JP2008276980A - Raw material of active material for lead-acid storage battery, and lead-acid storage battery using it - Google Patents

Raw material of active material for lead-acid storage battery, and lead-acid storage battery using it Download PDF

Info

Publication number
JP2008276980A
JP2008276980A JP2007116106A JP2007116106A JP2008276980A JP 2008276980 A JP2008276980 A JP 2008276980A JP 2007116106 A JP2007116106 A JP 2007116106A JP 2007116106 A JP2007116106 A JP 2007116106A JP 2008276980 A JP2008276980 A JP 2008276980A
Authority
JP
Japan
Prior art keywords
active material
pbo
lead
raw material
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007116106A
Other languages
Japanese (ja)
Inventor
Hironori Suwaki
弘典 洲脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2007116106A priority Critical patent/JP2008276980A/en
Publication of JP2008276980A publication Critical patent/JP2008276980A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve forming efficiency of a positive electrode active material, improve softening resistance of the positive electrode active material, and improve cycle life characteristics in a lead-acid storage battery. <P>SOLUTION: A raw material of the active material comprises secondary particles 10 which are formed by means that primary particles 12 having Pb<SB>3</SB>O<SB>4</SB>as the main body and primary particles 13 having PbO as the main body are mixed and aggregated around the center part 11 where the primary particles containing at least one of PbO and Pb are aggregated. Accordingly, when the active material raw material is added, the forming efficiency is improved. Moreover, since the surface of the secondary particles are not completely converted to Pb<SB>3</SB>O<SB>4</SB>and PbO exists, if the raw material of the active material is kneaded with a material of an active material paste, since the primary particles 13 containing PbO in the secondary particles 10 are bonded to each other and PbO or the like existing on the surface of the secondary particles 10 is bonded to PbO in the paste, a bonding force between the active materials becomes strong and firm, and the softening resistance can be improved more than in the case of publicly known technique in which minium is added. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉛蓄電池用活物質原料及びそれを用いた鉛蓄電池に関する。
通常、「鉛蓄電池用活物質原料(以下、単に活物質原料という)」とは、鉛粉、水、硫酸、鉛丹やその他の添加剤を含み、活物質ペーストを作製する上で必要なすべての原料を意味する語である。しかし、本発明の特許請求の範囲、明細書中においては、「活物質原料」という語を、本発明および比較例に記載されたPbを含む原料のみを示す言葉として用い、「鉛粉」、「水」、「硫酸」、「その他の添加剤」という語については、「活物質原料」と区別した語としてそれぞれ用いる。
The present invention relates to a lead-acid battery active material and a lead-acid battery using the same.
In general, “active material for lead-acid batteries” (hereinafter simply referred to as “active material”) includes all of the necessary materials for making an active material paste, including lead powder, water, sulfuric acid, red lead and other additives. It is a word that means the raw material. However, in the claims and specifications of the present invention, the term “active material raw material” is used as a word indicating only the raw material containing Pb 3 O 4 described in the present invention and comparative examples. The terms “powder”, “water”, “sulfuric acid”, and “other additives” are used separately from “active material raw materials”.

鉛蓄電池の化成効率を改善する方法として、正極活物質材料に鉛丹を含ませるという技術が知られている。しかし、通常、鉛丹を何の工夫もせず添加すると、活物質粒子間のネットワークが破壊され、活物質粒子間の結合が弱くなるために、早期に活物質の軟化脱落が起こってサイクル寿命特性が低下するという問題があった。   As a method for improving the conversion efficiency of a lead-acid battery, a technique of including lead oxide in a positive electrode active material is known. However, normally, adding lead without any ingenuity breaks the network between the active material particles and weakens the bond between the active material particles, causing the active material to soften and fall off early, resulting in cycle life characteristics. There was a problem that decreased.

この問題を解決する手法として、1粒子中にPbを主成分とする部分とPbOを主成分とする部分とが存在する原料(特許文献1を参照)を添加する手法や、金属PbとPbOとを含み表面層がPbである原料(特許文献2を参照)を添加する手法が提案されている。
特開2005−44772公報 特開平10−270029号公報
As a method for solving this problem, a method of adding a raw material (refer to Patent Document 1) in which a part containing Pb 3 O 4 as a main component and a part containing PbO as a main component in one particle is added, or metal Pb. A method of adding a raw material (see Patent Document 2) containing PbO and a surface layer of Pb 3 O 4 has been proposed.
JP 2005-44772 A Japanese Patent Laid-Open No. 10-270029

正極活物質ペーストに、特許文献1に記載の原料を含ませて、混練熟成すると、熟成時に、PbO部分が、ペースト中の金属PbやPbOおよび塩基性硫酸鉛と結合することで活物質粒子間の結合が強化されるが、Pb部分はこれら(金属PbやPbOなど)と結合し難い。特許文献1に記載の原料においては、Pbを主成分とする部分とPbOを主成分とする部分とが混在状態ではなく、偏在していることから、この原料を添加して作製した正極活物質ペースト中には、部分的にペースト中の金属PbやPbOおよび塩基性硫酸鉛と結合し難い部分が発生する。 When the raw material described in Patent Document 1 is contained in the positive electrode active material paste and kneaded and aged, the PbO portion is bonded to the metal Pb, PbO and basic lead sulfate in the paste during the aging, so The bond of Pb 3 O 4 is difficult to bond to these (metal Pb, PbO, etc.). In the raw material described in Patent Document 1, the part containing Pb 3 O 4 as the main component and the part containing PbO as the main component are not mixed, but are unevenly distributed. In the positive electrode active material paste, a portion that is partially bonded to the metal Pb or PbO and the basic lead sulfate in the paste is generated.

また、特許文献2に記載されている原料は、金属PbとPbOを含んでいるが、表面層がPbで形成されているので、正極活物質ペーストに含ませて、混練熟成する際に、ペースト中の金属PbやPbOおよび塩基性硫酸鉛と結合し難い。 In addition, the raw material described in Patent Document 2 contains metal Pb and PbO, but the surface layer is formed of Pb 3 O 4 , so when it is included in the positive electrode active material paste and kneaded and aged. Furthermore, it is difficult to bind to the metal Pb, PbO and basic lead sulfate in the paste.

したがって、特許文献1および特許文献2に記載されている原料を使用した場合には、活物質粒子間の結合力の強化が、通常鉛丹を含ませた場合に比べて改善されるものの、充分とは言えず、充放電の繰り返しによる活物質の軟化脱落を充分に防止できない。   Therefore, when the raw materials described in Patent Document 1 and Patent Document 2 are used, although the strengthening of the bonding force between the active material particles is improved as compared with the case where the normal lead is included, it is sufficient. However, it cannot sufficiently prevent the active material from softening and dropping due to repeated charge and discharge.

本発明は上記のような事情に基づいて完成されたものであって、鉛蓄電池において、正極活物質の化成効率を向上させるとともに、鉛丹を含ませた公知の技術よりも、正極活物質の耐軟化性を向上させ、ひいてはサイクル寿命特性を向上させることを目的とする。   The present invention has been completed on the basis of the above circumstances, and in a lead-acid battery, the conversion efficiency of the positive electrode active material is improved, and the positive electrode active material is more effective than the known technology including lead tan. The object is to improve the softening resistance and, in turn, the cycle life characteristics.

上記の目的を達成するための手段として、本発明は、一次粒子が集合して形成された二次粒子からなる鉛蓄電池用活物質原料であって、前記二次粒子は、図1に示すように、PbOおよびPbの少なくとも一方を含む一次粒子が凝集して形成された中心部11の周りに、Pbを主体とする一次粒子12とPbOを主体とする一次粒子13とが混在して凝集して形成された二次粒子10であり、かつ、その表面が完全にPb化されていないことを特徴とする鉛蓄電池用活物質原料、および、この鉛蓄電池用活物質原料を正極活物質ペーストに用いることを特徴とした鉛蓄電池である。 As a means for achieving the above object, the present invention provides an active material material for a lead storage battery comprising secondary particles formed by aggregating primary particles, wherein the secondary particles are as shown in FIG. In addition, primary particles 12 mainly composed of Pb 3 O 4 and primary particles 13 mainly composed of PbO are mixed around the central portion 11 formed by agglomeration of primary particles including at least one of PbO and Pb. Active material raw material for a lead storage battery, characterized in that the secondary particles 10 are aggregated and formed and the surface is not completely converted to Pb 3 O 4 , and the active material raw material for the lead storage battery Is a lead storage battery characterized in that is used for a positive electrode active material paste.

なお、本発明において「主体とする」とは、「過半数量を占める(質量基準)」ということを意味する。   In the present invention, “mainly” means “occupies a majority quantity (mass basis)”.

本発明の鉛蓄電池用活物質原料(以下、単に活物質原料ともいう)は、PbOおよびPbの少なくとも一方を含む一次粒子が凝集して形成された中心部の周りにPbを主体とする一次粒子とPbOを主体とする一次粒子とが混在して凝集して形成される二次粒子からなるので、これを正極活物質ペーストに含ませて熟成すると、二次粒子中に含まれるPbOを含む一次粒子同士が結合する。 The active material for lead-acid battery of the present invention (hereinafter also simply referred to as active material) is mainly composed of Pb 3 O 4 around a central portion formed by agglomeration of primary particles containing at least one of PbO and Pb. Primary particles mainly composed of PbO and secondary particles formed by agglomerating and agglomerating, so that when this is included in the positive electrode active material paste and aged, PbO contained in the secondary particles The primary particles containing are bonded to each other.

また本発明の活物質原料は、表面が完全にPb化されていない二次粒子であるから、表面にはPbOが存在し、このPbOがペースト中で周囲にあるPbOや塩基性硫酸鉛とも結合する。 In addition, since the active material raw material of the present invention is secondary particles whose surface is not completely converted to Pb 3 O 4 , PbO is present on the surface, and this PbO is present in PbO or basic sulfuric acid in the paste. Combines with lead.

その結果、従来の活物質原料を使用した場合よりも、Pbの周辺のPbOが強固に結合するため、活物質間の結合力が強固となり、化成時におこる活物質間のネットワークの破壊を抑制することができる。 As a result, since PbO around Pb 3 O 4 is bonded more strongly than when using a conventional active material material, the bonding force between the active materials is strengthened, and the network between the active materials is destroyed during the formation. Can be suppressed.

したがって、本発明によれば、鉛丹を活物質ペーストに含ませた場合においても、活物質の耐軟化性を向上させ、ひいてはサイクル寿命特性を向上させることができる。   Therefore, according to the present invention, the softening resistance of the active material can be improved and the cycle life characteristics can be improved even when the red lead is included in the active material paste.

また、本発明の活物質原料では、Pbが含まれるから、Pbが電解液中の硫酸と反応してPbSOと導電性の高いPbOとを生成することで、化成効率を向上させることができる。 Further, in the raw active material of the present invention, since include Pb 3 O 4, Pb 3 O 4 that generates and PbO 2 high reactivity to the PbSO 4 and the conductive sulfuric acid in the electrolyte, chemical Efficiency can be improved.

本発明の活物質原料に含まれる二次粒子10は、図1に示すように、PbOおよびPbの少なくとも一方を含む一次粒子が凝集して形成された中心部11の周りにPbを主体とする一次粒子12及びPbOを主体とする一次粒子13が混在して凝集して形成される。 As shown in FIG. 1, the secondary particles 10 contained in the active material raw material of the present invention have Pb 3 O 4 around the central portion 11 formed by agglomeration of primary particles containing at least one of PbO and Pb. The primary particles 12 mainly composed of the primary particles 13 and the primary particles 13 mainly composed of PbO are mixed and formed.

この二次粒子10の表面は、完全にPb化されておらず、表面層にPbOが存在する。完全にPb化されているものを水中で撹拌した後の上澄み液のpHは7,8程度を示し、PbOが残っているとpHは10付近を示す。したがって、本発明の活物質原料を水中で撹拌混合して得られた上澄み液のpHは、10前後である。 The surface of the secondary particle 10 is not completely converted to Pb 3 O 4 and PbO exists in the surface layer. The pH of the supernatant after stirring the water completely converted to Pb 3 O 4 in water is about 7.8, and when PbO remains, the pH is around 10. Therefore, the pH of the supernatant obtained by stirring and mixing the active material raw material of the present invention in water is about 10.

本発明の活物質原料は、二次粒子状の鉛粉(詳細は後述する)を、通常350〜450℃で焼成することで作製される。この焼成のときの焼成条件(温度、時間など)を調整することで、表面が完全にPb化されていない状態(表面にPbOが残存する状態)とすることができるとともに、活物質原料中のPb含有量を調整することができる。本明細書においてPb含有量とは、活物質原料(鉛粉を焼成してPb化した時の焼成物)中のPbの割合(質量%)をいい、具体的にはPbの質量を鉛粉を焼成してPb化したときの焼成物の質量で除した値に100を乗じた値で表される。
Pb含有量(質量%)は以下の滴定操作にて定量することができる。
まず、活物質原料に酢酸−酢酸アンモニウム溶液と0.1Nのチオ硫酸ナトリウム溶液とを加えて撹拌し、完全に溶解させる。
この試料溶液に、デンプン溶液を指示薬として使用し、0.1Nのヨウ素溶液を滴下して、ヨウ素デンプン反応による紫色の呈色を示した時点を終点として、溶液中に残っているチオ硫酸イオンを滴定する。空実験も同様に行い、滴定に使用したヨウ素溶液の量から次式を用いて、Pb含有量(質量%)を算出した。
Pb含有量(質量%)=[0.3428×(b’−b)×f]/S×
100
b’:空実験で滴定時に消費したヨウ素溶液の使用量(ml)
b:試料の滴定に消費したヨウ素溶液の使用量(ml)
f:ヨウ素溶液のファクター
S:試料の量(g)
The active material raw material of the present invention is produced by firing secondary particulate lead powder (details will be described later) usually at 350 to 450 ° C. By adjusting the firing conditions (temperature, time, etc.) at the time of firing, the surface is not completely converted to Pb 3 O 4 (the state where PbO remains on the surface), and the active material The Pb 3 O 4 content in the raw material can be adjusted. In this specification, the Pb 3 O 4 content refers to the ratio (mass%) of Pb 3 O 4 in the active material raw material (calcined product when lead powder is fired to form Pb 3 O 4 ). manner to is expressed by a value obtained by multiplying by 100 a value obtained by dividing the mass of the calcined product when Pb 3 O 4 turned into by firing Namariko mass of Pb 3 O 4.
The Pb 3 O 4 content (% by mass) can be quantified by the following titration operation.
First, an acetic acid-ammonium acetate solution and a 0.1N sodium thiosulfate solution are added to the active material raw material and stirred to dissolve completely.
To this sample solution, starch solution is used as an indicator, 0.1N iodine solution is added dropwise, and the thiosulfate ion remaining in the solution is taken as the end point when purple coloration by iodine starch reaction is shown. Titrate. The blank experiment was performed in the same manner, and the Pb 3 O 4 content (% by mass) was calculated from the amount of the iodine solution used for the titration using the following formula.
Pb 3 O 4 content (% by mass) = [0.3428 × (b′−b) × f] / S ×
100
b ′: Amount of iodine solution consumed during titration in the blank experiment (ml)
b: Amount of iodine solution consumed for titration of sample (ml)
f: Factor of iodine solution S: Amount of sample (g)

本発明の活物質原料中のPb含有量は、20〜80質量%であることが好ましい。Pb含有量が20質量%未満では化成効率の向上効果が発揮できず、80質量%を超えると活物質の早期軟化脱落が起こりやすくなる。 The Pb 3 O 4 content in the active material raw material of the present invention is preferably 20 to 80% by mass. If the Pb 3 O 4 content is less than 20% by mass, the effect of improving the chemical conversion efficiency cannot be exhibited. If the Pb 3 O 4 content exceeds 80% by mass, early softening and falling off of the active material tends to occur.

なお、二次粒子10の表面を完全にPb化されていない状態とするには、表面が完全にPb化した焼成物の表層の一部を削ることで、PbOを露出させてもよい。例えば、粉砕などを行うとPb化した焼成物の表層の一部を削ることができるので、この方法でも可能である。 Incidentally, in the state of not being completely Pb 3 O 4 the surface of the secondary particles 10, by cutting the portion of the surface of the surface layer is completely Pb 3 O 4 phased baked product, exposing the PbO You may let them. For example, when pulverization or the like is performed, a part of the surface layer of the fired product that has been converted to Pb 3 O 4 can be shaved, so this method is also possible.

本発明の活物質原料を作製するための二次粒子状の鉛粉としては、金属Pbを主体とする一次粒子の周りにPbOを主体とする一次粒子が凝集して形成されたものを使用することができる。この二次粒子状の鉛粉中の金属Pbの含有量は、鉛粉全体の質量に対して通常10〜30質量%である。   As the secondary particulate lead powder for producing the active material raw material of the present invention, the one formed by agglomerating primary particles mainly composed of PbO around the primary particles mainly composed of metal Pb is used. be able to. Content of the metal Pb in this secondary particulate lead powder is 10-30 mass% normally with respect to the mass of the whole lead powder.

本発明の活物質原料を作製するための二次粒子状の鉛粉は、バルトン式鉛粉製造機と比較して細かい粒子を製造することのできるボールミル式鉛粉製造機を使用し、ボールミルの風量と風速を適正な条件に設定することで作製される。   The secondary particulate lead powder for producing the active material raw material of the present invention uses a ball mill type lead powder production machine capable of producing fine particles as compared with a Balton type lead powder production machine. It is produced by setting the air volume and wind speed to appropriate conditions.

具体的に説明すると、一般的なボールミル式鉛粉製造機を使用して、従来の鉛粉を製造するときよりも、送り込む空気の風量を少なくするとともに、風速を遅くすると、平均粒子径の小さい一次粒子状の鉛粉が製造される。この一次粒子状の鉛粉は、平均粒子径が小さいため、凝集して二次粒子状の鉛粉を形成する。   More specifically, using a general ball mill type lead powder production machine, the average particle diameter is small when the air speed of the air to be fed is reduced and the air speed is made slower than when producing conventional lead powder. Primary particulate lead powder is produced. Since this primary particulate lead powder has a small average particle diameter, it aggregates to form secondary particulate lead powder.

また、二次粒子状の鉛粉を形成する一次粒子のうち、外側に配されるものは空気に接触する部分が多いため、PbからPbOへの酸化が進み易い。その結果、金属Pbを主体とする一次粒子が凝集して形成された中心部の周りにPbOを主体とする一次粒子が凝集した二次粒子状の鉛粉が形成されるのである。   Further, among the primary particles forming the secondary particulate lead powder, those arranged on the outside have many portions that come into contact with air, and therefore, the oxidation from Pb to PbO easily proceeds. As a result, secondary particulate lead powder in which primary particles mainly composed of PbO are aggregated is formed around a central portion formed by agglomerating primary particles mainly composed of metal Pb.

次に本発明の活物質原料を用いた鉛蓄電池(以下、単に「電池」ともいう)の作製方法について説明する。
まず、本発明の活物質原料を、鉛粉に添加して、常法により混合する。
Next, a method for producing a lead storage battery (hereinafter also simply referred to as “battery”) using the active material material of the present invention will be described.
First, the active material raw material of the present invention is added to the lead powder and mixed by a conventional method.

本発明の活物質原料の添加量は、鉛粉と本発明の活物質原料との合計質量に対して10〜30質量%であるのが好ましい。本発明の活物質原料の添加量が10質量%未満では化成効率の向上効果が発揮されにくく、30質量%を超えると活物質の早期軟化脱落が起こりやすくなる。   It is preferable that the addition amount of the active material raw material of this invention is 10-30 mass% with respect to the total mass of lead powder and the active material raw material of this invention. If the addition amount of the active material raw material of the present invention is less than 10% by mass, the effect of improving the chemical conversion efficiency is hardly exhibited, and if it exceeds 30% by mass, the active material is likely to be softened and dropped early.

本発明の活物質原料と鉛粉とを混合した後、水と硫酸を加えて混練して、正極活物質ペーストを作製し、このペーストを、鉛蓄電池用鉛合金格子に塗布し、室温の熟成室で熟成後、乾燥して未化成の正極板を作製する。   After mixing the active material raw material and the lead powder of the present invention, water and sulfuric acid are added and kneaded to prepare a positive electrode active material paste, this paste is applied to a lead alloy grid for a lead storage battery, and aged at room temperature After aging in the chamber, it is dried to produce an unformed positive electrode plate.

次に、未化成の正極板と常法により作製した未化成の負極板とを、微孔性のポリエチレン等を主体としたセパレータを介して組み合わせて、極板群を作製し、電槽に挿入し蓋を溶着した後、電解液を所定量注入して電槽化成を経ると本発明の鉛蓄電池が得られる。   Next, an unformed positive electrode plate and an unformed negative electrode plate prepared by a conventional method are combined through a separator mainly composed of microporous polyethylene, and an electrode plate group is prepared and inserted into a battery case. After welding the lid, a predetermined amount of electrolytic solution is injected, and the battery is formed, and the lead storage battery of the present invention is obtained.

<実施例および比較例>
以下、本発明を具体的に適用した実施例および比較品に関する比較例について説明する。
(1)鉛蓄電池用活物質原料の作製
金属Pbの含有量が10〜30質量%で、Pbを主体とする一次粒子が凝集して形成された中心部の周りにPbOを主体とする一次粒子が凝集した二次粒子状のボールミル式鉛粉を原料として、焼成温度450℃で焼成時間を調整することでPb含有量の異なる本発明の活物質原料を作製した。Pb含有量が20質量%、50質量%、80質量%、90質量%のものを、それぞれ本発明の活物質原料1、2、3、4とする。
<Examples and Comparative Examples>
Hereinafter, examples to which the present invention is specifically applied and comparative examples regarding comparative products will be described.
(1) Production of active material material for lead-acid battery Primary particles mainly composed of PbO around the central part formed by agglomeration of primary particles mainly composed of Pb with a content of metal Pb of 10 to 30% by mass The active material raw materials of the present invention having different Pb 3 O 4 contents were prepared by adjusting the firing time at a firing temperature of 450 ° C. using secondary particle-shaped ball mill type lead powder in which agglomerates were aggregated. Those having a Pb 3 O 4 content of 20% by mass, 50% by mass, 80% by mass, and 90% by mass are referred to as active material raw materials 1, 2, 3, and 4 of the present invention, respectively.

また、金属Pbの含有量が10〜30質量%で球状粒子の中心部にPbを含み、その周囲がPbOからなる一次粒子状のバルトン式鉛粉を原料として、焼成温度450℃で焼成時間を調整することでPb含有量の異なる比較の活物質原料を作製した。Pb含有量が20質量%、50質量%、80質量%、90質量%、97質量%のものを、それぞれ比較の活物質原料5、6、7、8、9とする。
なお、上記Pb量には±3質量%の誤差が含まれており、いる。
Also, using a primary particle-shaped Barton-type lead powder containing Pb at the center of spherical particles and containing PbO at the center of spherical particles with a Pb content of 10 to 30% by mass, firing time is 450 ° C. to prepare a Pb 3 O 4 in different comparative content raw active material by adjusting. Those having Pb 3 O 4 content of 20% by mass, 50% by mass, 80% by mass, 90% by mass, and 97% by mass are referred to as comparative active material materials 5, 6, 7, 8, and 9, respectively.
The amount of Pb 3 O 4 includes an error of ± 3% by mass.

(2)活物質原料の断面の観察
上記の方法により作製した本発明の活物質原料1〜4および比較の活物質原料5〜9について断面観察を行った。活物質原料粒子を樹脂に埋めた後、切断面を研磨してレーザー顕微鏡を用いて研磨面を観察した。図2は本発明の活物質原料2の断面の模式図、図3は比較の活物質原料6の断面の模式図である。
(2) Observation of cross section of active material raw material The cross sectional observation was performed about the active material raw materials 1-4 of this invention produced by said method, and the comparative active material raw materials 5-9. After embedding the active material raw material particles in the resin, the cut surface was polished and the polished surface was observed using a laser microscope. FIG. 2 is a schematic cross-sectional view of the active material raw material 2 of the present invention, and FIG. 3 is a schematic cross-sectional view of a comparative active material raw material 6.

観察の結果、本発明の活物質原料2は、PbOおよびPbの少なくとも一方を含む一次粒子が凝集して形成された中心部11の周りに、粒子径が0.1〜9.0μmのPbを主体とする一次粒子12及びPbOを主体とする一次粒子13が混在して凝集して形成された二次粒子10であり、この二次粒子10の粒子径は10〜50μmであることが確認された(図2を参照)。本発明の活物質原料1、3、4についても同様であった。 As a result of observation, the active material raw material 2 of the present invention has a Pb 3 particle diameter of 0.1 to 9.0 μm around the central portion 11 formed by agglomeration of primary particles containing at least one of PbO and Pb. The primary particles 12 mainly composed of O 4 and the primary particles 13 mainly composed of PbO are secondary particles 10 formed by agglomeration, and the particle diameter of the secondary particles 10 is 10 to 50 μm. Was confirmed (see FIG. 2). The same applies to the active material materials 1, 3, and 4 of the present invention.

比較の活物質原料6については、PbOおよびPbの少なくとも一方からなる部分21の周囲にPbからなる層22が形成された粒子径が0.5μm〜15μmの一次粒子20であることが確認された(図3を参照)。比較の活物質原料5、7、8、9についても同様であった。 The comparative active material raw material 6 is a primary particle 20 having a particle diameter of 0.5 μm to 15 μm in which a layer 22 made of Pb 3 O 4 is formed around a portion 21 made of at least one of PbO and Pb. It was confirmed (see FIG. 3). The same was true for the comparative active material materials 5, 7, 8, and 9.

(3)活物質原料の表面層がPbで覆われているか否かについての確認
次に、本発明の活物質原料1〜4の表面層にはPbOが残存していて、完全にPbで覆われた状態ではないことを以下の方法により確認した。
(3) Confirmation as to whether or not the surface layer of the active material raw material is covered with Pb 3 O 4 Next, PbO remains on the surface layer of the active material raw materials 1 to 4 of the present invention. It was confirmed by the following method that it was not in the state covered with Pb 3 O 4 .

本発明の活物質原料10gをイオン交換水100ml中で撹拌混合した後、30分間静置して上澄み液のpH測定を行った。PbOが存在する場合、pHが10付近となることから、pHが7〜8の場合には表面層が完全にPbで覆われていると判断し、pHが10付近の場合には表面層が完全にPbで覆われていないと判断した。 After stirring and mixing 10 g of the active material raw material of the present invention in 100 ml of ion-exchanged water, the mixture was allowed to stand for 30 minutes and the pH of the supernatant was measured. When PbO is present, the pH is around 10. Therefore, when the pH is 7 to 8, it is judged that the surface layer is completely covered with Pb 3 O 4. When the pH is around 10, It was judged that the surface layer was not completely covered with Pb 3 O 4 .

本発明の活物質原料1〜4の全てにおいて、pHが10付近を示したことから、本発明の活物質原料1〜4の表面層は完全にPbで覆われていないことがわかった。 In all of the active material raw materials 1 to 4 of the present invention, since the pH was around 10, it was found that the surface layers of the active material raw materials 1 to 4 of the present invention were not completely covered with Pb 3 O 4. It was.

(4)鉛蓄電池の作製
本発明の活物質原料1〜4の添加量および比較の活物質原料5〜9の添加量が表1に記載されている量(鉛粉と活物質原料との合計質量に対して10〜30質量%)となるように、ボールミル式鉛粉と混合し、さらに水と硫酸を加えて混練して活物質ペーストを作製した。また、本発明の活物質原料、比較の活物質原料および鉛丹を添加しないもの(すなわちPb成分を含まないもの)についても同様に活物質ペーストを作製した。
(4) Preparation of lead acid battery The amount of addition of the active material raw materials 1 to 4 of the present invention and the amount of addition of the comparative active material raw materials 5 to 9 are listed in Table 1 (total of lead powder and active material raw materials It was mixed with a ball mill type lead powder so as to be 10 to 30% by mass with respect to the mass, and water and sulfuric acid were further added and kneaded to prepare an active material paste. Was also prepared in the same manner as the active material paste also raw active material of the present invention, those not added raw active material and red lead of comparison (i.e., containing no Pb 3 O 4 component).

このようにして作製した活物質ペーストをそれぞれ、鉛合金格子に塗布し、室温の熟成室で40時間熟成後、乾燥して未化成の正極板を作製した。   Each of the active material pastes thus produced was applied to a lead alloy lattice, aged for 40 hours in an aging room at room temperature, and then dried to produce an unformed positive electrode plate.

この未化成の正極板と常法により作製した未化成の負極板とを、微孔性のポリエチレンを主体としたセパレータを介して組み合わせて、極板群を作製し、34B19型用電槽に挿入して蓋を溶着し34B19型鉛蓄電池を作製した。   This unformed positive electrode plate and an unformed negative electrode plate produced by a conventional method are combined through a separator mainly composed of microporous polyethylene to prepare an electrode plate group, which is inserted into a 34B19 type battery case. Then, the lid was welded to produce a 34B19 type lead acid battery.

この鉛蓄電池に比重1.15(20℃)の希硫酸を所定量注入してから正極の理論容量に対して1.8倍の電気量を8時間通電して電槽化成を行い、公称容量27Ahの鉛蓄電池を得た。本発明の活物質材料1〜4を用いて作製した鉛蓄電池を実施例1〜12、本発明の活物質原料、比較の活物質原料および鉛丹を添加せずに作製した鉛蓄電池を比較例1、比較の活物質原料5〜9を用いて作製した鉛蓄電池を比較例2〜16とした。   A predetermined amount of dilute sulfuric acid with a specific gravity of 1.15 (20 ° C.) is injected into this lead storage battery, and then the battery is formed by energizing a quantity of electricity 1.8 times the theoretical capacity of the positive electrode for 8 hours. A 27 Ah lead acid battery was obtained. Lead acid batteries produced using the active material materials 1 to 4 of the present invention are Examples 1 to 12, and the lead acid battery produced without adding the active material raw material of the present invention, the comparative active material raw material, and the red lead battery is a comparative example. 1. The lead acid battery produced using the comparative active material raw materials 5-9 was made into Comparative Examples 2-16.

<試験例>
上記の方法により、各実施例1〜12および比較例1〜16の電池をそれぞれ4個ずつ作製した。作製された電池を2個ずつ、以下に示す化成効率の評価試験と耐軟化性の評価試験に供し、2個の電池の試験結果の平均値を評価試験の結果として採用した。
(1)化成効率の評価試験
鉛蓄電池の正極活物質は化成によってPbOや塩基性硫酸鉛からPbOに変化するため、化成後の正極活物質中のPbO量を比較することで化成効率を評価した。以下、具体的に説明する。
<Test example>
By the above method, four batteries of each of Examples 1 to 12 and Comparative Examples 1 to 16 were produced. Two pieces of each produced battery were subjected to the following chemical conversion efficiency evaluation test and softening resistance evaluation test, and the average value of the test results of the two batteries was adopted as the result of the evaluation test.
(1) Evaluation test of chemical conversion efficiency Since the positive electrode active material of the lead storage battery changes from PbO or basic lead sulfate to PbO 2 by chemical conversion, the chemical conversion efficiency can be improved by comparing the amount of PbO 2 in the positive electrode active material after chemical conversion. evaluated. This will be specifically described below.

まず、電槽化成後の正極活物質を水洗して硫酸を除去し、乾燥後、粉砕する。次に、粉砕した正極活物質(試料)に酢酸−酢酸アンモニウム溶液と0.1Nのチオ硫酸ナトリウム溶液とを加えて撹拌し、完全に溶解させた。   First, the positive electrode active material after battery case formation is washed with water to remove sulfuric acid, dried and pulverized. Next, an acetic acid-ammonium acetate solution and a 0.1 N sodium thiosulfate solution were added to the pulverized positive electrode active material (sample), and the mixture was stirred and completely dissolved.

この試料溶液に、デンプン溶液を加えて、0.1Nのヨウ素溶液を滴下して、ヨウ素デンプン反応による紫色の呈色を示した時点を終点として、溶液中に残っているチオ硫酸ナトリウムイオンを滴定した。空実験も同様に行い、滴定に使用したヨウ素溶液の量から次式を用いて化成後のPbO量(質量%)を算出した。
PbO量(質量%)=[0.01196×(b’−b)×f]/S×100
b’:空実験で滴定時に消費したヨウ素溶液の使用量(ml)
b:試料の滴定に消費したヨウ素溶液の使用量(ml)
f:ヨウ素溶液のファクター
S:試料の量(g)
To this sample solution, a starch solution is added, a 0.1N iodine solution is added dropwise, and the sodium thiosulfate ion remaining in the solution is titrated at the end of the time when purple coloration due to iodine starch reaction is exhibited. did. A blank experiment was performed in the same manner, and the amount of PbO 2 after conversion (mass%) was calculated from the amount of iodine solution used for titration using the following equation.
PbO 2 amount (% by mass) = [0.01196 × (b′−b) × f] / S × 100
b ′: Amount of iodine solution consumed during titration in the blank experiment (ml)
b: Amount of iodine solution consumed for titration of sample (ml)
f: Factor of iodine solution S: Amount of sample (g)

比較例1の電池の化成後のPbO量を100とした場合の相対値Aを表1に示した。この相対値Aが大きいほどPbO量が多い、すなわち化成効率が向上していることを示す。 Table 1 shows the relative value A when the amount of PbO 2 after the formation of the battery of Comparative Example 1 is taken as 100. It shows that the larger the relative value A is, the more PbO 2 is, that is, the chemical conversion efficiency is improved.

(2)耐軟化性の評価試験
鉛蓄電池の正極活物質は、充放電の繰り返しによって、PbOが軟化して徐々に脱落し取り出せる容量が減少するため、以下の手順でサイクル寿命試験を行い、試験前後の正極活物質の量を測定して、試験前の正極活物質量に対して試験後にはどの位の正極活物質が残っているかを比較することで耐軟化性を評価した。
(2) Softening resistance evaluation test The positive electrode active material of the lead-acid battery is subjected to cycle life test according to the following procedure because PbO 2 is softened by repeated charge and discharge, and the capacity that can be gradually dropped and taken out decreases. The amount of the positive electrode active material before and after the test was measured, and the softening resistance was evaluated by comparing the amount of the positive electrode active material remaining after the test with respect to the amount of the positive electrode active material before the test.

(サイクル寿命試験)
40℃±2℃の周囲温度で、10Aで30分放電、2.5Aで2時間12分充電を1サイクルとして、充放電を行った。25サイクルごとに完全充電状態から、10Aで終止電圧10.2Vまで判定放電を行い、サイクル終了条件は150サイクルとした。
(Cycle life test)
At an ambient temperature of 40 ° C. ± 2 ° C., charging / discharging was performed by discharging at 10 A for 30 minutes and charging at 2.5 A for 2 hours and 12 minutes as one cycle. The judgment discharge was performed from the fully charged state every 10 cycles to a final voltage of 10.2 V at 10 A, and the cycle end condition was 150 cycles.

比較例1の電池の活物質残存量を100とした場合の相対値Bを表1に示した。この相対値Bが大きいほど活物質の脱落量が少ない、すなわち耐軟化性が高いことを示す。   Table 1 shows the relative value B when the remaining amount of the active material of the battery of Comparative Example 1 is 100. The larger the relative value B, the smaller the amount of the active material that falls off, that is, the higher the softening resistance.

さらに、表1の右側端には、相対値Aと相対値Bとを乗じたものの平方根値(以下、A×B値という)を示した。このA×B値は、化成効率を向上させ、かつ耐軟化性を向上させることができたかどうかを示すものであり、比較例1の電池のA×B値(100)よりも大きければ、化成効率を向上させるとともに耐軟化性を向上させたと判断した。
なお、表1中、「比較の原料」とは「比較の活物質原料」を示し、「本発明の原料」とは「本発明の活物質原料」を示し、「Pb含有量」とは「活物質原料中のPb含有量(質量%)」を示す。
Furthermore, the right end of Table 1 shows the square root value (hereinafter referred to as A × B value) of the product of the relative value A and the relative value B. This A × B value indicates whether the chemical conversion efficiency has been improved and the softening resistance has been improved. If the A × B value is larger than the A × B value (100) of the battery of Comparative Example 1, the chemical conversion It was judged that the efficiency was improved and the softening resistance was improved.
In Table 1, “comparative raw material” indicates “comparative active material raw material”, “raw material of the present invention” indicates “active material raw material of the present invention”, and “Pb 3 O 4 content”. And “Pb 3 O 4 content (mass%) in the active material raw material”.

Figure 2008276980
Figure 2008276980

<試験結果と考察>
(1)化成効率について
実施例1〜12の鉛蓄電池および比較例2〜16の鉛蓄電池において、化成効率は、比較例1よりも向上した。
<Test results and discussion>
(1) About chemical conversion efficiency In the lead acid battery of Examples 1-12 and the lead acid battery of Comparative Examples 2-16, chemical conversion efficiency improved rather than the comparative example 1. FIG.

これは、実施例1〜12および比較例2〜16においては、正極活物質ペースト中にPbが含まれているから、このPbが化成時に電解液中の硫酸と反応して導電性の高いPbOが生成されることで、化成効率が向上したと考えられる。 In Examples 1-12 and Comparative Examples 2-16, since Pb 3 O 4 is contained in the positive electrode active material paste, this Pb 3 O 4 reacts with sulfuric acid in the electrolytic solution during chemical conversion. Thus, it is considered that the chemical conversion efficiency is improved by the generation of highly conductive PbO 2 .

添加した活物質原料が同じで、かつ活物質原料の添加量が同じもの(例えば、実施例5〜8)の化成効率を比較すると、Pb含有量が20〜90質量%の範囲内では、Pb含有量が多くなるにつれ化成効率は高くなったが、Pb含有量が80〜90質量%の範囲では、化成効率は変化が少なかった。 Comparing the chemical conversion efficiencies of the same active material raw material and the same active material raw material addition amount (for example, Examples 5 to 8), the Pb 3 O 4 content is in the range of 20 to 90% by mass. Then, as the Pb 3 O 4 content increased, the chemical conversion efficiency increased. However, when the Pb 3 O 4 content ranged from 80 to 90% by mass, the chemical conversion efficiency changed little.

このことからPb含有量が80質量%を超えると、Pb含有量を多くすることによる化成効率向上効果が得られにくい範囲であると考えられ、活物質原料中のPb含有量は20〜80質量%であるのが好ましいと考えられる。 From this, when the Pb 3 O 4 content exceeds 80% by mass, it is considered that the effect of improving the chemical conversion efficiency by increasing the Pb 3 O 4 content is difficult to obtain, and Pb 3 in the active material raw material It is considered that the O 4 content is preferably 20 to 80% by mass.

(2)耐軟化性について
活物質原料中のPb含有量および活物質ペーストへの活物質原料の添加量が同じものを比較すると(例えば比較例2と実施例1)、実施例の電池のほうが比較例の電池よりも耐軟化性が高かった。
(2) Softening resistance When comparing the Pb 3 O 4 content in the active material and the amount of the active material added to the active material paste are the same (for example, Comparative Example 2 and Example 1), The battery had higher softening resistance than the battery of the comparative example.

これは、実施例1〜12の電池において使用した本発明の活物質原料を正極活物質ペーストに含ませると、二次粒子中のPbOを主体とする一次粒子同士が結合し、表面に存在するPbOが他の二次粒子やペースト中のPbOや塩基性硫酸鉛と結合することで、Pb周辺のPbOが強固に結合するため、比較例2〜16の電池よりも、活物質間の結合力が強固となったからではないかと考えられる。 This is because when the active material raw material of the present invention used in the batteries of Examples 1 to 12 is included in the positive electrode active material paste, primary particles mainly composed of PbO in the secondary particles are bonded to each other and exist on the surface. Since PbO is bonded to other secondary particles or PbO in the paste or basic lead sulfate, PbO around Pb 3 O 4 is strongly bonded, so the active material is more active than the batteries of Comparative Examples 2 to 16. This is thought to be due to the strengthening of the bond strength.

活物質原料中のPb含有量と活物質ペーストへの活物質原料の添加量が多いものほど(活物質ペースト中のPb量が多くなるほど)、耐軟化性が低下することがわかった。また、実施例1〜4、5、6、9の電池は、Pb成分を含有しているにもかかわらず、Pb成分を含有していない電池(比較例1)と比較し、微差ではあるが、耐軟化性が向上した。 The softening resistance decreases as the Pb 3 O 4 content in the active material and the amount of the active material added to the active material paste increase (the amount of Pb 3 O 4 in the active material paste increases). I understood. Further, the battery of Example 1~4,5,6,9, despite containing the Pb 3 O 4 components, a battery containing no Pb 3 O 4 component (Comparative Example 1) Comparative However, although it was a slight difference, the softening resistance was improved.

(3)化成効率の向上と耐軟化性の向上(A×B値)について
実施例1〜12の電池は比較例1よりもA×B値が高かったが、比較例2〜16の電池においては比較例1よりもA×B値の高いものはなかった。
(3) Improvement of chemical conversion efficiency and softening resistance (A × B value) The batteries of Examples 1 to 12 had higher A × B values than Comparative Example 1, but in the batteries of Comparative Examples 2 to 16 None had a higher A × B value than Comparative Example 1.

このことから、本発明の活物質原料を使用した鉛蓄電池は、化成効率を向上させるとともに耐軟化性が向上したと考えられる。   From this, it is considered that the lead storage battery using the active material material of the present invention has improved chemical conversion efficiency and improved softening resistance.

<まとめ>
以上より本発明によれば、鉛蓄電池において、正極活物質の化成効率を向上させるとともに、鉛丹を添加した公知の技術よりも正極活物質の耐軟化性を向上させ、ひいてはサイクル寿命特性を向上させることができる。
<Summary>
As described above, according to the present invention, in lead-acid batteries, the conversion efficiency of the positive electrode active material is improved, and the softening resistance of the positive electrode active material is improved as compared with the known technology to which lead is added, and thus the cycle life characteristics are improved. Can be made.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施例においては、Pb含有量が20、50、80質量%の活物質原料を、活物質原料全体に対して10質量%、20質量%、30質量%添加したものを示したが、Pb含有量や添加量はこれに限定されず、例えば、Pb含有量が25質量%のものを15質量%添加したものや、Pb含有量が75質量%のものを25質量%添加したものなどであってもよい。
(2)上記実施例においては、液式電池を例示して説明したが、VRLA型電池(制御弁式鉛蓄電池)の活物質に用いても同様の効果が得られるので、本発明の活物質原料は、VRLA型電池の活物質原料として適用することもできる。
(3)上記実施例においては、より好ましいボールミル式鉛粉を原料として本発明の活物質原料を作製する方法を示したが、活物質原料の粒子の状態が、PbOおよびPbの少なくとも一方を含む一次粒子が凝集して形成された中心部の周りに、Pbを主体とする一次粒子とPbOを主体とする一次粒子とが混在して凝集して形成されているものであれば、他の方法で作製されているものであってもよい。
(4)本発明の鉛蓄電池は、添加剤として有機繊維などを含んでいるものであってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above-described embodiment, the active material raw material having a Pb 3 O 4 content of 20, 50, 80% by mass is added 10% by mass, 20% by mass, 30% by mass with respect to the entire active material raw material. However, the Pb 3 O 4 content and the addition amount are not limited to this, and for example, a Pb 3 O 4 content of 25% by mass and a Pb 3 O 4 content of 15% by mass are added. May be added with 25% by mass of 75% by mass.
(2) In the above embodiment, the liquid type battery has been described as an example. However, since the same effect can be obtained even when used as an active material for a VRLA type battery (control valve type lead storage battery), the active material of the present invention. The raw material can also be applied as an active material raw material for a VRLA battery.
(3) In the above embodiment, the method of producing the active material raw material of the present invention using more preferable ball mill type lead powder as a raw material has been shown. However, the particle state of the active material raw material includes at least one of PbO and Pb. If the primary particles mainly composed of Pb 3 O 4 and the primary particles mainly composed of PbO are mixed and formed around the central part formed by aggregation of the primary particles, It may be produced by other methods.
(4) The lead acid battery of the present invention may contain organic fibers as an additive.

本発明の活物質原料の一例の拡大概略図An enlarged schematic view of an example of the active material raw material of the present invention 本発明の活物質原料の断面の模式図Schematic diagram of a cross section of the active material raw material of the present invention 比較の活物質原料の断面の模式図Schematic diagram of cross section of comparative active material

符号の説明Explanation of symbols

10…二次粒子
11…中心部
12…Pbを主体とする一次粒子
13…PbOを主体とする一次粒子
10 ... primary particles mainly composed of primary particles 13 ... PbO mainly secondary particles 11 ... center 12 ... Pb 3 O 4

Claims (2)

一次粒子が集合して形成された二次粒子からなる鉛蓄電池用活物質原料であって、
前記二次粒子は、PbOおよびPbの少なくとも一方を含む一次粒子が凝集して形成された中心部の周りに、Pbを主体とする一次粒子とPbOを主体とする一次粒子とが混在して凝集して形成され、
かつ、その表面が完全にPb化されていないことを特徴とする鉛蓄電池用活物質原料。
An active material material for a lead storage battery comprising secondary particles formed by aggregating primary particles,
The secondary particles include a mixture of primary particles mainly composed of Pb 3 O 4 and primary particles mainly composed of PbO around a central portion formed by aggregation of primary particles including at least one of PbO and Pb. Agglomerate and form,
And the active material raw material for lead acid batteries characterized in that the surface is not completely converted to Pb 3 O 4 .
請求項1に記載の鉛蓄電池用活物質原料を正極活物質ペーストに用いることを特徴とする鉛蓄電池。 The lead acid battery active material raw material of Claim 1 is used for a positive electrode active material paste, The lead acid battery characterized by the above-mentioned.
JP2007116106A 2007-04-25 2007-04-25 Raw material of active material for lead-acid storage battery, and lead-acid storage battery using it Pending JP2008276980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116106A JP2008276980A (en) 2007-04-25 2007-04-25 Raw material of active material for lead-acid storage battery, and lead-acid storage battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116106A JP2008276980A (en) 2007-04-25 2007-04-25 Raw material of active material for lead-acid storage battery, and lead-acid storage battery using it

Publications (1)

Publication Number Publication Date
JP2008276980A true JP2008276980A (en) 2008-11-13

Family

ID=40054720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116106A Pending JP2008276980A (en) 2007-04-25 2007-04-25 Raw material of active material for lead-acid storage battery, and lead-acid storage battery using it

Country Status (1)

Country Link
JP (1) JP2008276980A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258567A (en) * 1985-09-09 1987-03-14 Mitsui Mining & Smelting Co Ltd Lead storage battery
JPS63318071A (en) * 1987-06-19 1988-12-26 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for lead-acid battery
JPH01248470A (en) * 1988-03-30 1989-10-04 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for lead-acid battery
JPH0676822A (en) * 1992-08-28 1994-03-18 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH10270029A (en) * 1997-03-26 1998-10-09 Shin Kobe Electric Mach Co Ltd Raw material of active material for lead-acid battery and the battery with the material
JPH10312810A (en) * 1997-05-15 1998-11-24 Shin Kobe Electric Mach Co Ltd Lead-acid battery and manufacture therefor
JP2005044772A (en) * 2003-07-04 2005-02-17 Shin Kobe Electric Mach Co Ltd Paste type positive electrode plate of lead-acid storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258567A (en) * 1985-09-09 1987-03-14 Mitsui Mining & Smelting Co Ltd Lead storage battery
JPS63318071A (en) * 1987-06-19 1988-12-26 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for lead-acid battery
JPH01248470A (en) * 1988-03-30 1989-10-04 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for lead-acid battery
JPH0676822A (en) * 1992-08-28 1994-03-18 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH10270029A (en) * 1997-03-26 1998-10-09 Shin Kobe Electric Mach Co Ltd Raw material of active material for lead-acid battery and the battery with the material
JPH10312810A (en) * 1997-05-15 1998-11-24 Shin Kobe Electric Mach Co Ltd Lead-acid battery and manufacture therefor
JP2005044772A (en) * 2003-07-04 2005-02-17 Shin Kobe Electric Mach Co Ltd Paste type positive electrode plate of lead-acid storage battery

Similar Documents

Publication Publication Date Title
TWI628291B (en) Lead-based alloy and related processes and products
TWI539644B (en) Flooded lead-acid battery and method of making the same
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
US20140050986A1 (en) Active materials for lead acid battery
WO2015087749A1 (en) Valve-regulated lead-acid storage battery
JP2008276980A (en) Raw material of active material for lead-acid storage battery, and lead-acid storage battery using it
JP4186197B2 (en) Positive electrode plate for lead acid battery
JP2008311051A (en) Lead storage battery
JP5299672B2 (en) Lead acid battery
JP2009016143A (en) Manufacturing method of paste type cathode plate for lead storage cell and lead storage cell
JP5029871B2 (en) Lead acid battery
JP2002100347A (en) Lead-acid battery
JP3646462B2 (en) Method for producing active material for lead-acid battery
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP2009123433A (en) Method of manufacturing control valve type lead-acid battery
JP2008243679A (en) Lead-acid storage battery
JP2009129725A (en) Lead storage battery
JP2011165378A (en) Method of manufacturing lead storage battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JP2005044772A (en) Paste type positive electrode plate of lead-acid storage battery
WO2021034455A1 (en) Process to control a corrosion layer
JP2009016142A (en) Lead storage cell
JP2008034286A (en) Closed lead battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402