JP2009123433A - Method of manufacturing control valve type lead-acid battery - Google Patents

Method of manufacturing control valve type lead-acid battery Download PDF

Info

Publication number
JP2009123433A
JP2009123433A JP2007294514A JP2007294514A JP2009123433A JP 2009123433 A JP2009123433 A JP 2009123433A JP 2007294514 A JP2007294514 A JP 2007294514A JP 2007294514 A JP2007294514 A JP 2007294514A JP 2009123433 A JP2009123433 A JP 2009123433A
Authority
JP
Japan
Prior art keywords
lead
battery
mass
electrode plate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007294514A
Other languages
Japanese (ja)
Inventor
Masatake Ishikawa
雅健 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2007294514A priority Critical patent/JP2009123433A/en
Publication of JP2009123433A publication Critical patent/JP2009123433A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve type lead-acid battery increasing the discharge capacity without decreasing the life performance. <P>SOLUTION: A method of manufacturing the control valve type lead-acid battery in which an electrode plate group having a positive plate, a negative plate and a separator is placed in a battery container has: a step of manufacturing the positive plate by using lead powder and red lead containing 20-80 mass% Pb<SB>3</SB>O<SB>4</SB>as the raw material of a positive electrode active material; and a step of placing the electrode group in the battery container so as to apply pressing force of 9.8-34.3 kPa. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、制御弁式鉛蓄電池の製造方法に関する。   The present invention relates to a method for manufacturing a control valve type lead storage battery.

近年、メンテナンス性向上のために、電槽内圧を弁により調整する制御弁式鉛蓄電池が広く用いられている。制御弁式鉛蓄電池では、電解液を保持したセパレータを挟んで正極板及び負極板が複数積層された極板群が電槽に配されている。極板群は製造時には、電解液を保持しない状態で圧迫されて電槽に納められ、極群溶接、セル間接続、蓋接着、端子溶接などの組立工程後、注液・化成工程を経て作製される。   In recent years, in order to improve maintainability, a control valve type lead storage battery that adjusts the internal pressure of the battery case with a valve has been widely used. In a control valve type lead-acid battery, an electrode plate group in which a plurality of positive and negative electrode plates are stacked with a separator holding an electrolytic solution in between is arranged in a battery case. At the time of manufacturing, the electrode plate group is compressed without holding the electrolyte solution and placed in the battery case. After the assembly process such as electrode group welding, cell-to-cell connection, lid bonding, terminal welding, etc., it is manufactured through a liquid injection and chemical conversion process. Is done.

このような制御弁式鉛蓄電池を含め、一般的な鉛蓄電池の正極活物質に鉛丹を添加すると、正極活物質の利用率を向上させることができ、これにより、同一容量に必要な活物質の使用量を削減でき、かつ、同一の活物質量のまま放電容量の高い電池を得ることができるということが知られている。   Including such control valve-type lead-acid batteries, adding red lead to the positive-electrode active material of a general lead-acid battery can improve the utilization rate of the positive-electrode active material, thereby enabling the active material required for the same capacity It is known that a battery with a high discharge capacity can be obtained with the same amount of active material.

しかし、正極活物質に一般的な鉛丹(鉛丹化率が98質量%の高鉛丹化率鉛丹)を添加すると、活物質粒子間の結合が弱くなって、充放電の繰り返しにより活物質の軟化脱落が起こりやすくなり、早期に寿命に至るという問題があった。
この問題を解決するものとして、例えば特許文献1に記載の鉛蓄電池が提案されている。
特許第2721514号公報
However, when a general lead (a high lead content of 98% by weight) is added to the positive electrode active material, the bond between the active material particles becomes weak, and the active material is activated by repeated charge and discharge. There was a problem that the softening and detachment of the material was likely to occur and the life was reached early.
As a solution to this problem, for example, a lead storage battery described in Patent Document 1 has been proposed.
Japanese Patent No. 2721514

特許文献1に記載の発明によれば、鉛蓄電池の極板群に加えられる圧迫力(以下、極群圧迫力ともいう)を高くする(例えば49.0kPa以上とする)ことで、活物質の軟化を抑制し、正極活物質原料として鉛丹が添加されている電池の寿命性能の低下を抑制することができる。   According to the invention described in Patent Document 1, by increasing the compression force (hereinafter also referred to as polar group compression force) applied to the electrode plate group of the lead storage battery (for example, 49.0 kPa or more), Softening can be suppressed, and a decrease in the life performance of a battery to which red lead is added as a positive electrode active material material can be suppressed.

しかしながら、極群圧迫力を高くすると、正極板と負極板との間に存在する電解液が押し出されて、セパレータに含まれる電解液が減少し、電池の放電容量が低下するので、極群圧迫力を高くしすぎると、放電容量向上効果が得られなくなるという問題があった。
本発明は上記のような事情に基づいて完成されたものであって、寿命性能を低下させずに、放電容量の高い制御弁式鉛蓄電池を提供することを目的とする。
However, if the electrode group compression force is increased, the electrolyte solution present between the positive electrode plate and the negative electrode plate is pushed out, the electrolyte solution contained in the separator is reduced, and the discharge capacity of the battery is reduced. If the force is too high, there is a problem that the effect of improving the discharge capacity cannot be obtained.
This invention is completed based on the above situations, Comprising: It aims at providing a control valve type lead acid battery with high discharge capacity, without reducing lifetime performance.

上記の目的を達成するための手段として、本発明は、正極板と負極板とセパレータとを備える極板群が、電槽内に配された制御弁式鉛蓄電池の製造方法であって、正極活物質原料として、鉛粉と鉛丹化率が20質量%〜80質量%の鉛丹とを用いて正極板を作製する工程と、前記極板群に、9.8〜34.3kPaの圧迫力が加わるよう前記電槽内に配する工程と、を備えたことを特徴とする制御弁式鉛蓄電池の製造方法である。   As a means for achieving the above object, the present invention provides a method for producing a control valve type lead storage battery in which an electrode plate group including a positive electrode plate, a negative electrode plate, and a separator is arranged in a battery case. As a raw material for the active material, a step of producing a positive electrode plate using lead powder and a red lead having a lead oxidation rate of 20% by mass to 80% by mass; A control valve type lead-acid battery manufacturing method comprising: a step of arranging in the battery case so that force is applied.

本発明の制御弁式鉛蓄電池の製造方法においては、正極活物質として鉛粉と鉛丹化率が20質量%〜80質量%の低鉛丹化率の鉛丹を用いるとともに、極群圧迫力が、9.8〜34.3kPaとされる。
したがって、本発明によれば、極群圧迫力が、特許文献1に記載の鉛蓄電池よりも低く設定されるので、セパレータに含まれる電解液の量が増え、極群圧迫力が高いものよりも放電容量が高くなる。
In the manufacturing method of the control valve type lead-acid battery of the present invention, lead powder and a lead tan with a low lead tanning rate of 20 to 80% by mass are used as the positive electrode active material, and the extreme group compression force. Is 9.8 to 34.3 kPa.
Therefore, according to the present invention, since the polar group pressing force is set lower than that of the lead storage battery described in Patent Document 1, the amount of the electrolyte contained in the separator is increased, so that the polar group pressing force is higher than that having a high polar group pressing force. Discharge capacity increases.

ところで、極群圧迫力が低くなると、活物質の軟化脱落を抑制する効果が低下することが懸念されるが、本発明によれば、鉛丹として鉛丹化率が20〜80質量%の低鉛丹化率鉛丹を使用するから、鉛丹化率が98質量%の高鉛丹化率鉛丹を用いた鉛蓄電池と比較して、活物質粒子間の結合が強化される。そして、その結果、極群圧迫力を低く設定したことに起因する活物質の軟化脱落を抑制することができる。
以上より、本発明によれば、制御弁式鉛蓄電池の寿命性能を低下させずに、放電容量を向上させることができる。
By the way, although it is feared that the effect of suppressing softening and detachment of the active material is lowered when the polar group pressing force is low, according to the present invention, the lead tanning rate is as low as 20 to 80% by mass as lead tan. Since the lead tanning rate is used, the bond between the active material particles is strengthened as compared with the lead storage battery using the high lead tanning rate lead tan with a lead tanning rate of 98% by mass. As a result, it is possible to suppress softening and falling off of the active material caused by setting the polar group compression force to be low.
As mentioned above, according to this invention, discharge capacity can be improved, without reducing the lifetime performance of a control valve type lead acid battery.

本発明の製造方法により得られる制御弁式鉛蓄電池(以下、「電池」ともいう)は、正極板と負極板とセパレータとからなる極板群が加圧された状態で電槽内に配されている電池である。
本発明において、電池の正極板は、正極活物質原料として鉛粉と鉛丹とを用いて作製される。
本発明において用いられる鉛粉としては、特に限定はないが、例えば、ボールミル法で製造したものなどを用いる。
A control valve type lead-acid battery (hereinafter also referred to as “battery”) obtained by the production method of the present invention is arranged in a battery case in a state where an electrode plate group consisting of a positive electrode plate, a negative electrode plate, and a separator is pressurized. Battery.
In the present invention, the positive electrode plate of the battery is produced using lead powder and red lead as a positive electrode active material raw material.
Although there is no limitation in particular as lead powder used in this invention, For example, what was manufactured by the ball mill method etc. are used.

鉛丹は通常、350〜450℃で焼成することで作製され、この焼成時の温度、時間などの条件を調整することで鉛丹化率を調整することができる。
本発明において用いられる鉛丹としては、例えば、前記のボールミル法で製造した鉛粉を420℃で所定の鉛丹化率に達するまで焼成したものを用いることができる。
本発明において用いられる鉛丹としては、寿命性能を向上させるという観点から、鉛丹化率の低い鉛丹を使用することが好ましいのであるが、放電容量とのバランスも考慮すると、鉛丹の鉛丹化率は、20質量%以上、80質量%以下であることが好ましい。
The red lead is usually produced by firing at 350 to 450 ° C., and the lead oxidation rate can be adjusted by adjusting conditions such as temperature and time during the firing.
As the lead used in the present invention, for example, a powder obtained by firing the lead powder produced by the above ball mill method at 420 ° C. until reaching a predetermined lead tanning rate can be used.
As the lead used in the present invention, it is preferable to use a lead with a low lead tanning rate from the viewpoint of improving the life performance. The tanning rate is preferably 20% by mass or more and 80% by mass or less.

なお、本明細書において、鉛丹化率とは、鉛粉を焼成して鉛丹化した時の焼成物中のPbの割合(質量%)のことをいい、具体的には焼成物中のPbの質量を焼成物の質量で除した値に100を乗じた値で表される。
鉛丹化率すなわち、焼成物中のPbの含有量(質量%)は以下の滴定操作にて定量することができる。
まず、測定試料に酢酸−酢酸アンモニウム溶液と0.1Nのチオ硫酸ナトリウム溶液とを加えて撹拌し、完全に溶解させる。
次いで、この試料溶液に、デンプン溶液を加えて、0.1Nのヨウ素溶液を滴下して、ヨウ素デンプン反応による紫色の呈色を示した時点を終点として、溶液中に残っているチオ硫酸ナトリウムイオンを滴定する。空実験も同様に行い、滴定に使用したヨウ素溶液の量から次式を用いて、Pb含有量(質量%)を算出する。
Pb含有量(質量%)=[0.3428×(b’−b)×f]/S×100
b’:空実験で滴定時に消費したヨウ素溶液の使用量(ml)
b:試料の滴定に消費したヨウ素溶液の使用量(ml)
f:ヨウ素溶液のファクター
S:試料の量(g)
本発明において、鉛丹の添加量は、鉛粉と鉛丹の混合物からなる正極活物質原料の全質量に対して、10質量%〜30質量%のものが好ましい。鉛丹の添加量が10質量%未満であると、放電容量の向上効果が発揮されにくく、30質量%を超えると寿命性能が低下するからである。
本発明において、負極板、セパレータ、電槽としては、公知のものを使用することができる。
In the present specification, the minium rate refers to the percentage of Pb 3 O 4 of the burned material in when Nica lead by baking lead powder (mass%), baking in particular It is represented by a value obtained by multiplying the value obtained by dividing the mass of Pb 3 O 4 in the product by the mass of the fired product by 100.
The lead oxidation rate, that is, the content (% by mass) of Pb 3 O 4 in the fired product can be quantified by the following titration operation.
First, an acetic acid-ammonium acetate solution and a 0.1N sodium thiosulfate solution are added to a measurement sample and stirred to be completely dissolved.
Next, a starch solution is added to this sample solution, and a 0.1N iodine solution is dropped, and the sodium thiosulfate ions remaining in the solution are taken as the end point when a purple color is exhibited by the iodine starch reaction. Titrate. A blank experiment is performed in the same manner, and the Pb 3 O 4 content (% by mass) is calculated from the amount of the iodine solution used for the titration using the following formula.
Pb 3 O 4 content (% by mass) = [0.3428 × (b′−b) × f] / S × 100
b ′: Amount of iodine solution consumed during titration in the blank experiment (ml)
b: Amount of iodine solution consumed for titration of sample (ml)
f: Factor of iodine solution S: Amount of sample (g)
In the present invention, the amount of added lead is preferably 10% by mass to 30% by mass with respect to the total mass of the positive electrode active material raw material made of a mixture of lead powder and red lead. This is because if the amount of lead is less than 10% by mass, the effect of improving the discharge capacity is hardly exhibited, and if it exceeds 30% by mass, the life performance is lowered.
In this invention, a well-known thing can be used as a negative electrode plate, a separator, and a battery case.

次に、本発明の鉛蓄電池の製造方法を具体的に説明する。
まず、正極活物質原料として、鉛粉と鉛丹化率が20質量%〜80質量%の鉛丹とを用いて正極板を作製する。具体的には、鉛粉と鉛丹とを混合して、これを水及び硫酸で練り合わせ、正極活物質ペーストを作製し、この正極活物質ペーストを鉛合金格子に充填した後、熟成乾燥して未化成の正極板を作製する。
Next, the manufacturing method of the lead acid battery of this invention is demonstrated concretely.
First, as a positive electrode active material raw material, a positive electrode plate is produced using lead powder and lead tan having a lead tanning rate of 20% by mass to 80% by mass. Specifically, lead powder and red lead are mixed and kneaded with water and sulfuric acid to prepare a positive electrode active material paste. After filling this positive electrode active material paste into a lead alloy lattice, it is aged and dried. An unchemically formed positive electrode plate is produced.

次に、前記正極板と常法により作製した負極板とをセパレータを介して交互に組み合わせて極板群を作製する。次いで、極板群に、9.8〜34.3kPaの圧迫力が加わるようにして電槽内に挿入する。
極板群を加圧状態として電槽に挿入した後、極板群を溶接、セル間を接続、蓋接着し、端子溶接して組立てを完了してから、希硫酸を注液し、電槽化成することで、制御弁式鉛蓄電池が得られる。
Next, an electrode plate group is produced by alternately combining the positive electrode plate and the negative electrode plate produced by a conventional method via a separator. Next, the electrode plate group is inserted into the battery case so that a pressing force of 9.8 to 34.3 kPa is applied.
After inserting the electrode plate group into the battery case under pressure, the electrode plate group is welded, the cells are connected, the lid is bonded, the terminals are welded, the assembly is completed, and dilute sulfuric acid is injected into the battery case. A control valve type lead acid battery is obtained by forming.

本発明において、極群圧迫力を、9.8〜34.3kPaに設定するのは、極群圧迫力が9.8kPa未満であると圧迫力不足により活物質の軟化脱落が抑制できず、34.3kPaを超えると、正負極板間の電解液が押し出されてセパレータに含まれる電解液が減少し、充分な放電容量が得られなくなるからである。   In the present invention, the polar group compressive force is set to 9.8 to 34.3 kPa because if the polar group compressive force is less than 9.8 kPa, the softening and falling off of the active material cannot be suppressed due to insufficient compressive force. This is because if the pressure exceeds 0.3 kPa, the electrolyte between the positive and negative electrodes is pushed out and the electrolyte contained in the separator is reduced, so that a sufficient discharge capacity cannot be obtained.

<実施例>
以下、本発明を具体的に適用した実施例について説明する。
(1)鉛蓄電池用正極板の作製
鉛粉と、ボールミル法で製造した鉛粉を420℃で所定の鉛丹化率に達するまで焼成した鉛丹とを混合して正極活物質原料を調製した。
この正極活物質原料を水及び希硫酸で練合して正極活物質ペーストを作製し、これを鉛合金格子に充填した後、熟成乾燥して未化成の正極板を作製した。比較のために、鉛粉のみを使用した正極板も作製した(試験番号1、7、13、19、25の電池の正極板として使用)。
なお、正極板作製の際に使用した鉛丹の鉛丹化率、正極活物質原料(鉛粉と鉛丹との混合物)に対する鉛丹の添加量の詳細は、各実施例群中において示す。
<Example>
Examples to which the present invention is specifically applied will be described below.
(1) Preparation of positive electrode plate for lead-acid battery A positive electrode active material raw material was prepared by mixing lead powder and lead powder produced by ball milling at 420 ° C. until the predetermined lead tanning rate was reached. .
This positive electrode active material raw material was kneaded with water and dilute sulfuric acid to prepare a positive electrode active material paste, which was filled in a lead alloy lattice, and then aged and dried to prepare an unformed positive electrode plate. For comparison, a positive electrode plate using only lead powder was also produced (used as a positive electrode plate for batteries of test numbers 1, 7, 13, 19, and 25).
In addition, the details of the lead oxidation rate of the red lead used in the production of the positive electrode plate and the addition amount of the red lead relative to the positive electrode active material raw material (a mixture of lead powder and red lead) are shown in each example group.

(2)電池の作製
(1)で作製した未化成の正極板と、常法により作製した負極板とをセパレータを介して交互に組み合わせて極板群を作製し、この極板群に所定の極群圧迫力がかかるように電槽に挿入した後、電池の組み立てを完了させ、比重1.20(20℃)の希硫酸を注液し正極活物質理論容量の250%まで充電することで化成を行い12V50Ahの制御弁式鉛蓄電池を作製した。極群圧迫力を調整する際には、必要に応じて、スペーサーを用いた。作製した電池の極群圧迫力の詳細は各実施例群中において示す。
なお、実施例群において作製した電池の極群圧迫力の算出方法は以下の通りである。
まず、乾燥状態の正極板と負極板とをセパレータを介して積層し極板群を得る。次いで前記極板群の最外部極板の両平面を極板よりも表面積が大きく平滑な板を用いて平行に挟み、その外側からプレス機を用いて極板群を挟んだ板に対して垂直に圧をかけ、極板群の厚さを挿入する電槽内寸と同じ幅となるように圧迫し、そのときの荷重を極板群の表面積で除して極群圧迫力を算出した。実施例においては、極板群を挟む板として、ABS製の樹脂板を用いたが、プレスした際にプレス圧により変形しない程度に丈夫であれば材質はこれに限定されない。極群圧迫力はkgf/dmで算出し、SI単位に換算してkPaで記載した。
(2) Production of battery An unformed positive electrode plate produced in (1) and a negative electrode plate produced by a conventional method are alternately combined through a separator to produce an electrode plate group. After inserting into the battery case so as to apply the extreme group pressure, the battery assembly is completed, and diluted sulfuric acid with a specific gravity of 1.20 (20 ° C) is injected and charged to 250% of the theoretical capacity of the positive electrode active material. Chemical conversion was performed to produce a 12V50Ah control valve type lead acid battery. When adjusting the polar group compression force, a spacer was used as necessary. Details of the electrode group pressing force of the fabricated battery are shown in each example group.
In addition, the calculation method of the polar group compression force of the battery produced in the Example group is as follows.
First, a positive electrode plate and a negative electrode plate in a dry state are laminated via a separator to obtain an electrode plate group. Next, both planes of the outermost electrode plate of the electrode plate group are sandwiched in parallel using a smooth plate having a larger surface area than the electrode plate, and perpendicular to the plate sandwiching the electrode plate group using a press machine from the outside. Pressure was applied so that the thickness of the electrode plate group would be the same width as the inside dimension of the battery case to be inserted, and the load at that time was divided by the surface area of the electrode plate group to calculate the electrode group pressing force. In the embodiment, an ABS resin plate is used as a plate sandwiching the electrode plate group, but the material is not limited to this as long as it is strong enough not to be deformed by the pressing pressure when pressed. The polar group compression force was calculated in kgf / dm 2 and converted to SI units and expressed in kPa.

<電池性能評価試験>
上記の方法により作製した電池について、以下の手順で電池性能試験を行った。
(1)10時間率放電容量試験(容量試験)
JIS C 8704−2−1に準拠して、25℃の室温において、放電電流5.0A、放電終始電圧1.8V/セルとして、10時間率放電容量を測定した。
各電池における10時間率放電容量を、試験番号25の従来例の電池の10時間率放電容量を100とした場合の放電容量比として示した。この放電容量比が大きいほど放電容量が高いということを示す。
<Battery performance evaluation test>
About the battery produced by said method, the battery performance test was done in the following procedures.
(1) 10 hour rate discharge capacity test (capacity test)
In accordance with JIS C 8704-2-1, a 10 hour rate discharge capacity was measured at a room temperature of 25 ° C. with a discharge current of 5.0 A and a discharge start voltage of 1.8 V / cell.
The 10-hour rate discharge capacity of each battery is shown as the discharge capacity ratio when the 10-hour rate discharge capacity of the conventional battery of test number 25 is 100. A larger discharge capacity ratio indicates a higher discharge capacity.

(2)サイクル寿命試験(寿命試験)
電池を、25℃の室温において、放電電流0.2CAで2.5時間放電し、充電電圧2.4V/セル(最大電流値0.2CA)で8時間充電して、これを1サイクルとした。
試験の終了は10サイクルごとに放電時の端子電圧を確認し、端子電圧が1.8V/セル以下になったときとし、そのときのサイクル数を寿命サイクル数とした。この寿命サイクル数が大きいほど寿命性能が高いということを示す。
(2) Cycle life test (life test)
The battery was discharged at a room temperature of 25 ° C. with a discharge current of 0.2 CA for 2.5 hours and charged with a charge voltage of 2.4 V / cell (maximum current value of 0.2 CA) for 8 hours, which was one cycle. .
The test was completed when the terminal voltage at the time of discharge was confirmed every 10 cycles, when the terminal voltage became 1.8 V / cell or less, and the number of cycles at that time was defined as the number of life cycles. A larger life cycle number indicates a higher life performance.

寿命サイクル数が、試験番号55の電池の寿命サイクル数(450)よりも大きければ、寿命性能が高いと判断した。試験番号55の電池を、寿命性能の判断基準としたのは以下の理由による。   If the life cycle number was larger than the life cycle number (450) of the battery of test number 55, it was judged that the life performance was high. The battery of test number 55 was used as a criterion for determining the life performance for the following reason.

試験番号55の電池は、電池正極活物質原料として鉛丹化率98質量%の鉛丹を20質量%混合したものを用いることで、放電容量の向上を図り、かつ、極群圧迫力を49.0kPaに設定することで、寿命性能の向上を図った特許文献1に提案されている電池である。
鉛丹無添加の試験番号25の電池(鉛丹無添加、極群圧迫力49.0kPa)よりも放電容量が高く、かつ、試験番号55の電池(98質量%の鉛丹を20質量%添加、極群圧迫力49.0kPa)よりも寿命性能が高ければ、本発明の目的を達成すると考えられる。そこで、寿命性能の評価基準を試験番号55の電池とした。
The battery of Test No. 55 uses a mixture of 20% by mass of 98% by mass of lead tanning as the battery positive electrode active material material, thereby improving the discharge capacity and reducing the polar group compression force to 49%. This battery is proposed in Patent Document 1 in which life performance is improved by setting the pressure to 0.0 kPa.
The discharge capacity is higher than that of the test number 25 battery with no lead tin added (lead lead free, 49.0 kPa), and the battery with test number 55 (98% by weight of 20% lead lead added) If the life performance is higher than the pole group compression force (49.0 kPa), it is considered that the object of the present invention is achieved. Therefore, the battery with the test number 55 was used as the evaluation standard for the life performance.

<実施例群1>
鉛丹の鉛丹化率および極群圧迫力が放電容量および寿命性能に与える影響を調べるために、種々の鉛丹化率の鉛丹を種々の添加量で鉛粉に混合して作製した正極板を用い、極板群に種々の圧迫力をかけて電槽内に配して試験番号1〜80の12V50Ahの電池を作製し、容量試験と寿命試験とを行った。
表1〜3には、試験結果とともに、使用した鉛丹の鉛丹化率および添加量、極群圧迫力を示した。
<Example group 1>
In order to investigate the influence of the lead oxidation rate and the electrode group pressure on the discharge capacity and life performance, the positive electrode was prepared by mixing various lead addition rates with lead powder in various addition amounts. A 12V50Ah battery having test numbers 1 to 80 was prepared by applying various pressing forces to the electrode plate group in the battery case using a plate, and a capacity test and a life test were performed.
In Tables 1-3, along with the test results, the lead oxidation rate and the addition amount of the used red lead, and the extreme group pressure were shown.

Figure 2009123433
Figure 2009123433

Figure 2009123433
Figure 2009123433

Figure 2009123433
Figure 2009123433

(1)放電容量について
(a)鉛丹の影響
極群圧迫力が同じで、正極活物質原料として鉛丹を添加したか否かの相違点のある電池間(例えば試験番号2〜6と試験番号1、試験番号8〜12と試験番号7、試験番号14〜18と試験番号13)で、放電容量比を比較した。
表1〜表3に示すように、極群圧迫力が49.0kPaの電池を除き、鉛丹化率が20質量%以上の鉛丹を添加した電池においては、鉛丹無添加の電池よりも放電容量比が高かった。
(1) Discharge capacity (a) Effects of lead tans Between batteries with the same extreme group pressure and whether or not lead tan was added as a positive electrode active material material (for example, test numbers 2 to 6 and tests) No. 1, test numbers 8-12 and test number 7, test numbers 14-18 and test number 13), and the discharge capacity ratios were compared.
As shown in Tables 1 to 3, except for batteries having a polar group compression force of 49.0 kPa, batteries with a lead tanning rate of 20% by mass or more added with a lead tan are more than batteries without any lead tanning. The discharge capacity ratio was high.

これは、正極活物質原料として鉛丹が添加されている電池では、正極活物質の利用率を向上させることができ、これにより、活物質の使用量を削減でき、かつ、放電容量の高い電池を得られると考えられる。   This is because, in a battery to which red lead is added as a positive electrode active material raw material, the utilization rate of the positive electrode active material can be improved, thereby reducing the amount of active material used and having a high discharge capacity. It is thought that can be obtained.

また、添加する鉛丹の鉛丹化率が高くなるに従い放電容量比は高くなったが、鉛丹化率が5質量%の鉛丹を用いた電池では、鉛丹無添加の電池と放電容量比が同じという結果が得られ、鉛丹添加による放電容量向上効果が得られなかった。
以上より、正極活物質原料として鉛丹化率が20質量%以上の鉛丹を使用すると、放電容量の高い電池を得ることができるので、好適であると考えられる。
In addition, the discharge capacity ratio increased as the lead tanning rate of the added lead tan increased, but in the case of a battery using a lead tan with a lead tanning rate of 5% by mass, the battery and discharge capacity without any lead tan were added. The result that the ratio was the same was obtained, and the discharge capacity improvement effect by lead-tan addition was not acquired.
From the above, it is considered preferable to use a lead oxide having a lead oxidation rate of 20% by mass or more as a positive electrode active material raw material because a battery having a high discharge capacity can be obtained.

(b)極群圧迫力の影響
鉛丹化率と鉛丹添加量が同じで極群圧迫力が相違する電池間(例えば、試験番号3と9と15と21と27)で放電容量比を比較すると、極群圧迫力が高くなるほど放電容量比が低くなった。
(B) Effect of polar group compression force Discharge capacity ratio between batteries (for example, test numbers 3, 9, 15, 21, and 27) having the same lead oxidation rate and the same amount of lead tan and different polar group compression forces. In comparison, the discharge capacity ratio decreased as the polar group pressing force increased.

特に、極群圧迫力が49.0kPaの電池の放電容量比は、鉛丹化率98質量%の鉛丹を用いたものを除き、従来電池(試験番号25)と同じであり、放電容量向上効果が得られなかった。   In particular, the discharge capacity ratio of the battery with a polar group compression force of 49.0 kPa is the same as that of the conventional battery (test number 25) except for the one using 98% by weight of lead dantan, which improves the discharge capacity. The effect was not obtained.

これは、鉛蓄電池の極群圧迫力が高くなると、正極板と負極板との間に存在する電解液が押し出されて、両極板間に配されているセパレータに含まれる電解液が減少するので、極群圧迫力が高くなりすぎると充分な放電容量が得られなくなるからだと考えられる。
以上より、極群圧迫力が34.3kPa以下であると、放電容量の高い電池を得ることができるので、好適であると考えられる。
This is because when the electrode group pressing force of the lead storage battery increases, the electrolyte present between the positive electrode plate and the negative electrode plate is pushed out, and the electrolyte contained in the separator disposed between the two electrode plates decreases. This is considered to be because a sufficient discharge capacity cannot be obtained if the polar group compression force becomes too high.
From the above, it can be considered that a pole group pressing force of 34.3 kPa or less is preferable because a battery having a high discharge capacity can be obtained.

(c)まとめ
以上より、正極活物質原料として鉛丹化率20質量%以上の鉛丹が添加され、かつ、極群圧迫力が34.3kPa以下であれば放電容量の高い電池が得られるということがわかった。
(C) Summary From the above, a battery with a high discharge capacity can be obtained if a lead tanning rate of 20% by mass or more is added as a positive electrode active material raw material and the polar group pressing force is 34.3 kPa or less. I understood it.

(2)寿命性能について
正極活物質原料として鉛丹化率が20質量%〜80質量%の鉛丹が添加され、かつ、極群圧迫力が9.8kPa以上の電池(試験番号9〜11、15〜17、21〜23、27〜29、37〜39、42〜44、47〜49、62〜64、67〜69、72〜74)では、寿命サイクル数が試験番号55の電池の寿命サイクル数(450)よりも大きかった。
(2) Life performance battery having a lead tanning ratio of 20% by mass to 80% by mass as a positive electrode active material raw material and a polar group compression force of 9.8 kPa or more (test numbers 9 to 11, 15-17, 21-23, 27-29, 37-39, 42-44, 47-49, 62-64, 67-69, 72-74), the life cycle of the battery whose test cycle number is 55 It was greater than the number (450).

これは、鉛丹化率が20〜80質量%の鉛丹の使用により、98重量%の鉛丹の鉛蓄電池よりも活物質粒子間の結合が強化されたので、極群圧迫力を小さくすることに起因する活物質の軟化脱落を抑制できたからではないかと考えられる。
なお、極群圧迫力が9.8kPa未満の電池(試験番号1〜6、31〜35、56〜60)では、極群圧迫力が低すぎて、活物質の軟化脱落を抑制できなかったと考えられる。
This is because the bond between active material particles is reinforced by the use of a lead tan with a lead oxidation rate of 20 to 80% by mass than the lead storage battery of 98 wt. This is thought to be because the softening and falling off of the active material due to the above could be suppressed.
In addition, in the battery (test numbers 1-6, 31-35, 56-60) whose polar group compressive force is less than 9.8 kPa, it is thought that the polar group compressive force was too low to suppress the softening and falling off of the active material. It is done.

(3)(1)および(2)より、鉛丹化率が20〜80質量%の鉛丹を正極活物質原料として添加し、極群圧迫力が9.8〜34.3kPaの本発明の電池(試験番号9〜11、15〜17、21〜23、37〜39、42〜44、47〜49、62〜64、67〜69、72〜74)によれば、制御弁式鉛蓄電池の寿命性能を低下させずに、放電容量を向上させることができる。   (3) From (1) and (2), a lead tanning rate of 20 to 80% by mass is added as a positive electrode active material raw material, and the extreme group compression force is 9.8 to 34.3 kPa. According to the batteries (test numbers 9-11, 15-17, 21-23, 37-39, 42-44, 47-49, 62-64, 67-69, 72-74) The discharge capacity can be improved without deteriorating the life performance.

<実施例群2>
鉛粉に混合する鉛丹の添加量について検討するために、種々の鉛丹化率の鉛丹を種々の添加量で添加して作製した正極板を備える電池を作製してその性能を比較した。本実施例群では、表4〜6に示す試験番号81〜98の電池を新たに作製した。
これらの電池(試験番号81〜98)について容量試験と寿命試験とを行った。
<Example group 2>
In order to examine the amount of lead added to the lead powder, batteries with positive plates made by adding various amounts of lead tan are added in various amounts, and their performance was compared. . In this example group, batteries with test numbers 81 to 98 shown in Tables 4 to 6 were newly produced.
A capacity test and a life test were performed on these batteries (test numbers 81 to 98).

表4〜6には、試験結果とともに、使用した鉛丹の鉛丹化率および添加量、極群圧迫力を示した。また、表4〜6には、実施例群1で行った試験番号7、9〜11、13、15〜17、19、21〜23、37〜39、42〜44、47〜49、62〜64、67〜69、72〜74の電池の試験結果も併せて示した。   Tables 4 to 6 show the test results and the lead oxidation rate and addition amount of the red lead used, and the extreme group pressure. Moreover, in Tables 4-6, the test numbers 7, 9-11, 13, 15-17, 19, 21-23, 37-39, 42-44, 47-49, 62- conducted in Example group 1 The test results of batteries Nos. 64, 67 to 69, and 72 to 74 are also shown.

Figure 2009123433
Figure 2009123433

Figure 2009123433
Figure 2009123433

Figure 2009123433
Figure 2009123433

(1)放電容量について
表4〜6に示すように、どの鉛丹化率の鉛丹を用いた場合でも、鉛丹の添加量が増えるに従い放電容量比が高くなった。
特に、極群圧迫力が同じ電池間で、鉛丹添加量が10質量%以上の電池と鉛丹無添加の電池とを比較すると(例えば、試験番号9、37、62または82の電池と試験番号7の電池)、試験番号15と試験番号42の電池を除いて、放電容量比の差は2以上であり、鉛丹添加による顕著な放電容量向上効果が確認された。
(1) About discharge capacity As shown in Tables 4 to 6, the discharge capacity ratio increased as the amount of lead tan was increased, regardless of the amount of dantan.
In particular, when batteries having the same amount of pressure in the polar group are compared with a battery having a lead content of 10% by mass or more and a battery having no lead content added (for example, a test with a test number 9, 37, 62, or 82 battery and a test). Except for the battery of No. 7) and the test No. 15 and the battery of Test No. 42, the difference in the discharge capacity ratio was 2 or more, and the remarkable effect of improving the discharge capacity by adding lead was confirmed.

一方、極群圧迫力が同じ電池間で、鉛丹添加量5質量%の電池と、鉛丹無添加の電池とを比較すると(例えば試験番号81の電池と試験番号7の電池)、放電容量比の差が0か1であった。このことから、鉛丹の添加量が5質量%では、鉛丹添加による放電容量向上効果が充分に発揮できないと考えられる。
以上より、本発明においては、鉛丹の添加量は10質量%以上であることが好ましいと考えられる。
On the other hand, when the battery with the same amount of pressure in the polar group is compared with a battery with 5% by weight of lead-tan added and a battery without lead-tan (for example, the battery with test number 81 and the battery with test number 7), the discharge capacity The difference in ratio was 0 or 1. From this fact, it is considered that when the amount of added lead is 5% by mass, the effect of improving the discharge capacity due to the addition of lead is not sufficiently exhibited.
From the above, in the present invention, it is considered that the amount of lead red is preferably 10% by mass or more.

(2)寿命性能について
表4〜6に示すように、本発明の電池(試験番号9〜11、15〜17、21〜23、37〜39、42〜44、47〜49、62〜64、67〜69、72〜74、81〜98)の寿命サイクル数は、試験番号55の電池(寿命サイクル数450)よりも大きかった。
(2) Life performance As shown in Tables 4 to 6, the batteries of the present invention (test numbers 9 to 11, 15 to 17, 21 to 23, 37 to 39, 42 to 44, 47 to 49, 62 to 64, 67-69, 72-74, 81-98) was greater than the test number 55 battery (life cycle number 450).

これらのうち、鉛丹を10質量%〜30質量%添加した電池(試験番号9〜11、15〜17、21〜23、37〜39、42〜44、47〜49、62〜64、67〜69、72〜74)では、寿命サイクル数が500以上であり、特に良好な結果が得られた。
以上より、本発明においては、鉛丹の添加量は10質量%以上30質量%以下であることが好ましいと考えられる。
Among these, batteries (test numbers 9-11, 15-17, 21-23, 37-39, 42-44, 47-49, 62-64, 67- 69, 72-74), the number of life cycles was 500 or more, and particularly good results were obtained.
From the above, in the present invention, it is considered that the addition amount of the red lead is preferably 10% by mass or more and 30% by mass or less.

(3)まとめ
以上より、本発明において、正極活物質原料中の鉛丹の添加量は、10質量%以上、30質量%以下であると、放電容量が高く、かつ、寿命性能に優れた電池が得られて、好ましい。
(3) Summary As described above, in the present invention, when the amount of lead oxide in the positive electrode active material material is 10% by mass or more and 30% by mass or less, the battery has high discharge capacity and excellent life performance. Is preferable.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施例群においては、混合する鉛丹として鉛丹化率が5、20、50、80、98質量%のものを用い、鉛丹添加量が5、10、20、30、40質量%となるように鉛粉に添加したが、鉛丹の鉛丹化率は40質量%、60質量%、70質量%のものであってもよいし鉛丹添加量は15質量%、25質量%などであってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the said Example group, the lead tanning rate of 5, 20, 50, 80, and 98 mass% is used as a lead tan to mix, and the amount of lead tan addition is 5, 10, 20, 30, 40. Although it added to lead powder so that it might become the mass%, the lead tanning rate of a red lead may be 40 mass%, 60 mass%, and 70 mass%, and a lead red addition amount is 15 mass%, 25 It may be mass%.

(2)上記実施例群においては極群圧迫力を、4.9kPa、9.8kPa、24.5kPa、34.3kPa、49.0kPaに設定した電池を示したが、極群圧迫力を19.6kPa、29.4kPaに設定したものなどであってもよい。   (2) In the above-described example group, the batteries in which the polar group compressive force was set to 4.9 kPa, 9.8 kPa, 24.5 kPa, 34.3 kPa, and 49.0 kPa were shown. It may be set to 6 kPa, 29.4 kPa, or the like.

(3)上記実施形態において、鉛丹としては、ボールミル法で製造した鉛粉を420℃で所定の鉛丹化率に達するまで焼成したものを用いたが、バートン法など他の方法で製造した鉛粉を焼成したものであってもよい。   (3) In the above-described embodiment, the lead powder was produced by firing the lead powder produced by the ball mill method at 420 ° C. until reaching a predetermined lead tanning rate, but produced by other methods such as the Barton method. The lead powder may be fired.

Claims (2)

正極板と負極板とセパレータとを備える極板群が、電槽内に配された制御弁式鉛蓄電池の製造方法であって、
正極活物質原料として、鉛粉と鉛丹化率が20質量%〜80質量%の鉛丹とを用いて正極板を作製する工程と、
前記極板群に、9.8〜34.3kPaの圧迫力が加わるよう前記電槽内に配する工程と、
を備えたことを特徴とする制御弁式鉛蓄電池の製造方法。
An electrode plate group comprising a positive electrode plate, a negative electrode plate and a separator is a method for producing a control valve type lead storage battery disposed in a battery case,
As a positive electrode active material raw material, a step of producing a positive electrode plate using lead powder and a lead tan having a lead tanning rate of 20% by mass to 80% by mass;
A step of placing the electrode plate group in the battery case so that a pressing force of 9.8 to 34.3 kPa is applied;
A method for producing a control valve type lead-acid battery, comprising:
前記鉛丹の添加量が、前記正極活物質原料全体に対して10質量%〜30質量%であることを特徴とする請求項1に記載の制御弁式鉛蓄電池の製造方法。 2. The method for producing a control valve type lead-acid battery according to claim 1, wherein an addition amount of the red lead is 10% by mass to 30% by mass with respect to the whole positive electrode active material raw material.
JP2007294514A 2007-11-13 2007-11-13 Method of manufacturing control valve type lead-acid battery Pending JP2009123433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294514A JP2009123433A (en) 2007-11-13 2007-11-13 Method of manufacturing control valve type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294514A JP2009123433A (en) 2007-11-13 2007-11-13 Method of manufacturing control valve type lead-acid battery

Publications (1)

Publication Number Publication Date
JP2009123433A true JP2009123433A (en) 2009-06-04

Family

ID=40815389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294514A Pending JP2009123433A (en) 2007-11-13 2007-11-13 Method of manufacturing control valve type lead-acid battery

Country Status (1)

Country Link
JP (1) JP2009123433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582586A (en) * 2020-11-13 2021-03-30 骆驼集团蓄电池研究院有限公司 Preparation process of lead-acid battery suitable for high-temperature use
WO2022113628A1 (en) 2020-11-27 2022-06-02 株式会社Gsユアサ Lead acid storage battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160366A (en) * 1988-12-12 1990-06-20 Matsushita Electric Ind Co Ltd Method and device for manufacture of lead powder with high degree of oxidation
JPH0676822A (en) * 1992-08-28 1994-03-18 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH10270029A (en) * 1997-03-26 1998-10-09 Shin Kobe Electric Mach Co Ltd Raw material of active material for lead-acid battery and the battery with the material
JP2002343416A (en) * 2001-05-21 2002-11-29 Shin Kobe Electric Mach Co Ltd Control valve type lead-acid battery
JP2003157906A (en) * 2001-11-22 2003-05-30 Japan Storage Battery Co Ltd Charging method of control valve type lead-acid battery
JP2005044772A (en) * 2003-07-04 2005-02-17 Shin Kobe Electric Mach Co Ltd Paste type positive electrode plate of lead-acid storage battery
JP2006221835A (en) * 2005-02-08 2006-08-24 Matsushita Electric Ind Co Ltd Control valve type lead acid storage battery
JP2007184124A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing valve regulated lead acid battery, and valve regulated lead acid battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160366A (en) * 1988-12-12 1990-06-20 Matsushita Electric Ind Co Ltd Method and device for manufacture of lead powder with high degree of oxidation
JPH0676822A (en) * 1992-08-28 1994-03-18 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH10270029A (en) * 1997-03-26 1998-10-09 Shin Kobe Electric Mach Co Ltd Raw material of active material for lead-acid battery and the battery with the material
JP2002343416A (en) * 2001-05-21 2002-11-29 Shin Kobe Electric Mach Co Ltd Control valve type lead-acid battery
JP2003157906A (en) * 2001-11-22 2003-05-30 Japan Storage Battery Co Ltd Charging method of control valve type lead-acid battery
JP2005044772A (en) * 2003-07-04 2005-02-17 Shin Kobe Electric Mach Co Ltd Paste type positive electrode plate of lead-acid storage battery
JP2006221835A (en) * 2005-02-08 2006-08-24 Matsushita Electric Ind Co Ltd Control valve type lead acid storage battery
JP2007184124A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing valve regulated lead acid battery, and valve regulated lead acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582586A (en) * 2020-11-13 2021-03-30 骆驼集团蓄电池研究院有限公司 Preparation process of lead-acid battery suitable for high-temperature use
WO2022113628A1 (en) 2020-11-27 2022-06-02 株式会社Gsユアサ Lead acid storage battery

Similar Documents

Publication Publication Date Title
TWI539644B (en) Flooded lead-acid battery and method of making the same
JP5938254B2 (en) Negative electrode plate for lead acid battery, method for producing the same and lead acid battery
WO2014128803A1 (en) Flooded lead-acid battery
JP2017183283A (en) Positive electrode plate for lead storage battery, lead storage battery using the same, and method for manufacturing positive electrode plate for lead storage battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP6112225B2 (en) Control valve type lead acid battery
CN104221189B (en) Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate
JP2009199735A (en) Manufacturing method of control valve type lead-acid storage battery
JP6725386B2 (en) Positive plate for lead acid battery and lead acid battery
JP2009123433A (en) Method of manufacturing control valve type lead-acid battery
JP2021086731A (en) Positive electrode plate for lead acid battery, and lead acid battery
JP5637503B2 (en) Lead acid battery
JP2009016143A (en) Manufacturing method of paste type cathode plate for lead storage cell and lead storage cell
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP5196732B2 (en) Method for producing lead-acid battery
JP5029871B2 (en) Lead acid battery
JP5299672B2 (en) Lead acid battery
JP5003171B2 (en) Manufacturing method of paste type positive electrode plate
JP2001307733A (en) Sealed lead storage battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP2008311051A (en) Lead storage battery
JP4561191B2 (en) Method for producing positive active material for paste
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305