JP5299672B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5299672B2
JP5299672B2 JP2008233800A JP2008233800A JP5299672B2 JP 5299672 B2 JP5299672 B2 JP 5299672B2 JP 2008233800 A JP2008233800 A JP 2008233800A JP 2008233800 A JP2008233800 A JP 2008233800A JP 5299672 B2 JP5299672 B2 JP 5299672B2
Authority
JP
Japan
Prior art keywords
lead
mass
active material
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008233800A
Other languages
Japanese (ja)
Other versions
JP2010067522A (en
Inventor
裕一 坪井
弘典 洲脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2008233800A priority Critical patent/JP5299672B2/en
Publication of JP2010067522A publication Critical patent/JP2010067522A/en
Application granted granted Critical
Publication of JP5299672B2 publication Critical patent/JP5299672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、鉛蓄電池に関する。   The present invention relates to a lead-acid battery.

鉛丹(Pb)を含む正極活物質原料を用いて作製した正極板を備える鉛蓄電池においては、正極活物質の利用率を向上させることができ、これにより、同一容量に必要な活物質の使用量を削減でき、かつ、同一の活物質量のまま放電容量の高い電池を得ることができるということが知られている。 In a lead-acid battery including a positive electrode plate produced using a positive electrode active material material containing lead (Pb 3 O 4 ), the utilization rate of the positive electrode active material can be improved, and thereby the active capacity required for the same capacity can be improved. It is known that the amount of substance used can be reduced and a battery having a high discharge capacity can be obtained with the same amount of active material.

しかし、正極活物質原料に一般的な鉛丹(鉛丹化率が98質量%以上の高鉛丹化率鉛丹、以下、単に「高鉛丹化率鉛丹」ともいう)を添加すると、活物質粒子間の結合が弱くなって、充放電の繰り返しにより活物質の軟化脱落が起こりやすくなり、早期に寿命に至るという問題があった。
そこで、このような問題を解決するために、正極活物質原料に鉛丹化率が90質量%以下の鉛丹を添加した鉛蓄電池が提案されている(特許文献1を参照)。
However, when adding a general lead tan (high lead tan conversion rate lead tan with a lead tan conversion rate of 98 mass% or more, hereinafter simply referred to as “high lead tan conversion rate lead tan”) to the positive electrode active material raw material, There is a problem that the bond between the active material particles is weakened, and the active material is likely to soften and fall off due to repeated charge and discharge, resulting in an early life.
Therefore, in order to solve such a problem, a lead storage battery in which a lead tanning rate of 90% by mass or less is added to a positive electrode active material material has been proposed (see Patent Document 1).

特許文献1に記載の発明において使用される、鉛丹化率が90質量%以下の鉛丹には、鉛蓄電池の正極活物質原料として一般的に用いられる鉛丹化率が98質量%以上の高鉛丹化率鉛丹と比較して、正極活物質粒子間の結合に重要な役割を果たすPbOが多く含まれている。     The lead tanning rate used in the invention described in Patent Document 1 is 90 mass% or less, and the lead tanning rate generally used as a positive electrode active material raw material for lead-acid batteries is 98 mass% or more. Compared with the high lead oxidation rate, there is much PbO that plays an important role in the bonding between the positive electrode active material particles.

したがって、特許文献1に記載の方法によれば、高鉛丹化率鉛丹を添加して作製された正極活物質よりも活物質粒子間の結合も強化されて活物質の軟化・脱落を起こり難くすることから、寿命性能を向上させることができる。   Therefore, according to the method described in Patent Document 1, the bonding between the active material particles is strengthened more than the positive electrode active material produced by adding the high lead oxidation rate, and the active material is softened and dropped off. Since it is difficult, the life performance can be improved.

しかしながら、鉛丹成分を添加しないで鉛粉のみを使用して作製した正極板を備える鉛蓄電池と比べると、特許文献1に記載の鉛蓄電池は、活物質の軟化が起こりやすく、短寿命であり、寿命性能が充分であるとはいえなかった。   However, compared with a lead storage battery including a positive electrode plate made by using only lead powder without adding a lead component, the lead storage battery described in Patent Document 1 tends to soften the active material and has a short life. The life performance was not sufficient.

一方、活物質の軟化を抑制するものとして、正極活物質にアンチモン化合物を添加した正極活物質原料を用いて作製した正極板を備える鉛蓄電池が提案されている(特許文献2を参照)。
特公平8−15081号公報 特開平10−112311号公報
On the other hand, as a means for suppressing softening of the active material, a lead-acid battery including a positive electrode plate manufactured using a positive electrode active material material obtained by adding an antimony compound to a positive electrode active material has been proposed (see Patent Document 2).
Japanese Patent Publication No. 8-15081 JP-A-10-112111

本発明者らは、正極活物質にアンチモン化合物を添加した正極活物質原料を用いて作製した正極板を備える鉛蓄電池について検討を行った。
その結果、アンチモン化合物を添加した活物質原料を用いて作製した正極板を備える鉛蓄電池では、活物質の軟化を抑制することはできるが、初期容量が低下してしまうという問題があった(詳細は実施例群1を参照)。
The present inventors have studied a lead storage battery including a positive electrode plate manufactured using a positive electrode active material material obtained by adding an antimony compound to a positive electrode active material.
As a result, in a lead storage battery including a positive electrode plate manufactured using an active material material to which an antimony compound is added, softening of the active material can be suppressed, but there is a problem that initial capacity is reduced (details) See Example Group 1).

本発明は上記のような事情に基づいて完成されたものであって、初期容量を低下させずに、活物質の軟化を抑制できる鉛蓄電池を提供することを目的とする。   This invention is completed based on the above situations, Comprising: It aims at providing the lead acid battery which can suppress softening of an active material, without reducing an initial stage capacity | capacitance.

上記課題を解決するために鋭意検討した結果、本発明者らは、正極活物質原料に鉛丹化率が30質量%以上80質量%以下の低鉛丹化率鉛丹と、アンチモン化合物とを添加して用いることにより、電池の初期容量を低下させずに活物質の軟化を抑制することができるという知見を得た。   As a result of intensive studies to solve the above problems, the present inventors have found that the lead active material material has a low lead oxidation rate of 30% by mass to 80% by mass, and an antimony compound. It was found that the addition of the active material can suppress softening of the active material without reducing the initial capacity of the battery.

すなわち本発明は、鉛粉と、鉛丹化率が30質量%以上80質量%以下の低鉛丹化率鉛丹と、アンチモン化合物とが含まれる正極活物質原料を用いて作製した正極板を備えたことを特徴とする鉛蓄電池である。   That is, the present invention provides a positive electrode plate produced using a positive electrode active material material containing lead powder, a low lead tanning rate of 30 to 80% by mass and an antimony compound. It is the lead acid battery characterized by having provided.

本発明によれば、正極活物質原料に鉛丹化率が30質量%以上80質量%以下の低鉛丹化率鉛丹と、アンチモン化合物とを添加して用いるから、電池の初期容量を低下させずに活物質の軟化を抑制することができる。   According to the present invention, the initial capacity of the battery is reduced because the lead active material material is added with a low lead tanning rate of 30% by mass to 80% by mass and an antimony compound. The softening of the active material can be suppressed without causing it to occur.

本発明において、アンチモン化合物を、PbO換算した正極活物質の質量100質量部に対して、アンチモン原子の量として0.01質量部以上0.2質量部以下の割合で添加すると、電池の初期容量が顕著に向上し、活物質の軟化を抑制する効果が高くなり、好ましい。
本発明において「PbO換算した正極活物質の質量」とは、正極活物質として用いた鉛粉および低鉛丹化率鉛丹がすべてPbOにまで酸化されたと仮定して求めた質量のことをいう。
In the present invention, when the antimony compound is added at a ratio of 0.01 parts by mass or more and 0.2 parts by mass or less as the amount of antimony atoms with respect to 100 parts by mass of the positive electrode active material in terms of PbO 2 , The capacity is remarkably improved, and the effect of suppressing softening of the active material is increased, which is preferable.
In the present invention, the “mass of the positive electrode active material in terms of PbO 2 ” refers to the mass determined on the assumption that all of the lead powder and low lead tanning lead used as the positive electrode active material have been oxidized to PbO 2. Say.

本発明によれば、初期容量を低下させずに活物質の軟化を抑制することができる鉛蓄電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lead acid battery which can suppress softening of an active material, without reducing initial capacity can be provided.

本発明の鉛蓄電池(以下、「電池」ともいう)は、正極板と負極板とセパレータとからなる極板群を備える。本発明において、負極板、セパレータとしては、公知のものを使用することができる。   The lead storage battery (hereinafter also referred to as “battery”) of the present invention includes an electrode plate group including a positive electrode plate, a negative electrode plate, and a separator. In this invention, a well-known thing can be used as a negative electrode plate and a separator.

本発明において、正極板は、鉛粉、低鉛丹化率鉛丹およびアンチモン化合物を含む正極活物質原料を用いて作製される。
本発明において用いられる鉛粉としては、特に限定はないが、例えば、ボールミル法で製造したものなどを用いる。
In this invention, a positive electrode plate is produced using the positive electrode active material raw material containing lead powder, a low lead tanning rate red lead, and an antimony compound.
Although there is no limitation in particular as lead powder used in this invention, For example, what was manufactured by the ball mill method etc. are used.

本発明で用いられる低鉛丹化率鉛丹は、通常、350〜450℃で焼成することで作製され、この焼成時の温度、時間などの条件を調整することで鉛丹化率を調整することができる。
本発明において用いられる低鉛丹化率鉛丹としては、例えば、前記のボールミル法で製造した鉛粉を420℃で所定の鉛丹化率に達するまで焼成したものを用いることができる。
The low lead tanning rate used in the present invention is usually produced by firing at 350 to 450 ° C., and the lead tanning rate is adjusted by adjusting conditions such as temperature and time during firing. be able to.
As the low lead oxidation rate lead used in the present invention, for example, a powder obtained by firing the lead powder produced by the above ball mill method at 420 ° C. until reaching a predetermined lead oxidation rate can be used.

本明細書において、鉛丹化率とは、鉛粉を焼成して鉛丹化した時の焼成物中のPbの割合(質量%)のことをいい、具体的には焼成物中のPbの質量を焼成物の質量で除した値に100を乗じた値で表される。 In this specification, the lead tanning rate refers to the ratio (mass%) of Pb 3 O 4 in the baked product when lead powder is baked and lead tanned, and specifically in the baked product. It is represented by a value obtained by multiplying the value obtained by dividing the mass of Pb 3 O 4 by the mass of the fired product by 100.

鉛丹化率すなわち、焼成物中のPbの含有量(質量%)は以下の滴定操作にて定量することができる。
まず、測定試料に酢酸−酢酸アンモニウム溶液と0.1Nのチオ硫酸ナトリウム溶液とを加えて撹拌し、完全に溶解させる。
次いで、この試料溶液に、デンプン溶液を加えて、0.1Nのヨウ素溶液を滴下して、ヨウ素デンプン反応による紫色の呈色を示した時点を終点として、溶液中に残っているチオ硫酸ナトリウムイオンを滴定する。空実験も同様に行い、滴定に使用したヨウ素溶液の量から次式を用いて、Pb含有量(質量%)を算出する。
Pb含有量(質量%)=[0.3428×(b’−b)×f]/S×100
b’:空実験で滴定時に消費したヨウ素溶液の使用量(ml)
b:試料の滴定に消費したヨウ素溶液の使用量(ml)
f:ヨウ素溶液のファクター
S:試料の量(g)
The lead oxidation rate, that is, the content (% by mass) of Pb 3 O 4 in the fired product can be quantified by the following titration operation.
First, an acetic acid-ammonium acetate solution and a 0.1N sodium thiosulfate solution are added to a measurement sample and stirred to be completely dissolved.
Next, a starch solution is added to this sample solution, and a 0.1N iodine solution is dropped, and the sodium thiosulfate ions remaining in the solution are taken as the end point when a purple color is exhibited by the iodine starch reaction. Titrate. A blank experiment is performed in the same manner, and the Pb 3 O 4 content (% by mass) is calculated from the amount of the iodine solution used for the titration using the following formula.
Pb 3 O 4 content (% by mass) = [0.3428 × (b′−b) × f] / S × 100
b ′: Amount of iodine solution consumed during titration in the blank experiment (ml)
b: Amount of iodine solution consumed for titration of sample (ml)
f: Factor of iodine solution S: Amount of sample (g)

本発明では、低鉛丹化率鉛丹として、鉛丹化率が30質量%以上80質量%以下の鉛丹を用いる。上記範囲の鉛丹化率の低鉛丹化率鉛丹を用いると、アンチモン化合物を併用しても、電池の初期容量を低下させずに、活物質の軟化を抑制することができるからである。
本発明において、電池の初期容量を低下させずに活物質の軟化を抑制することができた理由の詳細は不明であるが、以下のように考えられる。
In the present invention, a lead lead having a lead lead conversion rate of 30% by mass or more and 80% by mass or less is used as the low lead oxidation rate. This is because the use of lead tans having a low lead tanning rate in the above range can suppress softening of the active material without reducing the initial capacity of the battery even when an antimony compound is used in combination. .
Although details of the reason why the softening of the active material can be suppressed without reducing the initial capacity of the battery in the present invention are unknown, it is considered as follows.

鉛丹化率が30質量%以上80質量%以下の低鉛丹化率鉛丹とアンチモン化合物とを正極活物質原料に添加すると、アンチモン原子が活物質結晶中に取り込まれることによって、低鉛丹化率鉛丹と鉛粉(PbO)との結合を促進し、強固なネットワークが形成される。その結果、活物質の放電分布が良好となり、活物質の利用率が向上するため、初期容量が低下しなかったと考えられる。
また、アンチモン原子が活物質結晶中に取り込まれることにより形成される強固な導電ネットワークが、充放電による活物質の結合低下(軟化)を遅らせるので、活物質の軟化が抑制されたと考えられる。
When a lead tanning rate of 30 to 80% by weight is added to the cathode active material raw material, antimony atoms are incorporated into the active material crystal, thereby reducing the amount of lead tanning. Promotes the bond between conversion rate lead and lead powder (PbO), and a strong network is formed. As a result, the discharge distribution of the active material is improved, and the utilization factor of the active material is improved. Therefore, it is considered that the initial capacity did not decrease.
In addition, it is considered that the softening of the active material is suppressed because the strong conductive network formed by the incorporation of antimony atoms into the active material crystal delays the bond reduction (softening) of the active material due to charge and discharge.

ところで、上記特許文献1には、一般的な鉛丹(鉛丹化率98質量%以上の高鉛丹化率鉛丹)の添加量が増大すると初期作動特性が向上することが記載されている。このことから、アンチモン化合物無添加で鉛丹を添加した電池では、鉛丹化率の高い鉛丹を用いるほうが鉛丹化率の低い鉛丹を用いるよりも初期容量が向上すると考えられる。そうすると、アンチモン化合物と鉛丹とを添加した場合にも、鉛丹化率の高い鉛丹を添加したほうが、鉛丹化率が低い鉛丹を添加するよりも初期容量が向上すると推測される。   By the way, the said patent document 1 describes that an initial operating characteristic will improve, if the addition amount of a general lead tan (high lead tan formation rate lead tan of 98 mass% or more) increases. . From this, it is considered that the initial capacity is improved by using a lead having a high lead oxidation rate than using a lead having a low lead oxidation rate in a battery having no antimony compound added and adding a red lead. Then, even when an antimony compound and a red lead are added, it is estimated that the initial capacity is improved by adding a red lead having a high lead oxidation rate than adding a red lead having a low lead oxidation rate.

しかしながら、本発明者らの検討により、アンチモン化合物と鉛丹化率30質量%以上80質量%以下の鉛丹とを用いた電池では、アンチモン化合物と鉛丹化率98質量%以上の高鉛丹化率鉛丹とを用いた電池以上の初期容量が得られ、かつ、当該高鉛丹化率鉛丹を用いた電池よりも活物質の軟化を抑制する効果が高いという知見が得られたのである。   However, as a result of studies by the present inventors, in a battery using an antimony compound and a lead tan having a lead oxidation rate of 30% by mass or more and 80% by mass or less, the antimony compound and a high lead saponification having a lead oxidation rate of 98% by mass or more are obtained. Since the initial capacity was higher than the battery using the lead conversion rate, and the knowledge that the effect of suppressing the softening of the active material was higher than the battery using the high lead formation rate lead was obtained. is there.

上記知見が得られた理由の詳細は不明であるが、以下のように考えられる。
鉛丹化率が30質量%以上80質量%以下の低鉛丹化率鉛丹は、正極活物質粒子間の結合に重要な役割を果たすPbOを高鉛丹化率鉛丹よりも多く含んでいる。この低鉛丹化率鉛丹とアンチモン化合物とを正極活物質原料に添加すると、アンチモン原子が活物質結晶中に取り込まれることによって、低鉛丹化率鉛丹と鉛粉との結合を促進し、強固なネットワークが形成される。このネットワークが形成されると、上述したように、活物質の放電分布が良好となり、活物質の利用率が向上するので、高鉛丹化率鉛丹を用いた電池以上の初期容量が得られたと考えられる。また、アンチモン原子が活物質結晶中に取り込まれることにより形成される強固な導電ネットワークが、充放電による活物質の軟化を遅らせるので、活物質の軟化を抑制する効果が高くなったと考えられる。
Although the details of the reason for obtaining the above knowledge are unknown, it is considered as follows.
A low lead tanning rate lead tan with a lead tanning rate of 30% by mass or more and 80% by mass or less contains more PbO that plays an important role in bonding between positive electrode active material particles than a high lead tanning rate. Yes. When this low lead oxidation rate lead oxide and antimony compound are added to the cathode active material raw material, antimony atoms are incorporated into the active material crystal, thereby promoting the bonding between the low lead oxidation rate lead oxide and lead powder. A strong network is formed. When this network is formed, as described above, the discharge distribution of the active material becomes good, and the utilization factor of the active material is improved, so that an initial capacity higher than that of a battery using a high lead tantalum conversion rate is obtained. It is thought. In addition, the strong conductive network formed by the incorporation of antimony atoms into the active material crystal delays the softening of the active material due to charge and discharge, and thus the effect of suppressing the softening of the active material is considered to have increased.

一方、鉛丹化率が80質量%よりも高い鉛丹を用いると、鉛粉との結合力が弱い鉛丹の割合が多くなるため、アンチモン原子の有する鉛丹と鉛粉との結合促進効果をもってしても、強固なネットワークが形成されない。その結果、活物質の軟化が起こりやすくなるとともに、初期容量が鉛丹化率が30質量%〜80質量%の鉛丹を用いたもの以上に向上しない。   On the other hand, when a red lead having a lead oxidation rate higher than 80% by mass is used, the proportion of the red lead having a weak binding force with the lead powder increases. However, a strong network is not formed. As a result, softening of the active material is likely to occur, and the initial capacity is not improved more than that using a lead tan having a lead tan rate of 30% by mass to 80% by mass.

なお、鉛丹化率が、鉛丹化率が30質量%未満の鉛丹を用いた場合、鉛粉との結合力が強いPbOの割合が多くなり、アンチモン原子が活物質結晶中に取り込まれにくくなるので、強固な導電ネットワークが形成されにくくなる。その結果、活物質の軟化が起こりやすくなるとともに、初期容量が鉛丹化率が30質量%〜80質量%の鉛丹を用いたもの以上に向上しない。   In addition, when a lead tanning rate uses a lead tan with a lead tanning rate of less than 30% by mass, the proportion of PbO having a strong binding force with lead powder increases, and antimony atoms are incorporated into the active material crystal. This makes it difficult to form a strong conductive network. As a result, softening of the active material is likely to occur, and the initial capacity is not improved more than that using a lead tan having a lead tan rate of 30% by mass to 80% by mass.

本発明において用いるアンチモン化合物としては、SbやSb(SOなどがあげられる。
本発明においては、アンチモン化合物を、PbO換算した正極活物質の質量100質量部に対して、アンチモン原子の量として0.01質量部以上0.2質量部以下の割合で添加すると、初期容量を顕著に向上し、活物質の軟化を抑制する効果が高くなるので好ましい。
Examples of the antimony compound used in the present invention include Sb 2 O 3 and Sb 2 (SO 4 ) 3 .
In the present invention, when the antimony compound is added at a ratio of 0.01 parts by mass or more and 0.2 parts by mass or less as the amount of antimony atoms with respect to 100 parts by mass of the positive electrode active material in terms of PbO 2 , an initial capacity is obtained. Is significantly improved and the effect of suppressing softening of the active material is enhanced, which is preferable.

次に、本発明の鉛蓄電池の製造方法を具体的に説明する。
まず、正極活物質原料として、鉛粉、鉛丹化率が30質量%以上80質量%以下の低鉛丹化率鉛丹、及びアンチモン化合物とを用いて正極板を作製する。具体的には、鉛粉と低鉛丹化率鉛丹とを混合し、さらにアンチモン化合物と、アクリル繊維などの補強材を混合してから、水及び硫酸を添加して練り合わせ、正極活物質ペーストを作製し、この正極活物質ペーストを鉛合金格子に充填した後、熟成乾燥して未化成の正極板を作製する。
Next, the manufacturing method of the lead acid battery of this invention is demonstrated concretely.
First, a positive electrode plate is prepared using lead powder, a lead tanning rate of 30% by mass to 80% by mass, and an antimony compound as a positive electrode active material material. Specifically, lead powder and low lead tanning rate are mixed, antimony compound and reinforcing material such as acrylic fiber are mixed, water and sulfuric acid are added and kneaded, and positive electrode active material paste After filling this positive electrode active material paste into a lead alloy lattice, it is aged and dried to produce an unformed positive electrode plate.

次に、前記正極板と常法により作製した負極板とをセパレータを介して交互に組み合わせて未化成の極板群を作製する。次いで、未化成の極板群を電槽に挿入した後、極板群を溶接、セル間を接続、蓋接着し、端子溶接して組立てを完了してから、希硫酸を注液し、電槽化成することで、本発明の鉛蓄電池が得られる。   Next, the positive electrode plate and the negative electrode plate produced by a conventional method are alternately combined through a separator to produce an unformed electrode plate group. Next, after the unformed electrode plate group is inserted into the battery case, the electrode plate group is welded, the cells are connected, the lid is bonded, the terminal is welded, and the assembly is completed. By forming the tank, the lead storage battery of the present invention is obtained.

<実施例>
以下、本発明を具体的に適用した実施例について説明する。
(1)鉛蓄電池用正極板の作製
鉛粉と、ボールミル法で製造した鉛粉を420℃で所定の鉛丹化率に達するまで焼成した鉛丹とを混合して、鉛粉・鉛酸化物混合原料を調製した。
この鉛粉・鉛酸化物混合原料に、鉛粉・鉛酸化物混合原料の合計質量に対して0.3質量%のアクリル繊維および所定量のアンチモン化合物[SbまたはSb(SO]を乾式混合し、所定量の水及び希硫酸を添加して練り合わせて正極活物質ペーストを調製した。この正極活物質ペーストをPb−0.07%Ca−1.5%Sn合金からなるエキスパンド格子に充填した後、熟成乾燥して未化成の正極板を作製した。ここで、エキスパンド格子に充填した正極ペーストの質量を測定しておく(測定値A)。
<Example>
Examples to which the present invention is specifically applied will be described below.
(1) Production of positive electrode plate for lead-acid battery Lead powder and lead powder produced by ball milling are mixed at 420 ° C until a predetermined lead tanning rate is reached. Mixed raw materials were prepared.
To this lead powder / lead oxide mixed raw material, 0.3% by mass of acrylic fiber and a predetermined amount of antimony compound [Sb 2 O 3 or Sb 2 (SO 4 3 ) was dry-mixed, and a predetermined amount of water and dilute sulfuric acid were added and kneaded to prepare a positive electrode active material paste. This positive electrode active material paste was filled in an expanded lattice made of a Pb-0.07% Ca-1.5% Sn alloy, and then aged and dried to produce an unformed positive electrode plate. Here, the mass of the positive electrode paste filled in the expanded lattice is measured (measurement value A).

比較のために、アンチモン化合物および鉛丹を添加しない正極板(試験番号1)、アンチモン化合物を添加せず鉛丹化率98質量%以上の高鉛丹化率鉛丹(b)を添加した正極板(試験番号2)、アンチモン化合物を添加せず鉛丹化率50質量%の鉛丹を添加した正極板(試験番号3)、鉛丹を添加せずアンチモン化合物を添加した正極板(試験番号4)、高鉛丹化率鉛丹(b)とアンチモン化合物とを添加した正極板(試験番号5)を作製した。   For comparison, a positive electrode plate (test No. 1) to which no antimony compound and red lead are added, and a positive electrode to which high lead lead conversion rate lead (b) having a lead lead conversion rate of 98% by mass or more is added without adding an antimony compound. Plate (Test No. 2), positive electrode plate with no antimony compound added and added with 50% by weight of lead tanning (Test No. 3), positive electrode plate with no antimony added and antimony compound added (Test No.) 4) The positive electrode plate (test number 5) which added the high lead tanning rate lead tan (b) and the antimony compound was produced.

なお、正極板作製の際に使用した鉛丹の種類、鉛丹化率、鉛粉・鉛酸化物混合原料における鉛粉と鉛酸化物(鉛丹)との配合割合、アンチモン化合物の種類と添加量などの詳細は、各実施例群において示す。   In addition, the kind of lead tan used when making the positive electrode plate, the lead tanning rate, the blending ratio of lead powder and lead oxide (lead tan) in the lead powder / lead oxide mixed raw material, the kind and addition of antimony compounds Details such as the amount are shown in each example group.

(2)負極板の作製
鉛粉にリグニン、カーボン、バリウム化合物およびアクリル繊維を乾式混合し、所定量の水及び希硫酸を添加して練り合わせて負極活物質ペーストを調製した。この負極活物質ペーストをPb−0.05%Ca−0.5%Sn合金からなるエキスパンド格子に充填した後、熟成乾燥して未化成の負極板を作製した。
(2) Production of negative electrode plate Lignin, carbon, barium compound and acrylic fiber were dry-mixed with lead powder, and a predetermined amount of water and dilute sulfuric acid were added and kneaded to prepare a negative electrode active material paste. This negative electrode active material paste was filled in an expanded lattice made of a Pb-0.05% Ca-0.5% Sn alloy, and then aged and dried to produce an unformed negative electrode plate.

(3)電池の作製
押し出し成型法により作製したポリエチレン樹脂製セパレータを二つ折りにし、両サイドをメカニカルシールで封じて袋状としたセパレータを作製し、(2)で作製した未化成の負極板を収納した。
(1)で作製した未化成の正極板4枚と、袋状のセパレータ内に収納した未化成の負極板5枚とを、交互に積層した未化成極板群を電槽に挿入した後、溶接によりセル間を接続した後、蓋を溶着して未化成電池を作製した。
未化成電池に、比重1.230(20℃)の希硫酸を注液し、25℃の水槽中で電槽化成してJIS D 5301に規定される38B19サイズの鉛蓄電池(公称電圧:12V、定格容量:28Ah)を作製した。
(3) Production of battery The polyethylene resin separator produced by the extrusion molding method was folded in half, and both sides were sealed with a mechanical seal to produce a bag-like separator. The unformed negative electrode plate produced in (2) Stowed.
After inserting the unformed electrode plate group obtained by alternately laminating 4 unformed positive electrode plates prepared in (1) and 5 unformed negative electrode plates housed in a bag-shaped separator into the battery case, After the cells were connected by welding, a lid was welded to produce an unformed battery.
Dilute sulfuric acid having a specific gravity of 1.230 (20 ° C.) was poured into the non-chemical battery, and the battery was formed in a 25 ° C. water tank and formed into a 38B19 size lead storage battery (nominal voltage: 12V, specified in JIS D 5301). Rated capacity: 28 Ah) was produced.

<電池性能評価試験>
上記の方法により作製した電池について、以下の手順で電池性能試験を行った。
(1)初期容量試験(リザーブキャパシティ)
JIS D 5301に準拠して、各電池を25℃の水槽中、放電電流25Aで、放電終始電圧10.5Vになるまでの時間を測定した。
各電池における試験結果を、試験番号1の正極板を有する電池(比較例1)の初期容量試験の結果を100とした場合の初期容量比として表1〜表3に示した。この初期容量比が大きいほど初期容量が高く、初期容量比が100以上105以下であれば初期容量が低下しなかったと判断し、初期容量比が106以上であれば初期容量が向上したと判断し、110以上であれば初期容量が顕著に向上したと判断した。
<Battery performance evaluation test>
About the battery produced by said method, the battery performance test was done in the following procedures.
(1) Initial capacity test (reserved capacity)
In accordance with JIS D 5301, each battery was measured in a water bath at 25 ° C. with a discharge current of 25 A until a discharge end voltage of 10.5 V was reached.
The test results for each battery are shown in Tables 1 to 3 as initial capacity ratios when the initial capacity test result of the battery having the positive electrode plate of test number 1 (Comparative Example 1) is 100. The larger the initial capacity ratio is, the higher the initial capacity is. If the initial capacity ratio is 100 or more and 105 or less, it is determined that the initial capacity has not decreased, and if the initial capacity ratio is 106 or more, the initial capacity is determined to be improved. , 110 or more, it was determined that the initial capacity was significantly improved.

(2)寿命性能試験
JIS D 5301に準拠して、電池を、温度75℃の水槽中で、放電電流25Aで4分間放電し、充電電圧14.8V、充電制限電流25Aで10分間充電して、これを1サイクルとして960サイクル繰返し寿命試験を行った。
寿命試験後の電池から正極板を取り出して水で洗浄・乾燥し、極板質量(格子+残存活物質)を測定した(測定値B)。
(2) Life performance test In accordance with JIS D 5301, the battery is discharged for 4 minutes at a discharge current of 25 A in a water bath at a temperature of 75 ° C. and charged for 10 minutes at a charge voltage of 14.8 V and a charge limiting current of 25 A. This was regarded as one cycle, and a 960 cycle repeated life test was conducted.
The positive electrode plate was taken out from the battery after the life test, washed with water and dried, and the electrode plate mass (lattice + residual active material) was measured (measurement value B).

次に、その極板から残存活物質を除去して格子の質量を測定した(測定値C)。
下記の式(1)より活物質の脱落量を算出し、試験番号1の正極板を備える電池(比較例1)の活物質の脱落量を100とした場合の比(活物質軟化度という)として表1〜表3に示した。活物質軟化度が小さいほど活物質の軟化を抑制する効果が高く、100以下であれば活物質の軟化を抑制する効果が高いと判断した。
活物質の脱落量=(A×0.9)−(B−C) (1)
式(1)中の、A、B、Cは、それぞれ測定値A、測定値B、測定値Cを意味する。
ここで、Aに0.9を乗じるのは、化成工程を経ることによって、活物質量は充填時の正極ペースト量の約0.9倍となることによる。
Next, the residual active material was removed from the electrode plate, and the mass of the lattice was measured (measured value C).
The amount of active material falling off is calculated from the following formula (1), and the ratio (referred to as the degree of softening of the active material) when the amount of active material falling off of the battery (Comparative Example 1) provided with the positive electrode plate of test number 1 is taken as 100. As shown in Tables 1 to 3. The smaller the degree of softening of the active material, the higher the effect of suppressing the softening of the active material.
Active material shedding amount = (A × 0.9) − (B−C) (1)
In formula (1), A, B, and C mean measured value A, measured value B, and measured value C, respectively.
Here, A is multiplied by 0.9 because the amount of the active material becomes about 0.9 times the amount of the positive electrode paste at the time of filling through the chemical conversion step.

<実施例群1>
アンチモン化合物の添加の有無、鉛丹(高鉛丹化率鉛丹および低鉛丹化率鉛丹)の添加の有無、および添加する鉛丹の種類が、初期容量および寿命性能に与える影響を調べるため、以下の比較例1〜5の電池および実施例1の電池を作製して、評価試験を行った。
<Example group 1>
Investigate the effect of antimony compound addition, red lead (high and low lead oxidation), and the type of lead added on initial capacity and life performance Therefore, the batteries of Comparative Examples 1 to 5 below and the battery of Example 1 were manufactured and subjected to an evaluation test.

比較例1:アンチモン化合物および鉛丹をともに添加しない正極板(試験番号1)を備える電池
比較例2:アンチモン化合物を添加せず鉛丹化率98質量%以上の高鉛丹化率鉛丹(b)を添加した正極板(試験番号2)を備える電池
比較例3:アンチモン化合物を添加せず鉛丹化率50質量%の鉛丹を添加した正極板(試験番号3)を備える電池
比較例4:鉛丹を添加せずアンチモン化合物を添加した正極板(試験番号4)を備える電池
比較例5:高鉛丹化率鉛丹(b)とアンチモン化合物とを添加した正極板(試験番号5)を備える電池
実施例1:鉛丹化率50質量%の鉛丹とアンチモン化合物とを添加した正極板(試験番号6)を備える電池
Comparative Example 1: Battery provided with a positive electrode plate (Test No. 1) to which neither an antimony compound nor a red lead is added. Comparative Example 2: a high lead red lead rate of 98% by mass or higher without adding an antimony compound. Battery provided with positive electrode plate (test number 2) to which b) was added Comparative example 3: Battery provided with positive electrode plate (test number 3) to which a lead tanning rate of 50 mass% was added without adding an antimony compound Comparative example 4: Battery provided with a positive electrode plate (Test No. 4) to which an antimony compound was added without adding a red lead Comparative Example 5: Positive electrode plate (Test No. 5) to which a high lead tantalization rate lead lead (b) and an antimony compound were added Example 1: A battery provided with a positive electrode plate (test number 6) to which a lead tanning rate of 50% by mass and an antimony compound were added.

本実施例群においては、表1に示す割合で鉛粉と鉛酸化物[(b)鉛丹(高鉛丹化率鉛丹)または(B)低鉛丹化率鉛丹]とを混合して、鉛粉・鉛酸化物混合原料を作製した。なお、表1には、鉛粉および鉛酸化物の合計質量(鉛粉・鉛酸化物混合原料の質量)に対する、鉛粉および鉛酸化物[(b)鉛丹(高鉛丹化率鉛丹)または(B)低鉛丹化率鉛丹]の配合量を百分率(質量%)で示した。   In this example group, lead powder and lead oxide [(b) lead dan (high lead tan) or (B) low lead tan) are mixed at the ratio shown in Table 1. Thus, a mixed powder of lead powder and lead oxide was prepared. Table 1 shows lead powder and lead oxide [(b) lead tan (high lead tanning ratio lead tan) relative to the total mass of lead powder and lead oxide (mass of lead powder / lead oxide mixed raw material). ) Or (B) low lead oxidation rate of lead] is shown as a percentage (mass%).

また、本実施例群においては、試験番号4〜6の正極板の作製にあたり、アンチモン化合物としてSbを用いた。Sbの使用量は、鉛粉・鉛酸化物混合原料がすべてPbOにまで酸化されたと仮定して求めた質量100質量部に対して、アンチモン原子換算で0.05質量部とした。
表1には、正極板作製の際に使用した(B)低鉛丹化率鉛丹の鉛丹化率、および評価試験の結果を併せて示した。
Further, in this embodiment groups, when preparation of the positive electrode plate of Test No. 4-6, using Sb 2 O 3 as the antimony compound. The amount of Sb 2 O 3 used was 0.05 parts by mass in terms of antimony atoms with respect to 100 parts by mass obtained assuming that all of the lead powder / lead oxide mixed raw material was oxidized to PbO 2 . .
Table 1 also shows the lead tanning rate of the (B) lead tanning rate used in the production of the positive electrode plate and the results of the evaluation test.

Figure 0005299672
Figure 0005299672

表1から明らかなように、鉛丹化率が50質量%の低鉛丹化率鉛丹とアンチモン化合物とを正極活物質原料に混合して作製した正極板を備える本発明の電池(実施例1)では、初期容量比が110で、活物質軟化度が95という良好な結果が得られた。すなわち、実施例1の電池では、初期容量が顕著に向上し、かつ、活物質の軟化を抑制する効果が高いという結果が得られた。   As is apparent from Table 1, the battery of the present invention comprising a positive electrode plate prepared by mixing a lead tanning rate of 50 mass% with a lead tanning rate and an antimony compound in a positive electrode active material material (Example) In 1), an initial capacity ratio of 110 and an active material softening degree of 95 were obtained. That is, in the battery of Example 1, the initial capacity was remarkably improved and the effect of suppressing the softening of the active material was high.

このような結果が得られた理由の詳細は不明であるが以下のように考えられる。
実施例1で用いた低鉛丹化率鉛丹は、正極活物質粒子間の結合に重要な役割を果たす金属PbやPbOを高鉛丹化率鉛丹よりも多く含んでいる。この低鉛丹化率鉛丹とアンチモン化合物とを正極活物質原料に添加すると、アンチモン原子が活物質結晶中に取り込まれることによって、低鉛丹化率鉛丹と鉛粉との結合を促進し、強固なネットワークが形成される。その結果、実施例1の電池では、活物質の放電分布が良好となり、活物質の利用率が向上して初期容量が顕著に向上したと考えられる。
Although details of the reason why such a result was obtained are unknown, it is considered as follows.
The low lead oxidation rate red lead used in Example 1 contains more metals Pb and PbO that play an important role in the bonding between the positive electrode active material particles than the high lead oxidation rate lead red. When this low lead oxidation rate lead oxide and antimony compound are added to the cathode active material raw material, antimony atoms are incorporated into the active material crystal, thereby promoting the bonding between the low lead oxidation rate lead oxide and lead powder. A strong network is formed. As a result, in the battery of Example 1, the discharge distribution of the active material was improved, the utilization factor of the active material was improved, and the initial capacity was considered to be significantly improved.

また、実施例1の電池において、アンチモン原子は、活物質結晶中に取り込まれて低鉛丹化率鉛丹と鉛粉との結合を促進して強固なネットワークを形成し、この強固な導電ネットワークが充放電による活物質の結合低下(軟化)を遅らせるので、活物質の軟化を抑制する効果が高かったと考えられる。   Further, in the battery of Example 1, antimony atoms are incorporated into the active material crystal to promote the bonding between the low lead tanning rate and the lead powder, thereby forming a strong network. Since it delays the decrease (softening) of the active material due to charge / discharge, it is considered that the effect of suppressing the softening of the active material was high.

実施例1と同様に鉛丹とアンチモン化合物とを添加しているが、鉛丹として高鉛丹化率鉛丹を用いた比較例5の電池では、鉛丹およびアンチモン化合物無添加の比較例1の電池よりも初期容量は高かったが、実施例1の電池ほど顕著な初期容量向上効果はなかった。   In the same manner as in Example 1, a red lead and an antimony compound were added. However, in the battery of Comparative Example 5 using a high red lead rate of red lead as a red lead, Comparative Example 1 in which no red lead and no antimony compound were added. Although the initial capacity was higher than that of the battery of Example 1, the initial capacity was not significantly improved as compared with the battery of Example 1.

これは、比較例5で使用した高鉛丹化率鉛丹では、鉛粉(PbO)との結合力が弱い鉛丹の割合が多くなるため、アンチモン原子の有する鉛丹と鉛粉との結合を促進する効果をもってしても、強固なネットワークが形成されないため、実施例1ほど顕著な初期容量向上効果が得られなかったと考えられる。   This is because, in the high lead oxidation rate used in Comparative Example 5, the proportion of the red lead having a weak binding force with the lead powder (PbO) increases, so the bond between the lead lead and the lead powder possessed by the antimony atom. Even if it has the effect of promoting the above, since a strong network is not formed, it is considered that the remarkable initial capacity improvement effect was not obtained as in Example 1.

また、比較例5の電池では、活物質軟化度が大きかった。比較例5では高鉛丹化率鉛丹を用いているため、活物質粒子間の結合が弱くなって、充放電の繰り返しにより活物質の軟化脱落が起こりやすくなったと考えられる。   In the battery of Comparative Example 5, the softening degree of the active material was large. In Comparative Example 5, since a high lead tanning rate is used, the bond between the active material particles is weakened, and it is considered that the softening of the active material is likely to occur due to repeated charge and discharge.

さらに、アンチモン化合物を添加せず、鉛丹(高鉛丹化率鉛丹または低鉛丹化率鉛丹)を添加した正極板を備える電池(比較例2、比較例3)では、鉛丹及びアンチモン化合物無添加の比較例1の電池よりも初期容量比と、活物質軟化度がともに大きかった。この結果から、鉛丹のみを添加すると、鉛丹無添加のものよりも、初期容量は向上するが、活物質の軟化を抑制する効果は低下するということがわかった。   Furthermore, in a battery (Comparative Example 2 and Comparative Example 3) provided with a positive electrode plate to which a red lead (a high lead tan or red lead tan) was added without adding an antimony compound, Both the initial capacity ratio and the softening degree of the active material were larger than those of the battery of Comparative Example 1 to which no antimony compound was added. From this result, it was found that, when only the lead tan was added, the initial capacity was improved but the effect of suppressing the softening of the active material was lower than that without the tan.

一方、アンチモン化合物のみを添加した正極板を備える電池(比較例4)では、鉛丹およびアンチモン化合物無添加の比較例1の電池よりも活物質軟化度は小さいが、初期容量比が小さくなった。この結果から、アンチモン化合物のみを添加すると、活物質の軟化を抑制する効果は高いが、初期容量が低下してしまうということがわかった。   On the other hand, in the battery (Comparative Example 4) including the positive electrode plate to which only the antimony compound was added, the softening degree of the active material was smaller than that of the battery of Comparative Example 1 to which no lead oxide and antimony compound were added, but the initial capacity ratio was small. . From this result, it was found that when only the antimony compound was added, the effect of suppressing the softening of the active material was high, but the initial capacity was reduced.

<実施例群2>
鉛丹の鉛丹化率、および、低鉛丹化率鉛丹の配合割合が、初期容量および寿命性能に与える影響を調べるため、種々の鉛丹化率の低鉛丹率鉛丹を種々の割合で混合した正極板を作製し、実施例群1と同様に評価試験を行った。
<Example group 2>
In order to investigate the effects of the lead tanning rate and the low lead tanning rate on the initial capacity and life performance, A positive electrode plate mixed at a ratio was prepared, and an evaluation test was conducted in the same manner as in Example Group 1.

本実施例群では、鉛粉・鉛酸化物混合原料の質量に対する総鉛丹量が10質量%、5質量%および20質量%となるように、鉛粉と、低鉛丹化率鉛丹とを混合した。
具体的には、鉛丹化率が20質量%、30質量%、40質量%、50質量%、60質量%、70質量%、80質量%、90質量%の低鉛丹化率鉛丹を用い、表2に示す割合で鉛粉と低鉛丹化率鉛丹とを混合して、鉛粉・鉛酸化物混合原料を作製した。なお、表2には、鉛粉および鉛酸化物の合計質量(鉛粉・鉛酸化物混合原料の質量)に対する、鉛粉および鉛酸化物[(B)低鉛丹化率鉛丹]の配合割合を百分率(質量%)で示した。
In this example group, the lead powder and the low lead tanning rate lead tan are selected so that the total amount of lead tan relative to the mass of the lead powder / lead oxide mixed raw material is 10% by mass, 5% by mass, and 20% by mass. Were mixed.
Specifically, a lead tanning rate of 20% by mass, 30% by mass, 40% by mass, 50% by mass, 60% by mass, 70% by mass, 80% by mass, 90% by mass, A lead powder and a lead oxide mixed lead material were mixed at a ratio shown in Table 2 to produce a lead powder / lead oxide mixed raw material. In addition, in Table 2, the combination of lead powder and lead oxide [(B) low lead tanning ratio lead tan] to the total mass of lead powder and lead oxide (mass of lead powder / lead oxide mixed raw material) The ratio was shown in percentage (mass%).

また、本実施例群においては、試験番号7〜29の正極板の作製にあたり、アンチモン化合物としてPbO換算した鉛粉・鉛酸化物混合原料100質量部に対してアンチモン原子換算で0.05質量部のSbを用いた。 Moreover, in the present Example group, 0.05 mass in terms of antimony atoms was converted to 100 mass parts of the lead powder / lead oxide mixed raw material converted to PbO 2 as the antimony compound in producing the positive plates of test numbers 7 to 29. Part of Sb 2 O 3 was used.

表2には、正極板作製の際に使用した(B)低鉛丹化率鉛丹の鉛丹化率、鉛粉・鉛酸化物混合原料の質量に対する総鉛丹量(質量%)、および評価試験の結果を併せて示し、実施例群1で作製した実施例1の電池、および、比較例1の電池の評価試験の結果も併せて示した。   In Table 2, (B) the lead tanning rate of the low lead tanning rate used in the production of the positive electrode plate, the total amount of lead tanning (mass%) relative to the mass of the lead powder / lead oxide mixed raw material, and The results of the evaluation test are also shown, and the results of the evaluation test of the battery of Example 1 manufactured in Example Group 1 and the battery of Comparative Example 1 are also shown.

Figure 0005299672
Figure 0005299672

表2から明らかなように、鉛丹化率が30質量%以上80質量%以下の電池(実施例1〜18)では、総鉛丹量にかかわらず、活物質軟化度が100以下であった。一方、鉛丹化率が20質量%の低鉛丹化率鉛丹を添加した正極板を備える電池(比較例6、8、10)、および鉛丹化率が90質量%の低鉛丹化率鉛丹を添加した正極板を備える電池(比較例7、9、11)では、活物質軟化度が110以上であった。
この結果から、鉛丹化率が30質量%以上80質量%以下の鉛丹を用いて作製した本発明の電池では、本発明の範囲外の鉛丹を用いた電池より、活物質の軟化を抑制する効果が高いということがわかった。
As apparent from Table 2, in the batteries (Examples 1 to 18) having a lead tanning rate of 30% by mass or more and 80% by mass or less, the softening degree of the active material was 100 or less regardless of the total amount of lead tan. . On the other hand, a battery (Comparative Examples 6, 8, and 10) including a positive electrode plate to which a lead tanning rate of 20% by mass is added, and a low tanning rate of 90% by mass. In the battery (Comparative Examples 7, 9, and 11) including the positive electrode plate to which the rate of red lead was added, the active material softening degree was 110 or more.
From this result, in the battery of the present invention produced using a lead tan having a lead tanning rate of 30% by mass or more and 80% by mass or less, the active material is softened more than the battery using the red tan outside the scope of the present invention. It was found that the suppression effect is high.

また、本実施例群で作製した電池(比較例6〜11、実施例2〜18)および実施例1の電池の初期容量比は102以上であった。この結果から、アンチモン化合物と鉛丹化率が20〜90質量%の鉛丹とを添加した電池では、初期容量が低下しないということがわかった。
これらのうち、実施例6〜8、実施例10〜12、比較例7、10の各電池では、初期容量が向上し、実施例1〜5、実施例9、実施例13〜18、比較例11の各電池では初期容量が顕著に向上するということがわかった。
Moreover, the initial capacity ratios of the batteries prepared in this example group (Comparative Examples 6 to 11 and Examples 2 to 18) and the battery of Example 1 were 102 or more. From this result, it was found that the initial capacity does not decrease in a battery to which an antimony compound and a lead oxide having a lead oxidation rate of 20 to 90% by mass are added.
Among these, in each battery of Examples 6-8, Examples 10-12, and Comparative Examples 7 and 10, the initial capacity is improved, Examples 1 to 5, Example 9, Examples 13 to 18, and Comparative Examples. It was found that the initial capacity was remarkably improved in each of the 11 batteries.

総鉛丹量が同じ正極板を備える電池(例えば比較例6、実施例1〜6、比較例7)の初期容量比を比較すると、鉛丹化率が20質量%の鉛丹を用いた電池の初期容量比は、鉛丹化率が30質量%〜80質量%の鉛丹を用いた電池の初期容量比よりも小さく、鉛丹化率が90質量%の鉛丹を用いた電池の初期容量比は鉛丹化率が30質量%〜80質量%の鉛丹を用いた電池の初期容量比以下であった。
すなわち、総鉛丹量が同じ電池において、鉛丹化率が30質量%以上80質量%以下の鉛丹を用いた電池では、鉛丹化率が20質量%の鉛丹を用いた電池および鉛丹化率が90質量%の鉛丹を用いた電池以上の初期容量を得ることができ、上述したように活物質軟化度も小さいので、好ましいということがわかった。
When comparing the initial capacity ratios of batteries (for example, Comparative Example 6, Examples 1 to 6, and Comparative Example 7) provided with positive electrode plates having the same total amount of lead, a battery using a lead having a lead tanning rate of 20% by mass. The initial capacity ratio of the battery is smaller than the initial capacity ratio of the battery using the lead tanning rate of 30% by mass to 80% by mass, and the initial stage of the battery using the lead tanning rate of 90% by mass of the lead tanning rate. The capacity ratio was equal to or less than the initial capacity ratio of a battery using a lead tan having a lead tan rate of 30% by mass to 80% by mass.
That is, in a battery having the same total lead content, in a battery using a red lead having a lead oxidation rate of 30% by mass or more and 80% by mass or less, a battery using a red lead having a lead oxidation rate of 20% by mass and lead It was found that an initial capacity higher than that of a battery using a lead tan having a tanning ratio of 90% by mass can be obtained, and the active material softening degree is small as described above, which is preferable.

<実施例群3>
アンチモン化合物の種類と添加量が、初期容量および寿命性能に与える影響を調べるため、2種類のアンチモン化合物を種々の割合で混合した正極板を作製し、実施例群1と同様に評価試験を行った。
<Example group 3>
In order to investigate the effect of the type and amount of the antimony compound on the initial capacity and life performance, positive electrode plates in which two types of antimony compounds were mixed at various ratios were prepared, and an evaluation test was conducted in the same manner as in Example Group 1. It was.

本実施例群では、鉛粉・鉛酸化物混合原料の質量に対して、鉛粉の割合が80質量%で、鉛丹化率が50質量%の低鉛丹化率鉛丹の割合が20質量%となるように混合して鉛粉・鉛酸化物混合原料を作製した。なお、表3には、鉛粉および鉛酸化物の合計質量(鉛粉・鉛酸化物混合原料の質量)に対する、鉛粉および鉛酸化物[(B)低鉛丹化率鉛丹]の配合量を百分率(質量%)で示した。   In this example group, the ratio of the lead powder is 80% by mass and the ratio of the low lead tanning rate of 50% by mass is 50% by mass with respect to the mass of the lead powder / lead oxide mixed raw material. A lead powder / lead oxide mixed raw material was prepared by mixing so as to be mass%. In addition, in Table 3, the combination of lead powder and lead oxide [(B) low lead tanning rate lead tan] to the total mass of lead powder and lead oxide (mass of lead powder / lead oxide mixed raw material) The amount was expressed as a percentage (mass%).

また、本実施例群においては、試験番号30〜35の正極板の作製にあたり、アンチモン化合物としてPbO換算した鉛粉・鉛酸化物混合原料100質量部に対してアンチモン原子として0.005質量部〜0.3質量部のSbを用いた。試験番号36〜40の正極板の作製にあたり、アンチモン化合物としてPbO換算した鉛粉・鉛酸化物混合原料100質量部に対してアンチモン原子として0.005質量部〜0.3質量部のSb(SOを用いた(アンチモン化合物の添加量は表3を参照)。 Further, in this embodiment groups, positive Upon preparation of the electrode plate, 0.005 parts by antimony atom relative to PbO 2-converted lead powder, lead oxide mixed feed 100 parts by weight of antimony compounds of test numbers 30 to 35 ˜0.3 parts by mass of Sb 2 O 3 was used. In producing the positive plates of test numbers 36 to 40, 0.005 parts by mass to 0.3 parts by mass of Sb 2 as antimony atoms with respect to 100 parts by mass of the lead powder / lead oxide mixed raw material converted to PbO 2 as the antimony compound. (SO 4 ) 3 was used (see Table 3 for the amount of antimony compound added).

表3には、正極板作製の際に使用した(B)低鉛丹化率鉛丹の鉛丹化率、アンチモン化合物の種類と添加量、および評価試験の結果を併せて示し、実施例群1で作製した実施例1の電池、比較例1の電池、比較例3の電池の評価試験の結果も併せて示した。表3中のSb化合物添加量(部)とは、PbO換算した鉛粉・鉛酸化物混合原料100質量部に対するアンチモン原子としての添加量(質量部)を意味する。 Table 3 shows the lead tanning rate of (B) lead tanning rate used in the production of the positive electrode plate, the type and addition amount of the antimony compound, and the results of the evaluation test. 1 also shows the results of evaluation tests of the battery of Example 1, the battery of Comparative Example 1, and the battery of Comparative Example 3 prepared in 1. The Sb compound addition amount (parts) in Table 3 means the addition amount (parts by mass) as antimony atoms with respect to 100 parts by mass of the lead powder / lead oxide mixed raw material converted to PbO 2 .

Figure 0005299672
Figure 0005299672

表3から明らかなように、鉛丹化率が50質量%の低鉛丹化率鉛丹とアンチモン化合物とを添加した実施例1の電池および実施例19〜29の各電池において、初期容量比は106以上であり初期容量が向上した。   As is apparent from Table 3, in the battery of Example 1 and the batteries of Examples 19 to 29 in which the lead tanning rate was 50% by mass and the antimony compound was added, the initial capacity ratio Was 106 or more, and the initial capacity was improved.

特にアンチモン化合物を、PbO換算した鉛粉・鉛酸化物混合原料100質量部に対して、アンチモン原子の量として0.01質量部以上0.2質量部以下の割合で添加した電池(実施例1、実施例20〜23、実施例26〜28)では、初期容量比が110以上であり、初期容量が顕著に向上した。 In particular, a battery in which an antimony compound was added at a ratio of 0.01 parts by mass or more and 0.2 parts by mass or less as an amount of antimony atoms with respect to 100 parts by mass of lead powder / lead oxide mixed raw material converted to PbO 2 (Example) 1, Examples 20 to 23 and Examples 26 to 28) had an initial capacity ratio of 110 or more, and the initial capacity was significantly improved.

またアンチモン化合物をアンチモン原子の量として0.01質量部以上0.2質量部以下の割合で添加した電池(実施例1、実施例20〜23、実施例26〜28)では、活物質軟化度が100以下であり活物質の軟化を抑制する効果が高かった。   Moreover, in the battery (Example 1, Examples 20-23, Examples 26-28) which added the antimony compound in the ratio of 0.01 mass part or more and 0.2 mass part or less as the quantity of the antimony atom, active material softening degree Was 100 or less, and the effect of suppressing softening of the active material was high.

これらの結果より、本発明において、アンチモン化合物の添加量を、PbO換算した鉛粉・鉛酸化物混合原料の質量(鉛粉と低鉛丹化率鉛丹の合計質量)100質量部に対して、アンチモン原子の量として、0.01質量部以上0.2質量部以下とすると好ましいということがわかった。 From these results, in the present invention, the addition amount of the antimony compound is 100 parts by mass of the mass of the lead powder / lead oxide mixed raw material converted to PbO 2 (the total mass of the lead powder and the low lead tanning rate). It was found that the amount of antimony atoms is preferably 0.01 parts by mass or more and 0.2 parts by mass or less.

なお、アンチモン化合物の添加量が0.005質量部の電池(実施例19、実施例25)の活物質軟化度は、実施例1、実施例20〜23、実施例28の各電池ほど小さい値ではないが、アンチモン化合物無添加で鉛丹化率50質量%の鉛丹を20質量%添加した比較例3の電池より小さかった。このことから、アンチモン化合物をごく微量でも添加するとアンチモン化合物無添加で鉛丹を添加した電池よりも活物質の軟化を抑制する効果が高くなるということがわかった。   In addition, the active material softening degree of the battery (Example 19, Example 25) in which the addition amount of the antimony compound is 0.005 parts by mass is smaller as the batteries of Example 1, Examples 20 to 23, and Example 28. Although it was not, it was smaller than the battery of the comparative example 3 which did not add an antimony compound and added 20 mass% of lead tan with 50 mass% of lead tanning. From this, it was found that the addition of even a very small amount of the antimony compound has a higher effect of suppressing the softening of the active material than the battery in which the antimony compound is not added and lead is added.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
上記実施形態において、鉛丹としては、ボールミル法で製造した鉛粉を420℃で所定の鉛丹化率に達するまで焼成したものを用いたが、バートン法など他の方法で製造した鉛粉を焼成したものであってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
In the above-described embodiment, the lead powder used is one obtained by firing the lead powder produced by the ball mill method at 420 ° C. until the predetermined lead tanning rate is reached, but the lead powder produced by another method such as the Barton method is used. It may be fired.

Claims (2)

鉛粉と、鉛丹化率が30質量%以上80質量%以下の低鉛丹化率鉛丹と、アンチモン化合物とが含まれる正極活物質原料を用いて作製した正極板を備えたことを特徴とする鉛蓄電池。 Featuring a positive electrode plate made of a positive electrode active material containing lead powder, a low lead tanning rate of 30 to 80% by weight, and an antimony compound. Lead storage battery. 前記アンチモン化合物を、PbO換算した正極活物質の質量100質量部に対して、アンチモン原子の量として0.01質量部以上0.2質量部以下の割合で添加したことを特徴とする請求項1に記載の鉛蓄電池。 The antimony compound is added in a proportion of 0.01 parts by mass or more and 0.2 parts by mass or less as an amount of antimony atoms with respect to 100 parts by mass of the positive electrode active material in terms of PbO 2. The lead acid battery according to 1.
JP2008233800A 2008-09-11 2008-09-11 Lead acid battery Active JP5299672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233800A JP5299672B2 (en) 2008-09-11 2008-09-11 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233800A JP5299672B2 (en) 2008-09-11 2008-09-11 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2010067522A JP2010067522A (en) 2010-03-25
JP5299672B2 true JP5299672B2 (en) 2013-09-25

Family

ID=42192923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233800A Active JP5299672B2 (en) 2008-09-11 2008-09-11 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5299672B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066119B2 (en) * 2012-04-06 2017-01-25 株式会社Gsユアサ Liquid lead-acid battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187771A (en) * 1988-01-20 1989-07-27 Matsushita Electric Ind Co Ltd Manufacture of positive electrode plate for lead acid battery
JP2003068289A (en) * 2001-08-24 2003-03-07 Yuasa Corp Positive electrode plate for use in lead storage battery
JP2004111226A (en) * 2002-09-19 2004-04-08 Shin Kobe Electric Mach Co Ltd Positive electrode plate for lead-acid battery, and its manufacturing method
JP2009187776A (en) * 2008-02-06 2009-08-20 Panasonic Corp Control valve type lead-acid storage battery

Also Published As

Publication number Publication date
JP2010067522A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US11962008B2 (en) Lead-based alloy and related processes and products
TWI539644B (en) Flooded lead-acid battery and method of making the same
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP5532245B2 (en) Lead-acid battery and method for manufacturing the same
JP5299672B2 (en) Lead acid battery
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP2009016143A (en) Manufacturing method of paste type cathode plate for lead storage cell and lead storage cell
JP4186197B2 (en) Positive electrode plate for lead acid battery
JP5029871B2 (en) Lead acid battery
JP2009123433A (en) Method of manufacturing control valve type lead-acid battery
JP2008311051A (en) Lead storage battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2007213896A (en) Lead-acid storage battery
JP2009129725A (en) Lead storage battery
JP5223327B2 (en) Lead acid battery
JP2008177157A (en) Lead storage battery
JPH10270029A (en) Raw material of active material for lead-acid battery and the battery with the material
JP2008034286A (en) Closed lead battery
JP4376514B2 (en) Positive electrode for lead acid battery and method for producing the same
JP2003132937A (en) Manufacturing method of lead storage battery
JPH088097B2 (en) Anode plate for lead acid battery
JP2008276980A (en) Raw material of active material for lead-acid storage battery, and lead-acid storage battery using it
JPH03145057A (en) Manufacture of lead-acid battery
JP2003068289A (en) Positive electrode plate for use in lead storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5299672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150