JP5029871B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5029871B2
JP5029871B2 JP2006337259A JP2006337259A JP5029871B2 JP 5029871 B2 JP5029871 B2 JP 5029871B2 JP 2006337259 A JP2006337259 A JP 2006337259A JP 2006337259 A JP2006337259 A JP 2006337259A JP 5029871 B2 JP5029871 B2 JP 5029871B2
Authority
JP
Japan
Prior art keywords
lead
amount
active material
battery
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006337259A
Other languages
Japanese (ja)
Other versions
JP2008152968A (en
Inventor
真也 府野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2006337259A priority Critical patent/JP5029871B2/en
Publication of JP2008152968A publication Critical patent/JP2008152968A/en
Application granted granted Critical
Publication of JP5029871B2 publication Critical patent/JP5029871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、鉛蓄電池に関する。   The present invention relates to a lead-acid battery.

近年、自動車用電源システムの消費電力は快適な装備の増加や補機類などの電動化に伴い増加している。そのため、自動車用鉛電池への負荷は年々増加しており、より高容量の鉛蓄電池(以下、単に電池ともいう)が要求され種々検討されている。   In recent years, the power consumption of an automobile power supply system has increased with the increase in comfortable equipment and the electrification of auxiliary equipment. Therefore, the load on the lead battery for automobiles is increasing year by year, and a higher capacity lead storage battery (hereinafter also simply referred to as a battery) is required and various studies have been made.

また、車内での収容スペースなどを考慮すれば、自動車用鉛電池には、電池の外形寸法はそのままでより高容量であることも(すなわち、単位体積あたりの容量を向上させた電池であること)要求される。   Also, considering the accommodation space in the car, the lead battery for automobiles may have a higher capacity without changing the outer dimensions of the battery (that is, a battery with an improved capacity per unit volume). ) Required.

鉛蓄電池において、単位体積あたりの容量を向上させる方法の一つとしては、極板の間を狭くして、極板の枚数もしくは活物質の量を増加させる方法が考えられる。
しかし、この方法によると、活物質1gあたりの電解液の量が減少するため、電解液量が比較的少ない電池においては、活物質の利用率が低下し、容量の向上という目的が十分に達成されない。
As a method for improving the capacity per unit volume in a lead storage battery, a method of increasing the number of plates or the amount of active material by narrowing the space between the plates can be considered.
However, according to this method, since the amount of the electrolytic solution per 1 g of the active material is reduced, in the battery having a relatively small amount of the electrolytic solution, the utilization factor of the active material is lowered and the purpose of improving the capacity is sufficiently achieved. Not.

そこで、このような問題を解決するために、活物質の密度を低くする(活物質の低密度化)という手法が採られる(例えば特許文献1を参照)。
特開2004−199993公報
Therefore, in order to solve such a problem, a method of reducing the density of the active material (reducing the density of the active material) is employed (see, for example, Patent Document 1).
JP 2004-199993 A

上記の手法によれば、活物質の細孔体積が増加して電解液の拡散性が向上するので、活物質の利用率を向上することができる。そして、その結果、活物質1gあたりの電解液量の減少に伴う放電容量の減少を防ぐことができる。   According to said method, since the pore volume of an active material increases and the diffusibility of electrolyte solution improves, the utilization factor of an active material can be improved. As a result, it is possible to prevent a decrease in discharge capacity due to a decrease in the amount of electrolyte per gram of active material.

しかし、活物質の細孔体積が増加することで、充放電を繰り返すうちに活物質相互間の結合力が弱まり、活物質の軟化や脱落が起こりやすくなり、早期に寿命に至ってしまうという問題がある。   However, the increase in the pore volume of the active material causes a problem that the bonding force between the active materials is weakened during repeated charging and discharging, and the active material is likely to soften or fall off, resulting in an early life. is there.

本発明は上記のような事情に基づいて完成されたものであって、電解液量が比較的少ない電池において、寿命性能を大きく低下させずに、完全充電状態の正極活物質1gあたりの電解液量(本明細書においては、単に「活物質1gあたりの電解液量」、「電解液量」ともいう)の減少に伴う放電容量の減少を抑えることを目的とする。   The present invention has been completed based on the above circumstances, and in a battery having a relatively small amount of electrolyte, the electrolyte per 1 g of the fully-charged positive electrode active material without greatly degrading the life performance. The purpose is to suppress a decrease in discharge capacity due to a decrease in the amount (in the present specification, simply referred to as “amount of electrolytic solution per 1 g of active material” or “amount of electrolytic solution”).

なお、本発明において、「完全充電状態」とは、JIS D 5301に記載の充電状態まで充電することをいう。   In the present invention, “completely charged state” means charging to the charged state described in JIS D 5301.

上記の目的を達成するための手段として、請求項1の発明は、完全充電状態の正極活物質1gに対して0.85ml〜1.5mlの電解液を含有する鉛蓄電池であって、前記正極活物質の原料として、鉛粉と、鉛丹化率が20〜80重量%の鉛丹との混合物を用い、かつ、前記鉛丹の割合は、前記正極活物質原料全体に対して10〜30重量%(「10重量%以上、30重量%以下」の意味。以下同様)であるところに特徴を有する。
As means for achieving the above object, the invention of claim 1 is a lead-acid battery containing 0.85 ml to 1.5 ml of an electrolyte solution per 1 g of a fully charged positive electrode active material, wherein the positive electrode As a raw material of the active material, a mixture of lead powder and a red lead having a lead tanning rate of 20 to 80% by weight is used , and the ratio of the red lead is 10 to 30 with respect to the whole positive electrode active material raw material. It is characterized by the weight percent (meaning “10 wt% or more and 30 wt% or less”) .

なお、本発明において鉛丹化率とは、鉛粉を焼成して鉛丹(Pb)化した時の焼成物中の鉛丹の割合(重量%)であり、具体的にはPb/(Pb+PbO+Pb)に100を乗じた値で表される。 In the present invention, the lead tanning rate is a ratio (% by weight) of lead tan in the fired product when lead powder is baked to form lead tan (Pb 3 O 4 ), specifically Pb. It is represented by a value obtained by multiplying 3 O 4 / (Pb + PbO + Pb 3 O 4 ) by 100.

<請求項1の発明>
本発明によれば、正極活物質の原料として鉛丹を使用することによって、正極活物質の細孔体積が大きくなり、電解液の拡散性が高くなる。その結果、活物質の利用率が向上して、電解液量が比較的少ない電池(完全充電状態の正極活物質1gに対して0.85ml〜1.5mlの電解液を含有する鉛蓄電池)であっても、活物質1gあたりの電解液量の減少に伴う放電容量の減少を抑制することができる。
<Invention of Claim 1>
According to the present invention, by using red lead as a raw material for the positive electrode active material, the pore volume of the positive electrode active material is increased and the diffusibility of the electrolytic solution is increased. As a result, the utilization factor of the active material is improved, and the amount of the electrolyte is relatively small (a lead storage battery containing 0.85 ml to 1.5 ml of the electrolyte with respect to 1 g of the fully charged positive electrode active material). Even if it exists, the reduction | decrease of the discharge capacity accompanying the reduction | decrease of the electrolyte solution amount per 1g of active material can be suppressed.

鉛丹の使用により正極活物質の細孔体積が大きくなる理由は、電解液と鉛丹との反応により生成する硫酸鉛の結晶が大きいからなど諸説あるが、解明されておらず、究明中である。   The reason why the pore volume of the positive electrode active material is increased by the use of lead tan is that there are various theories such as the fact that the lead sulfate crystals produced by the reaction between the electrolyte and the lead tan are large. is there.

ところで、鉛丹として、例えば鉛丹化率が98重量%の鉛丹(以下、高鉛丹化率鉛丹という)を使用した場合には、活物質間の結合に関わっていると思われる金属鉛や酸化鉛(PbO)の含有量が少ないため、活物質間の結合力が低下し寿命性能が低下するという問題がある。   By the way, as a lead, for example, when a lead with a lead tanning rate of 98% by weight (hereinafter referred to as a high lead tanning rate) is used, it is considered to be involved in the bonding between active materials. Since there is little content of lead or lead oxide (PbO), there exists a problem that the bond strength between active materials falls and lifetime performance falls.

そこで、本発明によれば、鉛丹として鉛丹化率が20〜80重量%の鉛丹(以下、低鉛丹化率鉛丹ともいう)を使用することによって、熟成時に、鉛粉粒子中に含まれる酸化鉛と、低鉛丹化率鉛丹粒子中に残存する酸化鉛とが、溶解再析出する際に融合し、活物質粒子間の結合性が改善される。   Therefore, according to the present invention, by using a red lead having a lead oxidation rate of 20 to 80% by weight as the red lead (hereinafter also referred to as a low lead randomization rate), during the aging, The lead oxide contained in the lead oxide and the lead oxide remaining in the lead oxide particles having a low lead oxidation rate are fused when dissolved and reprecipitated to improve the bonding between the active material particles.

以上より、本発明によれば、電解液量が比較的少ない電池において、寿命性能を大きく低下させずに、活物質1gあたりの電解液量の減少に伴う放電容量の減少を抑えることができる。   As described above, according to the present invention, in a battery having a relatively small amount of electrolytic solution, it is possible to suppress a decrease in discharge capacity due to a decrease in the amount of electrolytic solution per gram of active material without greatly reducing the life performance.

本発明においては、正極活物質原料全体に対する低鉛丹化率鉛丹の割合が高くなると、電解液量の減少に伴う放電容量の減少を抑えることができるが、寿命性能の低下が大きくなる。一方、低鉛丹化率鉛丹の割合が低くなると寿命性能の低下は抑制されるが、電解液量の減少に伴う容量減少を抑えることができなくなる。 In the present invention, when the ratio of the low lead tanning rate to the entire positive electrode active material raw material is increased, it is possible to suppress a decrease in discharge capacity due to a decrease in the amount of electrolytic solution, but the deterioration in life performance is increased. On the other hand, when the ratio of the low lead oxidation rate is reduced, a decrease in life performance is suppressed, but it is impossible to suppress a decrease in capacity due to a decrease in the amount of electrolyte.

電解液量の減少に伴う容量減少の抑制と寿命性能の低下の抑制という相反する要素のバランスをとるという観点から、本発明において、低鉛丹化率鉛丹の割合は、10〜30重量%であることが好ましい。   From the viewpoint of balancing the conflicting factors of suppressing the decrease in capacity due to the decrease in the amount of electrolyte and suppressing the decrease in life performance, in the present invention, the ratio of the low lead tanning rate is 10 to 30% by weight. It is preferable that

本発明の電池は、完全充電状態の正極活物質1gに対して1.7mlの電解液を含有する従来の電池(後述する従来例1)の容量を向上させるために、電池の大きさ(電槽の体積)を変えずに活物質の量を増加させたものである。したがって、本発明の電池においては、従来例1の電池よりも完全充電状態の正極活物質1gに対する電解液の量が少なくなっている。   In order to improve the capacity of a conventional battery (conventional example 1 to be described later) containing 1.7 ml of electrolytic solution with respect to 1 g of the positive electrode active material in a fully charged state, the battery of the present invention has The amount of the active material is increased without changing the volume of the tank. Therefore, in the battery of the present invention, the amount of the electrolytic solution for the positive electrode active material 1g in the fully charged state is smaller than that of the battery of Conventional Example 1.

本発明の電池の電解液量は、完全充電状態の正極活物質1gに対して、0.85ml〜1.5mlである。本発明において、電解液量が0.85ml未満であると従来例1の電池よりも放電容量が低くなり、電解液量が1.5mlを超えると、電解液量が増減しても容量は余り増減しない、すなわち電解液量の減少に伴う容量減少が発生し難い範囲であるため、本発明の効果が発揮できない範囲となる。   The amount of the electrolyte of the battery of the present invention is 0.85 ml to 1.5 ml with respect to 1 g of the positive electrode active material in a fully charged state. In the present invention, when the amount of the electrolytic solution is less than 0.85 ml, the discharge capacity is lower than that of the battery of Conventional Example 1, and when the amount of the electrolytic solution exceeds 1.5 ml, the capacity is excessive even if the amount of the electrolytic solution is increased or decreased. This is a range in which the effect of the present invention cannot be exerted because it does not increase or decrease, that is, it is a range in which the capacity decrease due to the decrease in the amount of the electrolytic solution hardly occurs.

本発明において、正極板を作製するための、正極活物質の原料としては、鉛粉と鉛丹との混合物が使用される。   In the present invention, a mixture of lead powder and red lead is used as a raw material for the positive electrode active material for producing the positive electrode plate.

鉛粉としては、PbOと金属鉛を含み、公知の方法で得られるものが使用され、鉛丹としては、PbOと金属鉛を含む鉛粉を所定の鉛丹化率となるように焼成したものが使用される。さらに、有機短繊維などの添加物が必要に応じて添加される。   As lead powder, what contains PbO and metallic lead and obtained by a publicly known method is used, and as lead tan, lead powder containing PbO and metallic lead is fired so as to have a predetermined lead tanning rate. Is used. Furthermore, additives such as organic short fibers are added as necessary.

本発明において使用される鉛丹としては、鉛丹化率が20〜80重量%の鉛丹が好適であり、鉛丹化率が40〜60重量%の鉛丹が、さらに好適である。鉛丹化率が20重量%未満であると、従来品より電解液量を少なくしたことに伴う容量減少を抑制できず、80重量%を超えると電池の寿命性能の低下が大きくなる。   As a red lead used in the present invention, a red lead having a lead oxidation rate of 20 to 80% by weight is preferable, and a red lead having a lead oxidation rate of 40 to 60% by weight is more preferable. If the lead tanning rate is less than 20% by weight, it is not possible to suppress a decrease in capacity caused by reducing the amount of the electrolyte compared to the conventional product, and if it exceeds 80% by weight, the life performance of the battery is greatly deteriorated.

鉛丹の混合割合は、容量と電池寿命性能とのバランスを考慮して正極活物質原料全体に対して10〜30重量%であるのが好ましい。鉛丹が10重量%未満であると容量減少を抑えることができなくなり、30重量%を超えると電池の寿命性能が低下する。   The mixing ratio of the red lead is preferably 10 to 30% by weight with respect to the whole positive electrode active material raw material in consideration of the balance between capacity and battery life performance. If the red lead is less than 10% by weight, the capacity reduction cannot be suppressed, and if it exceeds 30% by weight, the life performance of the battery is lowered.

以下、本発明を具体的に適用した実施例について説明する。
<実施例1〜38、従来例1、比較例1〜35、参考例1〜6の電池の作製>
表1〜表5に記載の条件(電解液量、鉛丹化率、鉛丹添加量)に合わせて、実施例1〜38、従来例1、比較例1〜35、参考例1〜6の電池(以下、これらを総称して試験No1〜80の電池ともいう)を以下の手順で作製した。
Examples to which the present invention is specifically applied will be described below.
<Preparation of batteries of Examples 1-38, Conventional Example 1, Comparative Examples 1-35, and Reference Examples 1-6>
In accordance with the conditions described in Tables 1 to 5 (electrolyte amount, lead tanning rate, lead tan addition amount), Examples 1 to 38, Conventional Example 1, Comparative Examples 1 to 35, and Reference Examples 1 to 6 Batteries (hereinafter collectively referred to as test Nos. 1 to 80) were produced by the following procedure.

(1)正極板の作製
ボールミル鉛粉製造機で作製されたPbOと金属鉛とからなる鉛粉に、各種鉛丹化率の鉛丹を所定量加えて、混合鉛粉を作製した(添加した鉛丹の鉛丹化率および添加量は表1〜表5を参照)。その後、混合鉛粉に水及び硫酸を加えて混練機を用いて比較例2を除いてペースト密度が4.0g/mlとなるように正極活物質ペーストを作製し、鉛合金からなる格子体に充填した後、熟成乾燥することで鉛蓄電池用正極板を得た。
(1) Preparation of positive electrode plate Lead powder composed of PbO and metal lead produced by a ball mill lead powder production machine was added with a predetermined amount of lead tan of various lead tanning rates to produce mixed lead powder (added) Refer to Table 1 to Table 5 for the lead conversion rate and addition amount of the red lead. Thereafter, water and sulfuric acid were added to the mixed lead powder, and a positive electrode active material paste was prepared using a kneader, except for Comparative Example 2, so that the paste density would be 4.0 g / ml. After filling, a positive electrode plate for a lead storage battery was obtained by aging and drying.

なお、比較例2については、ペースト作製の際に他の電池よりも水を多く使用して、ペースト密度3.8g/mlとなるように作製した。
表1〜表5中の「−」は鉛丹が添加されていないものを示す。
Note that Comparative Example 2 was prepared so that the paste density was 3.8 g / ml by using more water than the other batteries when preparing the paste.
“-” In Tables 1 to 5 indicates that no lead is added.

(2)セル(電池)の作製
上記の正極板1枚と公知の方法で作製した負極板2枚とをセパレータを介して組み合わせ、電槽に挿入した。次に、比重1.20(20℃)の希硫酸電解液を注液後、45℃の水槽中で4.35A、6hの条件で充電し、電槽化成を行った。その後電解液の比重を1.28(20℃)になるように調整して公称容量2V−6Ahのセルを作製した。
(2) Production of cell (battery) One positive electrode plate described above and two negative electrode plates produced by a known method were combined through a separator and inserted into a battery case. Next, after pouring a diluted sulfuric acid electrolyte solution having a specific gravity of 1.20 (20 ° C.), the battery was charged in a water bath at 45 ° C. under the conditions of 4.35 A and 6 h, to form a battery case. Thereafter, the specific gravity of the electrolyte was adjusted to 1.28 (20 ° C.) to produce a cell having a nominal capacity of 2V-6Ah.

なお、表1〜表5には、それぞれのセル作製に使用した完全充電状態の正極活物質1gあたりの電解液の量(ml/g)を示した。(表中では電解液量と記載)。   Tables 1 to 5 show the amount of the electrolytic solution (ml / g) per gram of the positively charged positive electrode active material used for each cell production. (Described as the amount of electrolyte in the table).

<電池性能評価試験>
上記の手順で作製した、試験No1〜80の電池について以下の試験を行った。
(1)容量試験
試験No1〜80の電池をそれぞれ、放電電流5Aで、1.7Vまで放電し、温度25℃での放電容量を測定し、初期の放電容量(Ah)とした。
<Battery performance evaluation test>
The following tests were performed on the batteries of Test Nos. 1 to 80 manufactured by the above procedure.
(1) Capacity test The batteries of Test Nos. 1 to 80 were each discharged at a discharge current of 5 A to 1.7 V, the discharge capacity at a temperature of 25 ° C. was measured, and the initial discharge capacity (Ah) was obtained.

容量試験の結果が、試験No1(従来例1)の電池の容量試験の結果(4.30Ah)以下であれば、容量減少が抑えられなかったと判断し、4.30Ahを超えれば容量減少が抑えられたと判断した。   If the result of the capacity test is equal to or less than the result of the capacity test of the battery of test No. 1 (conventional example 1) (4.30 Ah), it is determined that the capacity decrease cannot be suppressed, and if it exceeds 4.30 Ah, the capacity decrease is suppressed. It was judged that.

(2)寿命試験
試験No1〜80の電池について、放電は3.2Aで1時間、充電は0.8Aで5時間、温度40℃の条件で寿命試験を行い、10サイクルごとに容量を測定し(放電電流3.2Aで、1.7Vまで放電)、測定した容量が2.4Ahを下回った時点で寿命と判断し、その時点のサイクル数を寿命試験サイクル数とした。
(2) Life test For the batteries of test Nos. 1 to 80, discharge was performed at 3.2A for 1 hour, charge was performed at 0.8A for 5 hours, and the temperature was measured at 40 ° C. The capacity was measured every 10 cycles. (When the discharge current was 3.2 A, the battery was discharged to 1.7 V). When the measured capacity fell below 2.4 Ah, the life was judged to be the life cycle number.

寿命試験の結果が試験No1の寿命試験サイクル数(140)以上であれば寿命低下を抑えることができたと判断し、140未満であれば寿命低下を抑えることができなかったと判断した。   When the result of the life test was equal to or greater than the number of life test cycles (140) of test No1, it was determined that the life reduction could be suppressed, and when it was less than 140, it was determined that the life reduction could not be suppressed.

<試験結果と考察>
(1)従来の電池(従来例1)、従来例1の電池の電解液量を減らした電池(比較例1)、比較例1の電池のペースト密度を下げた電池(比較例2)、鉛丹化率が98重量%の鉛丹を添加した電池(比較例3)、および鉛丹化率が50重量%の鉛丹を添加した電池(実施例1)の性能を比較するため、これらの性能試験の結果を表1に示した。
<Test results and discussion>
(1) Conventional battery (conventional example 1), battery in which the amount of electrolyte of the battery in conventional example 1 is reduced (comparative example 1), battery in which the paste density of the battery in comparative example 1 is reduced (comparative example 2), lead In order to compare the performances of the battery (Comparative Example 3) to which the lead oxidation rate was 98% by weight and the battery to which the lead oxidation rate was added 50% by weight (Example 1), The results of the performance test are shown in Table 1.

Figure 0005029871
Figure 0005029871

表1より、従来例1よりも電解液量が少ない比較例1の電池においては容量が減少し、比較例2および比較例3の電池においては、電解液量の減少に伴う容量減少は抑えられたが寿命性能が低下し、実施例1の電池においては、寿命性能を低下させずに、電解液量の減少に伴う容量減少を抑えることができることがわかった。   From Table 1, the capacity of the battery of Comparative Example 1 having a smaller amount of electrolyte than that of Conventional Example 1 is decreased, and the capacity of the batteries of Comparative Examples 2 and 3 is reduced due to the decrease in the amount of electrolyte. However, it was found that the life performance was lowered, and in the battery of Example 1, it was possible to suppress a decrease in capacity due to a decrease in the amount of electrolyte without reducing the life performance.

実施例1において、電解液量の減少に伴う容量減少を抑えることができたのは、鉛丹の添加により、活物質の細孔体積が増加して電解液の拡散性が向上するので、活物質の利用率を向上することができたからだと考えられる。   In Example 1, the capacity reduction accompanying the decrease in the amount of the electrolytic solution was able to be suppressed because the pore volume of the active material was increased and the diffusibility of the electrolytic solution was improved by the addition of red lead. This is probably because the utilization rate of the substance was improved.

実施例1において、寿命性能の低下がなかったのは、鉛丹化率50重量%の鉛丹の粒子中には、高鉛丹化率の鉛丹よりも多くの酸化鉛が残存しており、この酸化鉛と鉛粉粒子中に含まれる酸化鉛とが、熟成時に溶解再析出する際に融合し、活物質粒子間の結合性が改善されたからだと考えられる。   In Example 1, there was no decrease in the life performance because the amount of lead oxide remained in the lead-tan particles having a lead-tanning rate of 50% by weight as compared with the lead-tan having a high lead-tanning rate. This is thought to be because the lead oxide and the lead oxide contained in the lead powder particles were fused when dissolved and reprecipitated during aging, and the connectivity between the active material particles was improved.

(2)添加する鉛丹の鉛丹化率について検討するため、鉛丹無添加の電池、種々の鉛丹化率の鉛丹を添加した電池の性能試験の結果を、電解液量ごとに表2に示した。   (2) In order to examine the lead tanning rate of the added lead tan, the results of the performance test of the lead-free battery and the batteries with various lead tan addition rates are shown for each electrolyte amount. It was shown in 2.

さらに表2に示した結果をグラフ化して図1に示した。図1の左側のグラフは、横軸を鉛丹化率(重量%)、縦軸を放電容量(Ah)とするグラフであり、右側のグラフは、横軸を鉛丹化率(重量%)、縦軸を寿命サイクルとするグラフである。図1において、□、◆、△は、それぞれ完全充電状態の正極活物質1gあたりの電解液の量が1.5ml/g、1.3ml/g、0.85ml/gの電池のデータを示す。   Further, the results shown in Table 2 are graphed and shown in FIG. The left graph in FIG. 1 is a graph in which the horizontal axis represents the lead oxidation rate (% by weight), and the vertical axis represents the discharge capacity (Ah). In the right graph, the horizontal axis represents the lead oxidation rate (% by weight). It is a graph which makes a life cycle a vertical axis | shaft. In FIG. 1, □, ◆, and △ indicate battery data in which the amount of the electrolytic solution per 1 g of the fully charged positive electrode active material is 1.5 ml / g, 1.3 ml / g, and 0.85 ml / g, respectively. .

Figure 0005029871
Figure 0005029871

表2および図1から、以下のことがわかった。
鉛丹無添加の電池(比較例1、6、10)および鉛丹化率が20重量%未満の鉛丹を添加した電池(比較例4、7、11)においては、電解液量を従来の電池の電解液量よりも少なくしたことによる容量減少を抑制することができなかった。
From Table 2 and FIG. 1, the following was found.
In the lead-free battery (Comparative Examples 1, 6, and 10) and the battery to which the lead-tanning rate was less than 20% by weight (Comparative Examples 4, 7, and 11), the amount of the electrolyte was changed to the conventional amount. It was not possible to suppress a decrease in capacity due to the fact that the amount of electrolyte was smaller than that of the battery.

鉛丹化率が80重量%を超える鉛丹を添加した電池(比較例3、5、8、9、12、13)においては、電解液量を少なくしたことによる容量減少は抑制できるが、寿命性能が低下した。   In the battery (Comparative Examples 3, 5, 8, 9, 12, 13) to which the lead oxidation rate exceeds 80% by weight, the capacity decrease due to the decrease in the amount of the electrolyte can be suppressed, but the lifetime Performance declined.

鉛丹化率が20重量%〜80重量%の鉛丹を添加した電池(実施例1〜15)においては、寿命性能を大きく低下させずに、電解液量の減少に伴う容量減少を抑えることができるということがわかった。   In batteries (Examples 1 to 15) to which a lead oxidation rate of 20% to 80% by weight is added, suppress the capacity reduction accompanying the decrease in the amount of electrolyte without significantly reducing the life performance. I found out that

以上より、本発明においては、添加する鉛丹の鉛丹化率が20重量%〜80重量%であることが好ましいと考えられる。   From the above, in the present invention, it is considered that the lead oxidation rate of the added red lead is preferably 20% by weight to 80% by weight.

(3)含有される電解液量について検討するため、鉛丹を20重量%添加した電池については鉛丹化率ごとに、種々の電解液量の電池の性能試験結果を、表3に示した。鉛丹無添加の電池についても、あわせて、性能試験の結果を示した。   (3) In order to examine the amount of electrolyte contained, the performance test results of batteries with various amounts of electrolyte for each lead tanning rate are shown in Table 3 for batteries to which 20% by weight of red lead was added. . The results of the performance test were also shown for the lead-free battery.

また、表3に示した結果をグラフ化して図2に示した。図2の左側のグラフは、横軸を完全充電状態の正極活物質1gあたりの電解液の量(ml/g)、縦軸を放電容量(Ah)とするグラフであり、右側のグラフは、横軸を完全充電状態の正極活物質1gあたりの電解液の量(ml/g)、縦軸を寿命サイクルとするグラフである。図2において、□、◆、△、○はそれぞれ鉛丹化率80重量%、50重量%、20重量%の鉛丹を添加した電池のデータ、鉛丹無添加の電池のデータを示す。   In addition, the results shown in Table 3 are graphed and shown in FIG. The graph on the left side of FIG. 2 is a graph in which the horizontal axis is the amount of electrolyte solution per gram of the positive electrode active material in a fully charged state (ml / g), and the vertical axis is the discharge capacity (Ah). 4 is a graph in which the horizontal axis represents the amount of the electrolyte solution per gram of the fully charged positive electrode active material (ml / g), and the vertical axis represents the life cycle. In FIG. 2, □, ♦, Δ, and ◯ indicate data of a battery to which 80% by weight, 50% by weight, and 20% by weight of lead tanning are added, and data of a battery to which no lead tan is added, respectively.

Figure 0005029871
Figure 0005029871

表3および図2から、以下のことがわかった。
電解液量が完全充電状態の正極活物質1gに対して1.5mlを越えると、電解液量が増減しても容量はあまり増減せず、電解液量が完全充電状態の正極活物質1gに対して0.85mlよりも少ない電池(比較例16、18、20、22)においては、電解液量を少なくしたことによる容量減少を充分に抑えることができなかった。
From Table 3 and FIG. 2, the following was found.
When the amount of the electrolyte exceeds 1.5 ml with respect to 1 g of the fully charged positive electrode active material, the capacity does not increase or decrease much even if the amount of the electrolyte increases or decreases, and the amount of the electrolyte becomes 1 g of the fully charged positive electrode active material. On the other hand, in batteries (Comparative Examples 16, 18, 20, and 22) less than 0.85 ml, the capacity reduction due to the decrease in the amount of the electrolyte could not be sufficiently suppressed.

電解液量が完全充電状態の正極活物質1gに対して0.85ml〜1.5mlの電池でありかつ鉛丹を添加した電池(実施例1、2、5、6、9〜11、14〜18)においては、寿命性能を大きく低下させずに、電解液量の減少に伴う容量減少を抑えることができた。   Batteries of 0.85 ml to 1.5 ml with respect to 1 g of the positive electrode active material in a fully charged state and added with red lead (Examples 1, 2, 5, 6, 9 to 11, 14 to In 18), it was possible to suppress a decrease in capacity due to a decrease in the amount of electrolyte without significantly reducing the life performance.

以上より本発明においては、電解液量が完全充電状態の正極活物質1gに対して0.85ml〜1.50mlであることが好ましいと考えられる。   From the above, in the present invention, it is considered that the amount of the electrolyte is preferably 0.85 ml to 1.50 ml with respect to 1 g of the fully charged positive electrode active material.

なお、比較例17、19、21の電池は従来例1の電池よりも容量が高く、寿命性能も低下していないが、正極活物質1gに対する電解液の量が従来例1と同じものであり、本発明の趣旨である電解液量の減少に伴う容量の減少が起こらない電解液量の範囲であるため本発明には含まれない。   The batteries of Comparative Examples 17, 19, and 21 have a higher capacity than the battery of Conventional Example 1 and the life performance is not deteriorated, but the amount of the electrolytic solution relative to 1 g of the positive electrode active material is the same as that of Conventional Example 1. This is not included in the present invention because it falls within the range of the amount of electrolytic solution that does not cause a decrease in capacity due to the decrease in the amount of electrolytic solution, which is the gist of the present invention.

(4)鉛丹の添加量について検討するため、種々の鉛丹添加量の電池(鉛丹化率50重量%)の性能試験の結果を電解液量ごとに表4に示し、種々の鉛丹化率の鉛丹を35重量%添加した電池の性能試験の結果を表5に示した。   (4) In order to examine the amount of added lead, the results of performance tests of batteries with different amounts of added lead (lead oxidation rate 50% by weight) are shown in Table 4 for each amount of electrolytic solution. Table 5 shows the results of the performance test of the battery to which 35% by weight of the red lead is added.

また表4の結果をグラフして図3に示した。図3の左側のグラフは、横軸を鉛丹添加量(重量%)、縦軸を放電容量(Ah)とするグラフであり、右側のグラフは、横軸を鉛丹添加量(重量%)、縦軸を寿命サイクルとするグラフである。図3において、□、◇、△はそれぞれ完全充電状態の正極活物質1gあたりの電解液の量が1.5ml/g、1.3ml/g、0.85ml/gのデータを示す。   The results of Table 4 are graphed and shown in FIG. The graph on the left side of FIG. 3 is a graph in which the horizontal axis is the amount of added lead (wt%) and the vertical axis is the discharge capacity (Ah), and the graph on the right is the amount of added lead (wt%). It is a graph which makes a life cycle a vertical axis | shaft. In FIG. 3, □, ◇, and Δ indicate data of the amount of the electrolytic solution per gram of the positive electrode active material in a fully charged state, 1.5 ml / g, 1.3 ml / g, and 0.85 ml / g, respectively.

Figure 0005029871
Figure 0005029871

Figure 0005029871
Figure 0005029871

表4及び図3から、鉛丹の添加量が10重量%未満の場合(比較例1、23、26、29)には、電解液量の減少に伴う容量減少を抑えることができず、鉛丹の添加量が30重量%を超えた場合(比較例24、25、27、28、30、31)には、寿命低下を抑えることができないということがわかった。   From Table 4 and FIG. 3, when the amount of added lead is less than 10% by weight (Comparative Examples 1, 23, 26, 29), it is impossible to suppress a decrease in capacity due to a decrease in the amount of electrolytic solution. It was found that when the added amount of Dan exceeded 30% by weight (Comparative Examples 24, 25, 27, 28, 30, 31), it was not possible to suppress the life reduction.

また、鉛丹の添加量が10〜30重量%の場合(実施例1、9、14、19〜30)には寿命性能を大きく低下させずに電解液量の減少に伴う容量減少を抑えることができるということがわかった。   In addition, when the amount of added lead is 10 to 30% by weight (Examples 1, 9, 14, 19 to 30), the decrease in capacity due to the decrease in the amount of electrolytic solution is suppressed without significantly reducing the life performance. I found out that

表5から、鉛丹添加量が35重量%の場合、鉛丹化率が20重量%と50重量%であって、電解液量が0.85〜1.50mlの電池(実施例31〜38)においては、寿命性能を低下させずに電解液量の減少に伴う容量減少を抑えることができたが、鉛丹化率が80重量%の電池(参考例1〜6)においては寿命性能が低下するということがわかった。
すなわち、鉛丹の添加量が35重量%の場合においては、使用する鉛丹の鉛丹化率によって、寿命性能が低下する場合があることがわかった。
From Table 5, when the amount of added lead is 35% by weight, the batteries having the lead oxidation rate of 20% by weight and 50% by weight and the electrolyte amount of 0.85 to 1.50 ml (Examples 31 to 38). ), It was possible to suppress a decrease in capacity due to a decrease in the amount of the electrolyte without deteriorating the life performance. However, the batteries with a lead tanning rate of 80% by weight (Reference Examples 1 to 6) have a long life performance. It turns out that it falls.
That is, it was found that when the amount of added lead is 35% by weight, the life performance may be reduced depending on the rate of lead oxidation of the used red lead.

以上より、鉛丹の添加量について好ましい範囲は10〜30重量%であると考えられる。   As mentioned above, it is thought that a preferable range is about 10 to 30 weight% about the addition amount of a red lead.

さらに、電解液の比重を1.28±0.10(20℃)の範囲内で変更したものについても上記と同様に80種類の電池を作製して性能評価試験を行ったが、同様の傾向を示した。   In addition, 80 kinds of batteries were prepared and performance evaluation tests were conducted in the same manner as described above for those in which the specific gravity of the electrolyte was changed within the range of 1.28 ± 0.10 (20 ° C.). showed that.

<まとめ>
本発明によれば、正極活物質の原料として、鉛粉と、鉛丹化率が20〜80重量%の鉛丹との混合物を用いることによって、寿命性能を大きく低下させずに、完全充電状態の正極活物質1gに対する電解液の量の減少に伴う容量減少を抑えることができる。
<Summary>
According to the present invention, as a raw material for the positive electrode active material, by using a mixture of lead powder and lead tan having a lead tanning rate of 20 to 80% by weight, a fully charged state can be obtained without greatly reducing the life performance. The capacity | capacitance reduction accompanying the reduction | decrease in the quantity of the electrolyte solution with respect to 1g of positive electrode active materials of can be suppressed.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)添加される鉛丹の鉛丹化率、添加量、活物質1gあたりの電解液の量は、表1〜表5に記載したものに限定されない。例えば鉛丹化率が25重量%、45重量%のもの、添加量が15重量%や25重量%のもの、電解液量が1.40mlや1.20mlのものであってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) The lead oxidation rate, the addition amount, and the amount of the electrolytic solution per 1 g of the active material are not limited to those described in Tables 1 to 5. For example, the lead tanning rate may be 25% by weight or 45% by weight, the added amount may be 15% by weight or 25% by weight, or the amount of the electrolyte may be 1.40 ml or 1.20 ml.

添加される鉛丹の鉛丹化率(重量%)と放電容量(Ah)との関係を示すグラフ(左)と、鉛丹化率(重量%)と寿命サイクルとの関係を示すグラフ(右)A graph showing the relationship between the lead tanning rate (wt%) and the discharge capacity (Ah) of the added lead tan (left), and a graph showing the relationship between the lead tanning rate (wt%) and the life cycle (right) ) 完全充電状態の正極活物質1gあたりの電解液の量(ml/g)と放電容量(Ah)との関係を示すグラフ(左)と、完全充電状態の正極活物質1gあたりの電解液の量(ml/g)と寿命サイクルとの関係を示すグラフ(右)A graph (left) showing the relationship between the amount (ml / g) of electrolyte solution per gram of positive electrode active material in a fully charged state and the discharge capacity (Ah), and the amount of electrolyte solution per gram of positive electrode active material in a fully charged state Graph (right) showing the relationship between (ml / g) and life cycle 鉛丹添加量(重量%)と放電容量(Ah)との関係を示すグラフ(左)と鉛丹添加量(重量%)と寿命サイクルとの関係を示すグラフ(右)Graph (left) showing the relationship between the amount of added lead (wt%) and discharge capacity (Ah) (left) and graph showing the relationship between the amount of added lead (wt%) and life cycle (right)

Claims (1)

完全充電状態の正極活物質1gに対して0.85ml〜1.5mlの電解液を含有する鉛蓄電池であって、
前記正極活物質の原料として、鉛粉と、鉛丹化率が20〜80重量%の鉛丹との混合物を用い、かつ、前記鉛丹の割合は、前記正極活物質原料全体に対して10〜30重量%であることを特徴とする鉛蓄電池。
A lead storage battery containing 0.85 ml to 1.5 ml of an electrolyte solution per 1 g of a fully charged positive electrode active material,
As a raw material of the positive electrode active material, a mixture of lead powder and a red lead having a lead tanning rate of 20 to 80% by weight is used , and the ratio of the red lead is 10 with respect to the whole positive active material. Lead acid battery characterized by being -30% by weight .
JP2006337259A 2006-12-14 2006-12-14 Lead acid battery Active JP5029871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337259A JP5029871B2 (en) 2006-12-14 2006-12-14 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337259A JP5029871B2 (en) 2006-12-14 2006-12-14 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2008152968A JP2008152968A (en) 2008-07-03
JP5029871B2 true JP5029871B2 (en) 2012-09-19

Family

ID=39654944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337259A Active JP5029871B2 (en) 2006-12-14 2006-12-14 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5029871B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720947B2 (en) * 2011-11-01 2015-05-20 新神戸電機株式会社 Lead acid battery
CN111463431A (en) * 2020-04-15 2020-07-28 天能电池(芜湖)有限公司 Lead plaster formula for slowing down softening of positive active substances

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815081B2 (en) * 1987-06-19 1996-02-14 松下電器産業株式会社 Manufacturing method of electrode plate for lead-acid battery
JPH0787099B2 (en) * 1988-03-30 1995-09-20 松下電器産業株式会社 Manufacturing method of electrode plate for lead-acid battery
JP3265631B2 (en) * 1992-08-28 2002-03-11 松下電器産業株式会社 Sealed lead-acid battery
JPH08195217A (en) * 1995-01-18 1996-07-30 Matsushita Electric Ind Co Ltd Sealed lead-acid battery

Also Published As

Publication number Publication date
JP2008152968A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP6168138B2 (en) Liquid lead-acid battery
JP5892429B2 (en) Liquid lead-acid battery
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP6032498B2 (en) Control valve type lead acid battery
JP6400016B2 (en) Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2009016256A (en) Lead-acid battery
JP5494012B2 (en) Battery case formation method for lead acid battery
JP5029871B2 (en) Lead acid battery
JP2021086731A (en) Positive electrode plate for lead acid battery, and lead acid battery
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP2006318659A (en) Lead-acid battery
JP5787181B2 (en) Lead acid battery
JP2009016143A (en) Manufacturing method of paste type cathode plate for lead storage cell and lead storage cell
JP2007213896A (en) Lead-acid storage battery
JP5299672B2 (en) Lead acid battery
JP5277885B2 (en) Method for producing lead-acid battery
JP5223327B2 (en) Lead acid battery
JP2009123433A (en) Method of manufacturing control valve type lead-acid battery
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP2009129725A (en) Lead storage battery
JP2011165378A (en) Method of manufacturing lead storage battery
JP2008311051A (en) Lead storage battery
JP2015008151A (en) Lead-acid battery
JP6070126B2 (en) Negative electrode for lead acid battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Ref document number: 5029871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3