrode active material was calculated from the capacity at the fifth cycle by repeating 0.2CA complete discharge for 5 cycles after chemical conversion. (2) The relative life cycle number is the battery number. Calculation was performed in the same manner as in Test 2 with 13 as 100. The obtained results are shown in Table 3. In Table 3, “positive electrode active material density” represents the active material density in the electrode plate after chemical conversion, “Sb content” represents the Sb content (analytical value) in the electrode plate after chemical conversion, “Change in positive electrode active material utilization rate” refers to the change in the positive electrode active material utilization rate associated with the change in active material density. Based on an average of 13 positive electrode active material utilization rates, the positive electrode active material utilization rate at each positive electrode active material density is expressed as a value subtracted from the average value. All results are based on average values.

表3に示すように、化成後の極板における活物質密度が3.2g/cm未満であるか又は3.6g/cmを超える場合は、正極活物質中にアンチモンが配合されていても寿命性能向上効果は限定的であった。また、アンチモンを0.8重量%にまで添加し過ぎると正極活物質の利用率が低下した。 As shown in Table 3, when the active material density in the electrode plate after chemical conversion is less than 3.2 g / cm 3 or more than 3.6 g / cm 3 , antimony is blended in the positive electrode active material. However, the effect of improving the life performance was limited. Moreover, when antimony was added too much to 0.8 weight%, the utilization factor of the positive electrode active material decreased.

Claims (1)

湿式充填法により作製されたクラッド式正極板を備えた鉛蓄電池であって、
前記クラッド式正極板は、化成後の正極活物質中に0.02質量%以上、0.8質量%未満のアンチモンを含有していることを特徴とする鉛蓄電池。
A lead-acid battery comprising a clad positive plate made by a wet filling method,
The said clad type positive electrode plate contains 0.02 mass% or more and less than 0.8 mass% antimony in the positive electrode active material after conversion, The lead acid battery characterized by the above-mentioned.
JP2012192069A 2011-10-06 2012-08-31 Lead acid battery Active JP5787181B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012192069A JP5787181B2 (en) 2011-10-06 2012-08-31 Lead acid battery
CN201210375015.7A CN103035956B (en) 2011-10-06 2012-09-29 Lead accumulator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011221959 2011-10-06
JP2011221959 2011-10-06
JP2012192069A JP5787181B2 (en) 2011-10-06 2012-08-31 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2013093312A JP2013093312A (en) 2013-05-16
JP5787181B2 true JP5787181B2 (en) 2015-09-30

Family

ID=48616268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012192069A Active JP5787181B2 (en) 2011-10-06 2012-08-31 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5787181B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6566193B2 (en) * 2015-05-29 2019-08-28 株式会社Gsユアサ Lead acid battery
JP6701600B2 (en) * 2015-10-20 2020-05-27 株式会社Gsユアサ Lead acid battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539869B2 (en) * 1974-06-21 1980-10-14
JPS51129631A (en) * 1975-05-06 1976-11-11 Yuasa Battery Co Ltd Clad type lead battery positive electrode plate
US4678730A (en) * 1985-12-04 1987-07-07 Kw Battery Company Tubular plate electrode slurry filling process and apparatus for lead-acid cells
JP2952680B2 (en) * 1990-03-23 1999-09-27 日本電池株式会社 Sealed lead-acid battery
JPH06325755A (en) * 1993-05-13 1994-11-25 Yuasa Corp Clad type positive plate and its manufacture

Also Published As

Publication number Publication date
JP2013093312A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP6015427B2 (en) Negative electrode plate for lead acid battery and method for producing the same
US9570779B2 (en) Flooded lead-acid battery
JP2013218894A (en) Lead acid battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JP2009170234A (en) Control valve type lead-acid battery
JP5787181B2 (en) Lead acid battery
JP6701600B2 (en) Lead acid battery
JP5494012B2 (en) Battery case formation method for lead acid battery
JP5780106B2 (en) Lead-acid battery and method for manufacturing the same
JP2005044759A (en) Lead-acid storage battery and manufacturing method of the same
JP2021086731A (en) Positive electrode plate for lead acid battery, and lead acid battery
JP5089176B2 (en) Control valve type lead storage battery manufacturing method
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP5578123B2 (en) Liquid lead-acid battery
JP5029871B2 (en) Lead acid battery
JP2013048082A (en) Lead acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2019079778A (en) Lead acid battery
CN103035956A (en) Lead storage battery
JP2010080413A (en) Control valve type lead acid storage battery
JP2013041757A (en) Lead acid storage battery
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JPH0234758Y2 (en)
JP2022109137A (en) Control valve type lead-acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5787181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150