JP2007184124A - Method of manufacturing valve regulated lead acid battery, and valve regulated lead acid battery - Google Patents

Method of manufacturing valve regulated lead acid battery, and valve regulated lead acid battery Download PDF

Info

Publication number
JP2007184124A
JP2007184124A JP2006000349A JP2006000349A JP2007184124A JP 2007184124 A JP2007184124 A JP 2007184124A JP 2006000349 A JP2006000349 A JP 2006000349A JP 2006000349 A JP2006000349 A JP 2006000349A JP 2007184124 A JP2007184124 A JP 2007184124A
Authority
JP
Japan
Prior art keywords
battery
charging
electrode plate
manufacturing
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006000349A
Other languages
Japanese (ja)
Other versions
JP5061460B2 (en
Inventor
Isao Imon
勲 井門
Takanori Ikeda
貴徳 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006000349A priority Critical patent/JP5061460B2/en
Publication of JP2007184124A publication Critical patent/JP2007184124A/en
Application granted granted Critical
Publication of JP5061460B2 publication Critical patent/JP5061460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of effectively suppressing dendrite short occurrence without impairing an output characteristic of a battery; and to provide a valve regulated lead acid battery. <P>SOLUTION: This method of manufacturing the valve regulated lead acid battery provided with an electrode plate group with a mat separator impregnated with and retaining an electrolyte arranged between a positive electrode plate and a negative electrode plate is characterized by including: a first charging step for injecting the electrolyte containing sulfuric acid into every unit cell with the electrode plate group composed of chemically non-converted electrode plates housed therein and charging the battery by a first charging current I<SB>1</SB>after the electrolyte injection; a storage step for leaving the battery on a shelf for a predetermined period after the first charging step; and a second charging step executed after the storage step for charging the battery by a second charging current I<SB>2</SB>smaller than the first charging current I<SB>1</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、制御弁式鉛蓄電池の製造方法および制御弁式鉛蓄電池に関するものである。   The present invention relates to a method for manufacturing a control valve type lead storage battery and a control valve type lead storage battery.

特に、電動車用の制御弁式鉛蓄電池では、大容量化とともに、高出力化が求められている。高出力化のために、極板を薄型化したり、極板間距離をより短く設定することが行われる。また、大容量化を目的として単位セルを構成する極板群体積あたりの活物質量はより多く設定される傾向にある。   In particular, a control valve type lead storage battery for an electric vehicle is required to have a high output as well as a large capacity. In order to increase the output, the electrode plates are made thinner or the distance between the electrode plates is set shorter. Also, the amount of active material per electrode plate group volume constituting the unit cell tends to be set larger for the purpose of increasing the capacity.

一方、制御弁式鉛蓄電池の化成充電方法として、未化成極板で電池を組み立て、硫酸を含む電解液を注液して通電化成を行う、いわゆる電槽化成方式が広く採用されている。他の化成方法として、正負の未化成極板を化成槽中に配置して、電池組み立て前に極板を予め化成する、いわゆる極板化成方式も即用式をはじめとする一部の電池に採用されている。   On the other hand, as a chemical charging method for a control valve type lead-acid battery, a so-called battery formation method is widely adopted in which a battery is assembled with an unformed electrode plate, and an electrolytic solution containing sulfuric acid is injected to conduct energization. As another conversion method, positive and negative unformed electrode plates are placed in a conversion tank, and the electrode plates are pre-formed before battery assembly. It has been adopted.

極板化成の場合、特に高出力化のために薄型化された正極板においては活物質強度が脆弱であるため、電池組み立て工程で活物質が脱落したり、この脱落活物質が電池内部短絡の要因となる。したがって、このような電池では、化成済極板に比較して強度の高い未化成極板で電池を組み立て、電槽化成を行うことが一般的である。   In the case of electrode plate formation, the active material strength is fragile especially in the positive electrode plate thinned for high output, so the active material may fall off during the battery assembly process, It becomes a factor. Therefore, in such a battery, it is common to assemble the battery with an unformed electrode plate having a higher strength than that of the formed electrode plate, and to perform battery case formation.

また、電槽化成方式は極板化成方式で必要な化成槽や化成済み極板の洗浄・乾燥工程を必要としないため、製造工程が簡略化でき、また設備コストの面でも極板化成方式よりも優れている。   In addition, the battery tank formation method does not require cleaning and drying processes for the chemical conversion tank and the formed electrode plate that are necessary for the electrode plate formation method, so the manufacturing process can be simplified and the equipment cost is also better than the electrode plate formation method. Is also excellent.

しかしながら、さらに、極板群体積あたりの活物質量を多く設定したり、極板間距離をより短くした電池を電槽化成する際、電解液の注液後に行う電槽化成初期に、電池内部で正極−負極間が内部短絡するという課題が顕在化してきた。   However, when a battery with a larger amount of active material per electrode plate group volume or with a shorter distance between the electrode plates is formed into a battery case, the inside of the battery is formed at the initial stage of battery formation after the electrolyte is injected. Thus, the problem of internal short circuit between the positive electrode and the negative electrode has become apparent.

未化成状態の正極および負極の活物質は酸化鉛や塩基性硫酸鉛を主成分とし、未化成活物質総体として塩基性を呈する。したがって、セル内に注液された電解液中に含まれる硫酸は未化成活物質と中和し、電解液中の硫酸が消費される。   The active material of the unformed positive electrode and the negative electrode contains lead oxide or basic lead sulfate as a main component, and exhibits basicity as a whole of the unformed active material. Therefore, the sulfuric acid contained in the electrolytic solution injected into the cell is neutralized with the unformed active material, and the sulfuric acid in the electrolytic solution is consumed.

特に極板群体積あたりの活物質総量が多い電池では、上記した中和反応が急激に進行し、電解液中の硫酸濃度が急激に低下するため、電解液のpHが急激に上昇する。電解液のpH上昇により、電解液中のPbイオン溶解度が増大する。   In particular, in a battery having a large amount of active material per electrode plate group volume, the neutralization reaction described above proceeds rapidly, and the sulfuric acid concentration in the electrolytic solution decreases rapidly, so that the pH of the electrolytic solution increases rapidly. As the pH of the electrolyte increases, the solubility of Pb ions in the electrolyte increases.

このように電解液中に溶出したPbイオンは、電槽化成初期に負極板上に樹枝状結晶(デンドライト)として析出する。中でも極板間距離が短い電池では、デンドライトが容易にセパレータを貫通し、正極と負極の短絡を引き起こす。   Thus, the Pb ions eluted in the electrolytic solution are precipitated as dendritic crystals (dendrites) on the negative electrode plate in the early stage of battery case formation. In particular, in a battery having a short distance between electrode plates, the dendrite easily penetrates the separator, causing a short circuit between the positive electrode and the negative electrode.

このような、デンドライトによる正極−負極間の短絡を抑制するために、例えば特許文献1には、セパレータに用いるガラス繊維マット中にシリカ、アルミナ等の耐酸性の無機粉体を添加する構成が示されている。   In order to suppress such a short circuit between the positive electrode and the negative electrode due to dendrites, for example, Patent Document 1 shows a configuration in which acid-resistant inorganic powders such as silica and alumina are added to a glass fiber mat used for a separator. Has been.

このような無機粉体により、セパレータ中の孔が迷路形状となり、セパレータ内における、デンドライトの直線的な成長が抑制され、短絡を抑制する。   By such inorganic powder, the hole in a separator becomes a maze shape, the linear growth of a dendrite in a separator is suppressed, and a short circuit is suppressed.

また、特許文献2には、セパレータに用いるガラス繊維にホウ酸塩を固定しておき、注液直後の電解液pHが上昇した際のPbイオン溶解度上昇を抑制し、デンドライトそのものの析出量を抑制することが示されている。
特開平11−260335号公報 特開2003−338271号公報
In Patent Document 2, borate is fixed to the glass fiber used for the separator, and the increase in the Pb ion solubility when the electrolyte pH immediately after injection is increased is suppressed, and the amount of precipitation of the dendrite itself is suppressed. Has been shown to do.
JP 11-260335 A JP 2003-338271 A

上記したような、特許文献1および特許文献2の構成によれば、デンドライトショートをある程度まで抑制することが可能である。しかしながら、例えば特許文献1の構成では、セパレータ中に無機粉体を配置するため、極板間の内部抵抗が増大し、急放電時の電圧が低下するため、出力が低下する。   According to the configurations of Patent Document 1 and Patent Document 2 as described above, it is possible to suppress a dendrite short to some extent. However, in the configuration of Patent Document 1, for example, since the inorganic powder is disposed in the separator, the internal resistance between the electrode plates is increased, and the voltage at the time of sudden discharge is decreased, so that the output is decreased.

また、特許文献2の構成では、電解液中に電池の充放電反応に寄与しないイオンを添加することになるため、充放電時における硫酸イオンの拡散が阻害され、特許文献1の構成と同様、内部抵抗増大により出力特性が低下するという課題があった。   Moreover, in the structure of patent document 2, since the ion which does not contribute to the charging / discharging reaction of a battery is added in electrolyte solution, the spreading | diffusion of the sulfate ion at the time of charging / discharging is inhibited, There was a problem that output characteristics deteriorated due to an increase in internal resistance.

本発明は、出力特性を高いレベルで維持しつつ、注液後のデンドライトショートを抑制した、制御弁式鉛蓄電池の製造方法を提供するものである。   The present invention provides a control valve type lead-acid battery manufacturing method that suppresses dendrite short-circuiting after injection while maintaining output characteristics at a high level.

前記した課題を解決するために、本発明の請求項1に係る発明は、正極板と負極板の間に電解液を含浸保持するマットセパレータを配置した極板群を備えた制御弁式鉛蓄電池の製造法であり、未化成極板で構成された前記極板群を収納した単位セル毎に硫酸を含む電解液を注液し、電解液注液後に第1の充電電流(I1)で電池を充電する第1の充電ステップと、この第1の充電ステップ後に所定時間電池を放置する放置ステップと、この放置ステップに引き続いて行われ、かつ前記第1の充電電流(I1)未満である第2の充電電流(I2)で充電する第2の充電ステップを含む、制御弁式鉛蓄電池の製造方法を示すものである。 In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention provides a control valve type lead-acid battery including an electrode plate group in which a mat separator for impregnating and holding an electrolyte is interposed between a positive electrode plate and a negative electrode plate. In this method, an electrolytic solution containing sulfuric acid is injected into each unit cell in which the electrode plate group composed of unformed electrode plates is accommodated, and the battery is charged with the first charging current (I 1 ) after the electrolytic solution is injected. A first charging step for charging; a leaving step for leaving the battery for a predetermined time after the first charging step; a first step that is performed following the leaving step and is less than the first charging current (I 1 ). The manufacturing method of a control valve type lead acid battery including the 2nd charge step charged with 2 charging currents (I2) is shown.

また、本発明の請求項2に係る発明は、請求項1の制御弁式鉛蓄電池の製造方法において、第1の電流(I1)を0.3CA以上としたことを特徴とする。 The invention according to claim 2 of the present invention is characterized in that, in the control valve type lead-acid battery manufacturing method of claim 1, the first current (I 1 ) is 0.3 CA or more.

さらに、本発明の請求項3に係る発明は、請求項1もしくは2の制御弁式鉛蓄電池の製造方法において、単位セルに注液される希硫酸電解液中に含まれる硫酸質量(X)、単位セルに包含される正極未化成活物質量(P)および負極未化成活物質量(N)において、X/(P+N)を0.15以下とすることを特徴とする。   Furthermore, the invention according to claim 3 of the present invention is the method of manufacturing a control valve type lead storage battery according to claim 1 or 2, wherein the sulfuric acid mass (X) contained in the dilute sulfuric acid electrolyte injected into the unit cell, X / (P + N) is 0.15 or less in the amount of positive electrode unformed active material (P) and the amount of negative electrode unformed active material (N) included in the unit cell.

また、本発明の請求項4に係る発明は、請求項1、2もしくは3の制御弁式鉛蓄電池の製造方法において、第2の充電ステップ後、少なくとも第2の充電電流(I2)よりも大である第3の充電電流(I3)で充電する第3の充電ステップを含むことを特徴とする。 According to a fourth aspect of the present invention, in the method for manufacturing a control valve type lead-acid battery according to the first, second, or third aspect, after the second charging step, at least the second charging current (I 2 ). It includes a third charging step of charging with a third charging current (I 3 ) which is large.

そして、本発明の請求項5に係る発明は、請求項1、2、3もしくは4の制御弁式鉛蓄電池の製造方法によって得た制御弁式鉛蓄電池を示すものである。   And the invention which concerns on Claim 5 of this invention shows the control valve type lead acid battery obtained by the manufacturing method of the control valve type lead acid battery of Claim 1, 2, 3 or 4. FIG.

前記した本発明の構成によれば、電池の大容量化や高出力化を目的として、極板群体積あたりの活物質量を多く設定したり、極板間距離をより短くした電池においても、電槽化成初期に発生していた正極−負極間のデンドライトショートの発生を顕著に抑制することができる。   According to the configuration of the present invention described above, for the purpose of increasing the capacity and output of the battery, the amount of active material per electrode plate group volume is set more or even in a battery with a shorter distance between the electrode plates, It is possible to remarkably suppress the occurrence of a dendrite short between the positive electrode and the negative electrode that occurred in the early stage of battery case formation.

本発明の実施の形態による制御弁式鉛蓄電池(以下、電池)の製造方法を説明する。   The manufacturing method of the control valve type lead acid battery (henceforth battery) by embodiment of this invention is demonstrated.

図1に本発明を適用する未化成状態の電池101を示す。電池101は、電槽102中に設けられたセル室103に極板群104が収納された構造を有する。極板群104は正極板105と負極板106との間に電解液を含浸保持可能なガラス繊維マット等のマットセパレータ107が配置されている。   FIG. 1 shows an unformed battery 101 to which the present invention is applied. The battery 101 has a structure in which an electrode plate group 104 is accommodated in a cell chamber 103 provided in a battery case 102. In the electrode plate group 104, a mat separator 107 such as a glass fiber mat capable of impregnating and holding an electrolyte is disposed between the positive electrode plate 105 and the negative electrode plate 106.

なお、正極板105および負極板106はそれぞれ同極性同士が棚108で連結され、棚108には、電池出力を外部に導出する、あるいは隣接する極板群104間を接続するための接続部材109が設けられている。そして、電槽102は注液口110を設けた蓋111が接合される。   The positive electrode plate 105 and the negative electrode plate 106 have the same polarity connected by a shelf 108, and a connection member 109 for leading the battery output to the outside or connecting between adjacent electrode plate groups 104 to the shelf 108. Is provided. The battery case 102 is joined with a lid 111 provided with a liquid injection port 110.

また、本発明を適用する前の電池101では、正極板105および負極板106にそれぞれ未化成状態の活物質が充填されている。   Further, in the battery 101 before the application of the present invention, the positive electrode plate 105 and the negative electrode plate 106 are filled with an active material in an unformed state, respectively.

図2に本発明の制御弁式鉛蓄電池の製造方法を示すステップ図である。   FIG. 2 is a step diagram showing the method for manufacturing the control valve type lead storage battery of the present invention.

前記した未化成状態の正極板105および負極板106で組み立てられた電池101のセル室103内に希硫酸を含む電解液を注液する。   An electrolyte containing dilute sulfuric acid is injected into the cell chamber 103 of the battery 101 assembled with the positive electrode plate 105 and the negative electrode plate 106 in the unformed state.

次に、電池101に第1の電流通電(I1)で通電化成を行う。これを第1の充電ステップとする。第1の充電電流(I1)は後述する第2の充電ステップでの充電電流値である第2の充電電流(I2)よりも大きな電流値とするが、電池101に対して0.30CA以上の電流値で行うことが好ましい。但し、過大な充電電流は電池101から過大な発熱や減液が大きく、化成効率が低下するため、0.75CA以下とすることが好ましい。なお、この第1の充電ステップにおける充電時間は10秒〜600秒程度に設定すればよい。 Next, the battery 101 is energized and formed by the first current application (I 1 ). This is the first charging step. The first charging current (I 1 ) is larger than the second charging current (I 2 ) that is the charging current value in the second charging step described later, but is 0.30 CA for the battery 101. It is preferable to carry out at the above current value. However, the excessive charging current is preferably set to 0.75 CA or less because excessive heat generation and liquid reduction from the battery 101 are large and chemical conversion efficiency is lowered. The charging time in the first charging step may be set to about 10 seconds to 600 seconds.

第1の充電ステップが終了した後は、電池101に充放電操作を行わない、放置ステップに入る。放置ステップにおける電池放置時間は60秒〜30分程度に設定することができる。   After the first charging step is completed, the battery 101 is left without being charged / discharged. The battery leaving time in the leaving step can be set to about 60 seconds to 30 minutes.

放置ステップが終了した後は、第1の充電ステップにおける第1の充電電流(I1)よりも低い第2の充電電流(I2)で電池101を充電する、第2の充電ステップを行う。この第2の充電ステップは電池101の化成が完了するまで継続することができる。したがって、第2の充電ステップでの充電時間は、電池101の放電容量と、第1の充電ステップでの充電電気量および第2の充電電流(I2)値を勘案し、電池101の化成完了に必要な十分な電気量が確保できるよう、設定すればよい。 After the leaving step is completed, a second charging step is performed in which the battery 101 is charged with a second charging current (I 2 ) lower than the first charging current (I 1 ) in the first charging step. This second charging step can be continued until the formation of the battery 101 is completed. Therefore, the charging time in the second charging step is determined based on the discharge capacity of the battery 101, the amount of electricity charged in the first charging step, and the second charging current (I 2 ) value. It may be set so that a sufficient amount of electricity necessary for the operation can be secured.

電槽化成終了後は注液口110にキャップ弁(図示せず)等を装着し、制御弁構造を配置すれば、本発明の製造方法による制御弁式鉛蓄電池を得られることは言うまでもない。   Needless to say, if a cap valve (not shown) or the like is attached to the liquid injection port 110 and the control valve structure is arranged after the formation of the battery case, a control valve type lead storage battery according to the manufacturing method of the present invention can be obtained.

本発明の発明者らは、電槽化成初期のデンドライトの成長を抑制する上で、化成初期において、一旦、通電を休止し、適切な休止時間の後に、化成初期電流値よりも低い電流値で電槽化成することが極めて顕著な効果を奏することを見出した。   In order to suppress the dendrite growth in the early stage of battery case formation, the inventors of the present invention temporarily stopped energization in the early stage of formation, and after an appropriate pause time, the current value was lower than the initial formation current value. It has been found that forming a battery case has a very remarkable effect.

このような本発明の効果のメカニズムは定かではない。第1の充電ステップにおいては、正極および負極の未化成活物質が充電されてそれぞれ2酸化鉛および鉛に変化する。通電当初、電解液中に溶解しているPbイオンは負極板上で還元され、デンドライトが成長し始めると考えられ、事実、そのまま通電を継続すると、デンドライトはさらに成長し、セパレータを貫通することによって、極板間が短絡する。   Such a mechanism of the effect of the present invention is not clear. In the first charging step, the positive and negative active materials are charged and changed to lead dioxide and lead, respectively. At the beginning of energization, Pb ions dissolved in the electrolyte solution are reduced on the negative electrode plate, and it is considered that dendrites begin to grow. Short circuit between electrode plates.

しかしながら、通電を一旦休止して放置することにより、デンドライトの成長は抑制されることから、何らかの理由により、放置中にデンドライトの結晶成長点が不活性化する、あるいはデンドライト結晶核が消失等により、不活性化すると推測される。   However, since the dendrite growth is suppressed by temporarily stopping energization, the crystal growth point of the dendrite is deactivated for some reason, or the dendrite crystal nucleus disappears, etc. Presumed to be inactivated.

なお、第1の充電ステップが長時間に及ぶと第1の充電ステップ中にデンドライトショートが発生する可能性がある。また、デンドライトショートに至る時間は電池設計によって異なる場合があるため、事前に確認を行い、適切な時間に設定するが、通常の制御弁式鉛蓄電池では、充電電流(I1)を電池容量に対して0.05〜1.0CAとした範囲において、第1の充電ステップの充電時間を10秒〜600秒程度の範囲で設定することができる。 Note that if the first charging step takes a long time, a dendrite short circuit may occur during the first charging step. In addition, since the time to a dendrite short may vary depending on the battery design, check it in advance and set it to an appropriate time. However, in a normal control valve type lead-acid battery, the charging current (I 1 ) is the battery capacity. On the other hand, in the range of 0.05 to 1.0 CA, the charging time of the first charging step can be set in the range of about 10 seconds to 600 seconds.

但し、この値は、電解液中の硫酸質量や濃度あるいはセルあたりの正・負活物質の比率あるいはセパレータ厚み等、電池設計要素に依存すると考えられるため、本発明の実施にあたっては、適用する電池毎に第1の充電ステップ中にデンドライトショートが発生しない範囲で充電時間を予め設定することが望ましい。   However, this value is considered to depend on the battery design factors such as the mass and concentration of sulfuric acid in the electrolytic solution, the ratio of positive / negative active material per cell, or the thickness of the separator. It is desirable to set the charging time in advance within a range where a dendrite short circuit does not occur during the first charging step.

また、第1の充電電流(I1)は0.3CA以上とすることにより、デンドライトショートのみならず、目視可能な程度のデンドライトの成長を殆ど皆無なまでに抑制できるため、特に好ましい。 Further, it is particularly preferable that the first charging current (I 1 ) is 0.3 CA or more because not only dendrite shorts but also visible dendrite growth can be suppressed to almost zero.

放置ステップにおける放置時間は、少なくとも40秒以上、好ましくは60秒以上であればデンドライトショート抑制効果が得られる。なお、この時間も電池機種毎に確認実験を行い、その下限値を設定しておくことが好ましい。なお、本発明の効果を得る上で、放置時間の上限はないが、放置時間を長くすることは、電槽化成に必要な時間が長くなる上、放置時間中に極板の硫酸鉛化が進行し、化成効率が低下するため、必要以上に長くすることは、好ましくない。通常はこの時間を4時間以内に設定すればよい。   If the standing time in the standing step is at least 40 seconds or more, preferably 60 seconds or more, a dendrite short-circuit suppressing effect can be obtained. In addition, it is preferable to perform a confirmation experiment for each battery model and set the lower limit for this time. In order to obtain the effect of the present invention, there is no upper limit of the standing time, but increasing the standing time increases the time required for the formation of the battery case and leads to lead sulfate conversion during the standing time. Since it progresses and chemical conversion efficiency falls, it is not preferable to make it longer than necessary. Normally, this time may be set within 4 hours.

放置ステップに続き、第1の充電電流(I1)よりも低い第2の充電電流(I2)で第2の充電ステップを行うが、第2の充電電流(I2)を第1の充電電流(I1)以上とすると、デンドライト成長が再発することが確認できているため、第2の充電電流(I2)は第1の充電電流(I1)よりも低く設定する。 Following standing step, although the first charge current (I 1) is lower than the second charge current (I 2) performing second charging step, the second charging current (I 2) first charging If the current (I 1 ) or more is confirmed, it has been confirmed that the dendrite growth recurs. Therefore, the second charging current (I 2 ) is set lower than the first charging current (I 1 ).

なお、第2の充電ステップを化成が完了するまで継続してもよいが、化成がある程度まで進行し、電解液のpHが低下し、電解液が酸性の強い領域になるとデンドライトの成長は抑制されるため、この領域に到達した時点で第2の充電ステップを完了させ、その後、第2の充電電流(I2)を超える第3の充電電流(I3)で充電を行い、電槽化成を比較的短時間に完了させることも、生産性の観点から極めて有効である。 Although the second charging step may be continued until the formation is completed, the formation of dendrites is suppressed when the formation progresses to a certain extent, the pH of the electrolytic solution decreases, and the electrolytic solution becomes a strongly acidic region. Therefore, when this region is reached, the second charging step is completed, and after that, charging is performed with a third charging current (I 3 ) exceeding the second charging current (I 2 ), and battery case formation is performed. Completion in a relatively short time is also extremely effective from the viewpoint of productivity.

また、特に、単位セル内に多くの活物質を含むことによって、デンドライトショートが発生しやすい構成の電池にも本発明の構成は極めて有効である。このような構成の電池では、比較的高濃度の希硫酸を電解液として採用することが考えられるが、化成効率が急激に低下し、化成上がり、すなわち未化成活物質から化成活物質への転換率が低下し電池の初期容量が急激に低下するため、高濃度希硫酸の適用ができない場合が殆どである。   In particular, the configuration of the present invention is extremely effective for a battery having a configuration in which a dendrite short-circuit is likely to occur by including many active materials in a unit cell. In a battery having such a configuration, it is conceivable to use a relatively high concentration of dilute sulfuric acid as an electrolytic solution. However, the conversion efficiency is drastically decreased and the conversion is increased, that is, conversion from an unconverted active material to a converted active material. In most cases, high-concentration dilute sulfuric acid cannot be applied because the rate decreases and the initial capacity of the battery rapidly decreases.

本発明者らが確認したところ、単位セルに注液される電解液中に含まれる硫酸質量(X)、単位セルに包含される正極未化成活物質量(P)および負極未化成活物質量(N)において、X/(P+N)が0.15以下とした電池では、電槽化成中にデンドライトショートが発生する確率が極めて高い。   As a result of confirmation by the present inventors, the mass of sulfuric acid (X) contained in the electrolyte solution injected into the unit cell, the amount of positive electrode unformed active material (P) contained in the unit cell, and the amount of negative electrode unformed active material In (N), a battery in which X / (P + N) is 0.15 or less has a very high probability of a dendrite short circuit occurring during battery case formation.

このような電池の高出力化に配慮した結果として、デンドライトショートが頻発する設計となった制御弁式鉛蓄電池においても、本発明の製造方法により、電槽化成中のデンドライトショートの発生を顕著に抑制できることから、このような、比率(X/(P+N))が0.15以下とした電池に特に本発明の製造方法は好ましいことがわかる。   As a result of considering the high output of such a battery, even in a control valve type lead-acid battery designed to have frequent dendritic shorts, the production method of the present invention significantly reduces the occurrence of dendritic shorts during battery case formation. Since it can suppress, it turns out that the manufacturing method of this invention is especially preferable for such a battery whose ratio (X / (P + N)) was 0.15 or less.

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

まず、正極、負極ともに未化成極板で12V60Ahの制御弁式鉛蓄電池を組み立てた。この電池を構成する単位セルには11枚の正極板および12枚の負極板が含まれ、正極板と負極板の間には群圧19.6kPa加圧時の厚みが1.0mmのガラスマットセパレータを配置したものである。   First, a 12V60 Ah control valve type lead storage battery was assembled with unformed electrode plates for both positive and negative electrodes. The unit cell constituting this battery includes 11 positive electrode plates and 12 negative electrode plates, and a glass mat separator having a thickness of 1.0 mm when a group pressure of 19.6 kPa is applied is provided between the positive electrode plate and the negative electrode plate. It is arranged.

この未化成状態の電池を表1に示す通電パターンで電槽化成を行った。なお、単セルを構成する正極および負極の未化成活物質量の総和は一定とし、電解液中の硫酸濃度を変化させることにより、正極の未化成活物質量をP、負極の未化成活物質量Nおよび電解液中の硫酸質量Xとしたときの比率(X/(P+N))を変化させた。   This unformed battery was formed into a battery case using the energization pattern shown in Table 1. The total amount of unformed active material of the positive electrode and the negative electrode constituting the single cell is constant, and the amount of unformed active material of the positive electrode is changed to P, and the amount of unformed active material of the negative electrode is changed by changing the sulfuric acid concentration in the electrolytic solution. The ratio (X / (P + N)) when the amount N and the sulfuric acid mass X in the electrolyte solution were used was changed.

Figure 2007184124
Figure 2007184124

表1について説明を加える。ケースA1〜A4、B1〜B4およびC1〜C4については、充電電流I1をそれぞれ表1に示す0.2〜0.7CAとして第1の充電ステップを60秒間行い、この充電ステップに引き続き、放置を600秒行った後、充電電流I2を0.2CAで第2の充電ステップを36時間行ったケースである。 A description will be added to Table 1. Case Al to A4, the B1~B4 and C1~C4 are first performed for 60 seconds charging step as 0.2~0.7CA showing a charging current I 1 in Table 1, respectively, subsequent to the charging step, left Is performed for 600 seconds, and then the second charging step is performed for 36 hours at a charging current I 2 of 0.2 CA.

ケースD1〜D4、E1〜E4およびF1〜F4については、充電電流I1をそれぞれ表1に示す0.2〜0.7CAとして第1の充電ステップを60秒間行い、放置を行わず、第1の充電ステップに連続して充電電流I2を0.2CAで第2の充電ステップを36時間行ったケースである。 Case D1 to D4, the E1~E4 and F1~F4 performs 60 seconds first charging step as 0.2~0.7CA showing a charging current I 1 in Table 1, respectively, without standing, first This is a case where the second charging step is performed for 36 hours at a charging current I 2 of 0.2 CA continuously to the charging step.

ケースA5、A6、B5、B6、C5およびC6については、充電電流I1をそれぞれ表1に示す0.2CAもしくは0.1CAとして第1の充電ステップをそれぞれ表1に示す36時間もしくは72時間行い、化成終了としたものである。 For cases A5, A6, B5, B6, C5 and C6, the charging current I 1 is 0.2 CA or 0.1 CA shown in Table 1, respectively, and the first charging step is performed for 36 hours or 72 hours shown in Table 1, respectively. This is the end of chemical conversion.

上記の表1に示した各ケースにより電槽化成した電池を作成した。電槽化成後の各電池から単セルを取り出し、デンドライトショートの有無を確認し、単セル単位でデンドライトショートの発生率(%)を調査した。その結果を表2に示す。   A battery case was formed in each case shown in Table 1 above. A single cell was taken out from each battery after battery case formation, the presence or absence of a dendrite short was confirmed, and the occurrence rate (%) of the dendrite short was investigated for each single cell. The results are shown in Table 2.

Figure 2007184124
Figure 2007184124

表2に示した結果から、第1の充電ステップ(充電電流I1)と第2の充電ステップ(充電電流I2)の間に放置期間を設け、それぞれの充電電流の関係をI1>I2とした本発明の製造方法によれば、電槽化成途中でのデンドライトショートの発生率を顕著に低下できることがわかる。また、デンドライトはマットセパレータ中に灰白色の析出物として確認できるが、本発明にものは、マットセパレータ中にデンドライト成長を示す灰白色の痕跡は認められなかった。 From the results shown in Table 2, a leaving period is provided between the first charging step (charging current I 1 ) and the second charging step (charging current I 2 ), and the relationship between the charging currents is expressed as I 1 > I. It can be seen that according to the production method of the present invention, the occurrence rate of dendrite shorts during the formation of the battery case can be significantly reduced. Moreover, although dendrite can be confirmed as an off-white precipitate in the mat separator, in the present invention, no off-white trace indicating dendrite growth was observed in the mat separator.

一方、充電電流の関係をI1≦I2とした場合はデンドライトショートの発生が認められた。また、放置期間を設けずに連続して充電を行う場合もデンドライトショートの発生が認められた。 On the other hand, when the charge current relationship is I 1 ≦ I 2 , the occurrence of a dendrite short was observed. In addition, dendrite short-circuiting was also observed when charging was continued without providing a standing period.

また、未化成活物質量に対する硫酸量の比率に関しては、特に、この比率を0.13および0.15としたものは、0.18の場合に比較してデンドライトショートの発生率が高い。化成効率の観点からは、当該比率をなるべく低く設定すればよいが、比較例において、このような比率を低く設定することはデンドライトショートの発生率が増大するため、好ましいものではない。   In addition, regarding the ratio of the amount of sulfuric acid to the amount of the unformed active material, in particular, when the ratio is 0.13 and 0.15, the incidence of dendrite shorts is higher than in the case of 0.18. From the viewpoint of chemical conversion efficiency, the ratio may be set as low as possible. However, in the comparative example, setting such a ratio low is not preferable because the incidence of dendrite short increases.

本発明では、当該比率を0.15とした場合においても極めて顕著にデンドライトショートの発生を抑制できることから、化成効率の向上と、デンドライトショート抑制という、従来相反していた課題を解決し、両者を両立できる。   In the present invention, even when the ratio is set to 0.15, the occurrence of dendrite shorts can be suppressed remarkably. Therefore, the conventional conflicting problems of improvement in chemical conversion efficiency and dendrite shorts are solved. Can be compatible.

また、第1の充電ステップと第2の充電ステップ間に設定された放置時間は、適切な範囲にあれば、その範囲内で変動したとしても、本発明の効果は殆ど変化がなく、大きな影響を受けないことが、別途行った実験により確認された。   In addition, if the leaving time set between the first charging step and the second charging step is within an appropriate range, the effect of the present invention hardly changes even if it fluctuates within that range, and has a large influence. It was confirmed by the experiment conducted separately that it was not received.

さらに、極板間距離、すなわちマットセパレータ厚みもデンドライトショート発生率に大きく関与する要素であるが、表1に示す電池のマットセパレータ厚みを1.0mmから厚い方向に変化させて1.3mmとしたもの、また、1.0mmから薄い方向に変化させて0.8mmと変化させたものについてデンドライトショート発生率を比較したが、すべての条件においてマットセパレータ厚みが薄いほどデンドライトショート発生率が増加した。   Further, the distance between the electrode plates, that is, the thickness of the mat separator, is a factor that greatly affects the dendrite short-circuit occurrence rate. The thickness of the battery mat separator shown in Table 1 is changed from 1.0 mm to 1.3 mm to 1.3 mm. The dendrite short-circuit occurrence rate was compared for those having a thickness changed from 1.0 mm to 0.8 mm, and the dendrite short-circuit occurrence rate increased with decreasing mat separator thickness under all conditions.

特に、マットセパレータ厚みが1.2mmより薄くし、1.0mmおよび0.8mmとした領域では急激にデンドライトショートの発生確率が増大したため、本発明は特にマットセパレータ厚みが1.0mm以下となるような電池に特に好適である。   In particular, the mat separator thickness is less than 1.2 mm, and the probability of dendrite shorts suddenly increases in the areas where the thickness is 1.0 mm and 0.8 mm. It is particularly suitable for a new battery.

さらに、本発明では、特許文献1および特許文献2で示されたような、デンドライトの成長を阻害するための、無機粉体やホウ酸塩といった、電池の充放電反応に寄与しない、他の物質を添加することなくデンドライトショートを抑制できるため、これらの物質を電池内に添加することによるデメリット、すなわち内部抵抗の増大やイオン拡散速度の低下による放電電圧特性の低下を避けることができ、出力特性を高いレベルで維持し、デンドライトショートが発生しない制御弁式鉛蓄電池を安定して得ることができる。   Further, in the present invention, other substances that do not contribute to the charge / discharge reaction of the battery, such as inorganic powders and borates for inhibiting the growth of dendrites, as shown in Patent Document 1 and Patent Document 2, are used. The dendrite short-circuit can be suppressed without adding any of these substances, so the disadvantages of adding these substances into the battery, that is, the decrease in discharge voltage characteristics due to the increase in internal resistance and the decrease in ion diffusion rate, can be avoided, and the output characteristics Is maintained at a high level, and a control valve type lead-acid battery in which dendrite short-circuit does not occur can be stably obtained.

本発明は、制御弁式鉛蓄電池を電槽化成する際に発生するデンドライトショートを顕著に抑制することから、制御弁式鉛蓄電池の製造方法として極めて好適である。   The present invention remarkably suppresses dendrite shorts that occur when a control valve type lead-acid battery is formed into a battery case, and is therefore extremely suitable as a method for manufacturing a control valve-type lead acid battery.

本発明を適用する未化成状態の電池の断面を示す図The figure which shows the cross section of the battery of the unformed state which applies this invention 本発明の制御弁式鉛蓄電池の製造方法を示すステップ図The step figure which shows the manufacturing method of the control valve type lead acid battery of this invention

符号の説明Explanation of symbols

101 電池
102 電槽
103 セル室
104 極板群
105 正極板
106 負極板
107 マットセパレータ
108 棚
109 接続部材
110 注液口
111 蓋
DESCRIPTION OF SYMBOLS 101 Battery 102 Battery case 103 Cell chamber 104 Electrode plate group 105 Positive electrode plate 106 Negative electrode plate 107 Mat separator 108 Shelf 109 Connecting member 110 Injection port 111 Lid

Claims (5)

正極板と負極板の間に電解液を含浸保持するマットセパレータを配置した極板群を備えた制御弁式鉛蓄電池の製造法であり、未化成極板で構成された前記極板群を収納した単位セル毎に硫酸を含む電解液を注液し、電解液注液後に第1の充電電流(I1)で電池を充電する第1の充電ステップと、この第1の充電ステップ後に所定時間電池を放置する放置ステップと、この放置ステップに引き続いて行われ、かつ前記第1の充電電流(I1)未満である第2の充電電流(I2)で充電する第2の充電ステップを含む、制御弁式鉛蓄電池の製造方法。 A control valve type lead-acid battery manufacturing method comprising an electrode plate group in which a mat separator that impregnates and holds an electrolyte solution is disposed between a positive electrode plate and a negative electrode plate, and a unit that accommodates the electrode plate group composed of unformed electrode plates A first charging step in which an electrolytic solution containing sulfuric acid is injected into each cell, the battery is charged with a first charging current (I 1 ) after the electrolytic solution is injected, and the battery is charged for a predetermined time after the first charging step. A control step including a leaving step of leaving and a second charging step that is performed subsequent to the leaving step and is charged with a second charging current (I 2 ) that is less than the first charging current (I 1 ). Manufacturing method of valve-type lead acid battery. 前記第1の充電電流(I1)を0.3CA以上としたことを特徴とする請求項1に記載の制御弁式鉛蓄電池の製造方法。 The method for manufacturing a control valve type lead-acid battery according to claim 1, wherein the first charging current (I 1 ) is 0.3 CA or more. 前記単位セルに注液される電解液中に含まれる硫酸質量(X)、単位セルに包含される正極未化成活物質量(P)および負極未化成活物質量(N)において、X/(P+N)が0.15以下であることを特徴とする請求項1もしくは2に記載の制御弁式鉛蓄電池の製造方法。 In the mass of sulfuric acid (X) contained in the electrolyte solution injected into the unit cell, the amount of positive electrode unformed active material (P) and the amount of negative electrode unformed active material (N) contained in the unit cell, X / ( P + N) is 0.15 or less, The manufacturing method of the control valve type lead acid battery of Claim 1 or 2 characterized by the above-mentioned. 前記第2の充電ステップ後、少なくとも前記第2の充電電流(I2)よりも大である第3の充電電流(I3)で充電する第3の充電ステップを含む、請求項1、2もしくは3に記載の制御弁式鉛蓄電池の製造方法。 After the second charging step, a third charging step of charging in the third charging current is larger than at least the second charge current (I 2) (I 3) , according to claim 1, 2 or 3. A method for producing a control valve type lead storage battery according to 3. 請求項1〜4の制御弁式鉛蓄電池の製造方法によって得た制御弁式鉛蓄電池。 The control valve type lead acid battery obtained by the manufacturing method of the control valve type lead acid battery of Claims 1-4.
JP2006000349A 2006-01-05 2006-01-05 Control valve type lead acid battery manufacturing method and control valve type lead acid battery Active JP5061460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000349A JP5061460B2 (en) 2006-01-05 2006-01-05 Control valve type lead acid battery manufacturing method and control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000349A JP5061460B2 (en) 2006-01-05 2006-01-05 Control valve type lead acid battery manufacturing method and control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2007184124A true JP2007184124A (en) 2007-07-19
JP5061460B2 JP5061460B2 (en) 2012-10-31

Family

ID=38340035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000349A Active JP5061460B2 (en) 2006-01-05 2006-01-05 Control valve type lead acid battery manufacturing method and control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP5061460B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123433A (en) * 2007-11-13 2009-06-04 Gs Yuasa Corporation:Kk Method of manufacturing control valve type lead-acid battery
JPWO2010079563A1 (en) * 2009-01-07 2012-06-21 パナソニック株式会社 Battery charging method and battery charging system
JP2020170681A (en) * 2019-04-05 2020-10-15 古河電池株式会社 Lead storage battery
CN114267888A (en) * 2021-12-28 2022-04-01 河南超威正效电源有限公司 2V battery production system and production process thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157969A (en) * 1983-02-25 1984-09-07 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery
JPS6321748A (en) * 1986-07-15 1988-01-29 Shin Kobe Electric Mach Co Ltd In-container formation method for lead-acid battery
JPH02168574A (en) * 1988-12-20 1990-06-28 Matsushita Electric Ind Co Ltd Sealed type lead storage battery
JPH0443562A (en) * 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd Jar formation method for sealed lead storage battery
JPH04171672A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH04223051A (en) * 1990-12-26 1992-08-12 Shin Kobe Electric Mach Co Ltd Hermetic type lead storage battery
JPH0582123A (en) * 1991-09-24 1993-04-02 Matsushita Electric Ind Co Ltd Formation of lead-acid battery
JPH07288128A (en) * 1994-04-20 1995-10-31 Shin Kobe Electric Mach Co Ltd Activation method for sealed lead-acid battery
JP2000323132A (en) * 1999-05-11 2000-11-24 Yuasa Corp Lead-acid battery forming method
JP2001160394A (en) * 1999-12-03 2001-06-12 Japan Storage Battery Co Ltd Method of chemical conversion for lead battery
JP2001185131A (en) * 1999-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Sealed lead acid battery
JP2003142147A (en) * 2001-10-31 2003-05-16 Japan Storage Battery Co Ltd Lead-acid battery
JP2003168471A (en) * 2001-11-29 2003-06-13 Yuasa Corp Forming method in battery box of control valve type lead-acid battery
JP2004014283A (en) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd Valve regulated lead battery
JP2004134252A (en) * 2002-10-10 2004-04-30 Furukawa Battery Co Ltd:The Electrode for lead battery

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157969A (en) * 1983-02-25 1984-09-07 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery
JPS6321748A (en) * 1986-07-15 1988-01-29 Shin Kobe Electric Mach Co Ltd In-container formation method for lead-acid battery
JPH02168574A (en) * 1988-12-20 1990-06-28 Matsushita Electric Ind Co Ltd Sealed type lead storage battery
JPH0443562A (en) * 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd Jar formation method for sealed lead storage battery
JPH04171672A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH04223051A (en) * 1990-12-26 1992-08-12 Shin Kobe Electric Mach Co Ltd Hermetic type lead storage battery
JPH0582123A (en) * 1991-09-24 1993-04-02 Matsushita Electric Ind Co Ltd Formation of lead-acid battery
JPH07288128A (en) * 1994-04-20 1995-10-31 Shin Kobe Electric Mach Co Ltd Activation method for sealed lead-acid battery
JP2000323132A (en) * 1999-05-11 2000-11-24 Yuasa Corp Lead-acid battery forming method
JP2001160394A (en) * 1999-12-03 2001-06-12 Japan Storage Battery Co Ltd Method of chemical conversion for lead battery
JP2001185131A (en) * 1999-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Sealed lead acid battery
JP2003142147A (en) * 2001-10-31 2003-05-16 Japan Storage Battery Co Ltd Lead-acid battery
JP2003168471A (en) * 2001-11-29 2003-06-13 Yuasa Corp Forming method in battery box of control valve type lead-acid battery
JP2004014283A (en) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd Valve regulated lead battery
JP2004134252A (en) * 2002-10-10 2004-04-30 Furukawa Battery Co Ltd:The Electrode for lead battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123433A (en) * 2007-11-13 2009-06-04 Gs Yuasa Corporation:Kk Method of manufacturing control valve type lead-acid battery
JPWO2010079563A1 (en) * 2009-01-07 2012-06-21 パナソニック株式会社 Battery charging method and battery charging system
JP2020170681A (en) * 2019-04-05 2020-10-15 古河電池株式会社 Lead storage battery
CN114267888A (en) * 2021-12-28 2022-04-01 河南超威正效电源有限公司 2V battery production system and production process thereof
CN114267888B (en) * 2021-12-28 2023-09-26 河南超威正效电源有限公司 2V battery production system and production process thereof

Also Published As

Publication number Publication date
JP5061460B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
EP1930978B1 (en) Lead storage battery and process for producing the same
JP6168138B2 (en) Liquid lead-acid battery
JP2008243487A (en) Lead acid battery
JP6331161B2 (en) Control valve type lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP2008130516A (en) Liquid lead-acid storage battery
JP5182467B2 (en) Control valve type lead storage battery manufacturing method
JP5061460B2 (en) Control valve type lead acid battery manufacturing method and control valve type lead acid battery
JP4956858B2 (en) Control valve type lead acid battery
WO2017159299A1 (en) Lead storage battery
CN104067436B (en) Lead accumulator
CN115764001A (en) Lead-acid battery
JP2010092635A (en) Storage battery
JP5196732B2 (en) Method for producing lead-acid battery
JP6921037B2 (en) Lead-acid battery
JP6205811B2 (en) Lead acid battery
JP2010113932A (en) Electrode plate for lead-acid storage battery and control valve type lead-acid storage battery using this
JP2007250495A (en) Control valve type lead-acid storage battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP2005183238A (en) Control valve type lead storage battery
JP2006120573A (en) Negative electrode plate for control valve type lead-acid battery, and control valve type lead-acid battery using the above negative electrode plate
JP2004327157A (en) Storage battery
JP2005347032A (en) Sealed lead acid storage battery
JPS6310463A (en) First charge control method for lead-acid battery
JP2003168471A (en) Forming method in battery box of control valve type lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R151 Written notification of patent or utility model registration

Ref document number: 5061460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350