JP2001160394A - Method of chemical conversion for lead battery - Google Patents

Method of chemical conversion for lead battery

Info

Publication number
JP2001160394A
JP2001160394A JP34541399A JP34541399A JP2001160394A JP 2001160394 A JP2001160394 A JP 2001160394A JP 34541399 A JP34541399 A JP 34541399A JP 34541399 A JP34541399 A JP 34541399A JP 2001160394 A JP2001160394 A JP 2001160394A
Authority
JP
Japan
Prior art keywords
pbo
discharge
active material
battery
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34541399A
Other languages
Japanese (ja)
Inventor
Kenji Yamanaka
山中  健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP34541399A priority Critical patent/JP2001160394A/en
Publication of JP2001160394A publication Critical patent/JP2001160394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrode plate, in which α-PbO2 is less and β-PbO2 is more in the amount in active material, and in which α-PbO2 exists at the lattice-active substance interface, to produce a battery with less self-discharge, large service capacity, and hard-to-occur early decrease in capacity. SOLUTION: Allowing time is inserted between the point, when lead dioxide layer with the thickness of 50-550 μm is generated in the active substance surrounding the positive electrode lattice and the point, when total sum of lead dioxide and anglesite reaches 90 wt.% of the total amount if positive active substance, after the chemical conversion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池の化成方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a lead storage battery.

【0002】[0002]

【従来の技術】希硫酸中で正、負極板に電流を流して極
板に活物質を形成させることを化成という。化成中に正
極板で起こる反応は主に以下のように考えられる。
2. Description of the Related Art The formation of an active material on an electrode plate by passing a current through a positive electrode plate and a negative electrode plate in dilute sulfuric acid is called chemical formation. The reaction occurring on the positive electrode plate during chemical formation is mainly considered as follows.

【0003】先ず、極板の周囲に希硫酸を満たす(注液
という)。このとき化成されていない活物質中の一酸化
鉛(PbO)と硫酸(H2SO4)とが反応し、硫酸鉛
(PbSO4)と水(H2O)が生成する。注液後、ある
一定期間放置した後に電流を流して化成を行う。このと
き主に以下の反応式(1)、(2)が起こるものと考え
られる。 PbO+H2SO4→PbSO4+H2O PbSO4+2H2O→〔β−PbO2〕+H2SO4+2
++2e- (2)PbO+H2O→〔α−PbO2〕+2H++2e- (1)式の反応からは主にβ−PbO2が生成し、
(2)式の反応からは主にα−PbO2が生成する。β
−PbO2の方がα−PbO2よりも電気化学的に活性で
あり、これを増やすことで放電容量を増やすことができ
る。しかし、格子と活物質の界面に存在した場合には、
界面のみが先に放電して活物質が放電できなくなる現象
(早期容量低下)が起こりやすくなる。
First, the periphery of an electrode plate is filled with diluted sulfuric acid (referred to as liquid injection). At this time, lead monoxide (PbO) and sulfuric acid (H 2 SO 4 ) in the unformed active material react with each other to generate lead sulfate (PbSO 4 ) and water (H 2 O). After the injection, the mixture is allowed to stand for a certain period of time, and then a current is applied to form a chemical. At this time, it is considered that the following reaction formulas (1) and (2) mainly occur. PbO + H 2 SO 4 → PbSO 4 + H 2 O PbSO 4 + 2H 2 O → [β-PbO 2 ] + H 2 SO 4 +2
H + + 2e (2) PbO + H 2 O → [α-PbO 2 ] + 2H + + 2e − From the reaction of the formula (1), β-PbO 2 is mainly produced,
Α-PbO 2 is mainly produced from the reaction of the formula (2). β
-PbO 2 is more electrochemically active than α-PbO 2 , and by increasing it, the discharge capacity can be increased. However, if it exists at the interface between the lattice and the active material,
A phenomenon in which only the interface is discharged first and the active material cannot be discharged (early capacity reduction) is likely to occur.

【0004】一方、α−PbO2が活物質中に多く含ま
れると放電容量は小さくなり、また放置中の自己放電も
多くなってしまう。しかし、格子と活物質との界面にα
−PbO2が存在した場合には、前述した早期容量低下
の問題は起こりにくくなる。希硫酸を注入後、極板表面
付近のPbOは速やかにPbSO4に反応する。PbS
4はPbOの約2倍の分子容積を有する。このPbS
4は未化活物質中の細孔中に生成するため、細孔体積
を減少させ、極板内部への硫酸イオン(SO4 2-)の拡
散を抑制し、極板内部のPbOのPbSO4への反応を
抑制する。また、通電時には電流密度は極板内部の方が
大きいため、PbO2は極板内部から生成される。よっ
て、化成の進行にともなって、極板内部にはPbOから
α−PbO 2が生成され、極板表面付近にはPbSO4
らβ−PbO2が生成される。
On the other hand, α-PbOTwoContained in active material
Discharge capacity decreases and self-discharge during standing
Will increase. However, α at the interface between the lattice and the active material
-PbOTwoIf there is, the early capacity decrease mentioned above
Problems are less likely to occur. After injecting dilute sulfuric acid, the electrode surface
PbO in the vicinity quickly becomes PbSOFourReacts to. PbS
OFourHas about twice the molecular volume of PbO. This PbS
OFourIs generated in the pores in the unactivated active material, so the pore volume
To reduce sulfate ions (SOFour 2-) Expansion
PbSO of PbO inside electrode plateFourReaction to
Suppress. Also, when energized, the current density inside the electrode plate
Because it is large, PbOTwoIs generated from inside the electrode plate. Yo
With the progress of chemical formation, PbO
α-PbO TwoIs generated, and PbSOFourOr
Β-PbOTwoIs generated.

【0005】[0005]

【発明が解決しようとする課題】しかし上述のように、
極板内部のPbOもPbSO4に反応するまで、注液後
の放置時間を長くすればβ−PbO2が増加し、放電容
量を増加させることができるが、そのような極板は早期
容量低下の問題を生じやすい。理想的な正極板とは、活
物質中のα−PbO2が少なくβ−PbO2が多い、また
格子−活物質界面には、α−PbO2が存在しているも
のである。このような極板を得ることができれば、自己
放電が少なく、放電容量が大きく、早期容量低下も起こ
りにくい電池を作ることができる。
However, as described above,
If PbO inside the electrode plate also reacts with PbSO 4 , β-PbO 2 can be increased and the discharge capacity can be increased by increasing the standing time after the injection, but such an electrode plate has an early decrease in capacity. Problems are likely to occur. An ideal positive electrode plate is one in which α-PbO 2 in the active material is low and β-PbO 2 is high, and α-PbO 2 is present at the lattice-active material interface. If such an electrode plate can be obtained, it is possible to produce a battery that has a small self-discharge, a large discharge capacity, and is unlikely to cause early capacity reduction.

【0006】そこで、本発明は、このような鉛蓄電池が
得られる化成方法を提供することを課題とする。
[0006] Therefore, an object of the present invention is to provide a chemical conversion method capable of obtaining such a lead storage battery.

【0007】[0007]

【課題を解決する手段】上記課題を解決するために、請
求項1記載の発明の鉛蓄電池の化成方法では、正極格子
の表面に接する活物質に厚さが150μm以上から55
0μm以下までの二酸化鉛の層が生成される時点と、二
酸化鉛と硫酸鉛との総和質量が化成終了後の正極活物質
の総質量に対して90wt%となる時点との間に、放置
を入れることを特徴とする。
According to a first aspect of the present invention, there is provided a method for forming a lead-acid battery according to the first aspect, wherein the thickness of the active material in contact with the surface of the positive electrode grid is from 150 μm or more to 55 μm or more.
Let stand between the time when a layer of lead dioxide up to 0 μm or less is generated and the time when the total mass of lead dioxide and lead sulfate is 90 wt% with respect to the total mass of the positive electrode active material after the formation. It is characterized by putting.

【0008】[0008]

【発明の実施の形態】あらかじめ、化成実験を行い、種
々の電気量を充電した後、及び化成終了後の正極板につ
いて、金属顕微鏡観察や化学分析を行って、格子表面の
周囲の二酸化鉛層の厚さと正極活物質の総質量さらに二
酸化鉛と硫酸鉛との総和質量について測定する。
BEST MODE FOR CARRYING OUT THE INVENTION After conducting a chemical conversion experiment in advance and charging various amounts of electricity, and conducting a metallographic observation and a chemical analysis on the positive electrode plate after completion of the chemical conversion, a lead dioxide layer around the lattice surface is obtained. And the total mass of the positive electrode active material, and the total mass of lead dioxide and lead sulfate.

【0009】鉛蓄電池を化成する際、正極格子表面の周
囲に厚さ150〜550μmの二酸化鉛層が生成される
時点と、二酸化鉛と硫酸鉛との総和量が化成後の正極活
物質の総量に対して90wt%となる時点との間で、一
旦充電を中止し放置を入れた後、さらに充電を行なって
化成を完成する。これにより放電容量が大きく、早期容
量低下を起こすことがなく、自己放電が少ない電池を得
ることができる。
When a lead-acid battery is formed, the point at which a lead dioxide layer having a thickness of 150 to 550 μm is formed around the surface of the positive electrode grid, and the total amount of lead dioxide and lead sulfate is determined by the total amount of the positive electrode active material after formation. After the charging is temporarily stopped and allowed to stand, the charging is further performed to complete the formation. This makes it possible to obtain a battery having a large discharge capacity, no early capacity reduction, and a small self-discharge.

【0010】[0010]

【実施例】以下、本発明を実施例に基づき説明する。常
法にしたがって2V、48Ahの未化成の電池を作製し
た。次に所定量の希硫酸を注入し、1時間経過した後か
ら電流を流し始めて化成を開始した。従来通り放置を行
わないで所定の電気量だけ連続通電した化成と、種々の
電気量を通電した途中で放置した化成とを行った。ここ
で放置はいずれも常温で10時間行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. An unformed battery of 2 V, 48 Ah was produced according to a conventional method. Next, a predetermined amount of diluted sulfuric acid was injected, and after one hour had passed, a current was started to flow to start chemical formation. As in the conventional case, a formation was performed in which a predetermined amount of electricity was continuously supplied without leaving the battery, and a formation in which the battery was left in the middle of supplying various amounts of electricity was performed. Here, all of the standing was performed at room temperature for 10 hours.

【0011】このとき、1種類の内容に対して電池を3
個ずつ試験し、1つは放置開始前に解体し、正極板を調
査した。試験内容と各々放置開始前の正極板調査結果を
表1に示す。ここで、放置開始時のPbO2層の厚み
は、無作為に10個所測定した。また、通電電気量は、
通電電流がPbO2生成のために100%利用されると
仮定したときに、正極の未化活物質をすべてPbO2
するために必要な電気量を100%として計算した。
At this time, three batteries are required for one type of contents.
Each was tested, and one was disassembled before starting to stand, and the positive electrode plate was examined. Table 1 shows the test contents and the results of the positive electrode plate inspection before the start of standing. Here, the thickness of the PbO 2 layer at the start of standing was measured at 10 points at random. Also, the amount of electricity
Assuming that 100% of the energizing current is used for PbO 2 generation, the calculation was made assuming that the amount of electricity required to convert all the unactivated active material of the positive electrode to PbO 2 was 100%.

【0012】[0012]

【表1】試験内容一覧 [Table 1] List of test contents

【0013】各内容の電池を各々1つずつ、0.2CA
で放電(放電終止電圧1.70V)し、放電と同じ電流
で放電容量の125%充電するというサイクルに供し
た。1サイクル目の結果を図1に、サイクル中の放電持
続時間の推移を図2に示す。放置前の通電電気量が少な
いものほど1サイクル目の放電持続時間が長かった。こ
れは、次のことが原因であると考えられる。放置中、極
板内部に残されているPbOは、拡散してきたSO4 2-
と反応し、PbSO4が生成する。よって、通電電気量
が少ないものほど放置開始時に極板内部に残されている
PbO量が多いため、放置中に反応生成するPbSO4
量が多くなり、PbSO4からPbO2に化成される量が
より多くなる。その結果、既化活物質中に含まれるβ−
PbO2の量が多くなる。
[0013] Each of the batteries of each content is 0.2CA
(Discharge end voltage 1.70 V), and subjected to a cycle of charging 125% of the discharge capacity at the same current as the discharge. FIG. 1 shows the result of the first cycle, and FIG. 2 shows the transition of the discharge duration during the cycle. The discharge duration of the first cycle was longer as the amount of electricity passed before being left was smaller. This is considered to be due to the following. During the standing, PbO remaining inside the electrode plate diffuses SO 4 2-
And PbSO 4 is produced. Therefore, the smaller the amount of energized electricity, the larger the amount of PbO left inside the electrode plate at the time of starting standing, so that PbSO 4 produced by reaction during standing is left.
The amount increases, and the amount converted from PbSO 4 to PbO 2 increases. As a result, β-
The amount of PbO 2 increases.

【0014】PbO2とPbSO4の総和量が90%以上
となった時点で放置を行った電池は、放電持続時間がほ
とんど変化しなかった。これは放置を行っても、放置中
にPbSO4になるPbOがほとんど存在しないため
に、既化活物質中に含まれるβ−PbO2の量が、放置
を行わない従来品と同等であったことが原因と思われ
る。
When the total amount of PbO 2 and PbSO 4 became 90% or more, the battery left to stand had almost no change in the discharge duration. This is because even if the storage is performed, there is almost no PbO that becomes PbSO 4 during the storage, so that the amount of β-PbO 2 contained in the converted active material is equivalent to that of the conventional product without the storage. That seems to be the cause.

【0015】更に、サイクルを繰り返すと、放置開始前
に格子表面周囲に生成されたPbO 2層が30〜130
μm未満だった電池は比較的早期に放電持続時間が短く
なった。これはいわゆる早期容量低下が起こったものと
思われる。つまり放置開始前に150〜550μmのP
bO2層を生成したものは、格子表面周囲にα−PbO2
を多く含む層が十分存在していたために、早期容量低下
が起こらなかったものと思われる。
Further, when the cycle is repeated,
PbO generated around the lattice surface Two30-130 layers
Batteries less than μm have a relatively short discharge duration relatively early
became. This is because the early capacity reduction occurred.
Seem. In other words, the P of 150 to 550 μm
bOTwoThe layer that was formed was α-PbO around the lattice surface.Two
Capacity decreases early due to the presence of a layer containing a large amount of
Probably did not happen.

【0016】格子表面周囲にPbO2層を150〜55
0μm生成させた後に放置を行った電池で、PbO2
PbSO4の総和量が90%未満の時点で放置を行った
電池は、従来品に比べて1サイクル目の放電容量も大き
く、早期容量低下を起こさなかった。
A PbO 2 layer of 150 to 55 is provided around the lattice surface.
The battery which was left after generating 0 μm, and which was left when the total amount of PbO 2 and PbSO 4 was less than 90%, had a larger discharge capacity at the first cycle than the conventional product, and had an early capacity. No drop occurred.

【0017】次に、各内容の電池を各々1つずつを、自
己放電特性の評価試験を行った。試験内容は、先ず0.
2CAの放電容量を測定した後、完全充電し、次に各電
池を40℃の水槽中に3ヶ月間放置し、最後に40℃放
置後そのまま0.2CAの放電容量を測定する。40℃
放置前後での0.2CA放電容量を比較し、容量の低下
量が小さいものほど自己放電が遅いと評価できる。ここ
で40℃、3ヶ月放置は、室温の1年放置に相当すると
推測される。各電池の容量低下率を図3に示す。化成中
に行う放置の前に通電する電気量が少ないものほど容量
低下率が小さかった。理由は定かではないが、α−Pb
2の方がβ−PbO2に比べて自己放電しやすく、活物
質中に含まれるα−PbO2の量が少ないものほど自己
放電量が少なく、その結果容量低下率が小さくなったも
のと思われる。
Next, an evaluation test of self-discharge characteristics was performed on one battery of each content. The content of the test was
After measuring the discharge capacity at 2 CA, the battery was fully charged, then each battery was left in a water bath at 40 ° C. for 3 months, and finally, after leaving at 40 ° C., the discharge capacity at 0.2 CA was measured. 40 ℃
By comparing the 0.2 CA discharge capacity before and after standing, it can be evaluated that the smaller the decrease in the capacity, the slower the self-discharge. Here, it is presumed that leaving at 40 ° C. for 3 months corresponds to leaving at room temperature for 1 year. FIG. 3 shows the capacity reduction rate of each battery. The smaller the amount of electricity passed before leaving during the formation, the smaller the capacity reduction rate. Although the reason is not clear, α-Pb
O 2 is more likely to self-discharge than β-PbO 2, and the smaller the amount of α-PbO 2 contained in the active material, the smaller the amount of self-discharge, resulting in a smaller capacity reduction rate. Seem.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば、初
期の放電容量が大きく早期容量低下を起こすことがな
く、更に自己放電が少ない正極板を得ることができる。
As described above, according to the present invention, it is possible to obtain a positive electrode plate which has a large initial discharge capacity, does not cause an early drop in capacity, and has less self-discharge.

【0019】また、本実施例では化成中の放置を常温で
10時間行ったが、放置中に生成するPbSO4量が多
いほど効果が大きいため、化成中の放置期間としては長
いほど良く、放置中のPbOのPbSO4への反応はS
4 2-の極板内部への拡散が反応律速であるため、放置
温度を高くすれば放置期間を短くすることができる。更
に、化成中の放置を二酸化鉛と硫酸鉛との総和量が約9
0wt%になるまでに行った場合に効果がみられたが、
改善効果の大きさから、化成中の放置は上記総和量がよ
り少ない時点で行うことが望ましい。
Further, in this embodiment, the standing during the formation was carried out at room temperature for 10 hours. However, since the greater the amount of PbSO 4 generated during the standing, the greater the effect, the longer the standing period during the formation, the better. Of PbO in the reaction to PbSO 4 is S
Since the diffusion of O 4 2- into the inside of the electrode plate is rate-determining, the standing period can be shortened by increasing the standing temperature. Furthermore, the total amount of lead dioxide and lead sulfate was reduced to about 9
The effect was seen when it went to 0 wt%,
From the magnitude of the improvement effect, it is desirable to leave during chemical formation at a point in time when the total amount is smaller.

【図面の簡単な説明】[Brief description of the drawings]

【図1】1サイクル目の放電持続時間FIG. 1 Discharge duration of the first cycle

【図2】0.2CA放電繰返しサイクル試験結果FIG. 2 shows the results of a 0.2CA discharge repetition cycle test

【図3】自己放電の評価試験結果FIG. 3 shows the results of an evaluation test of self-discharge.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極格子の表面に接する活物質に厚さが1
50μm以上から550μm以下までの二酸化鉛の層が生
成される時点と、二酸化鉛と硫酸鉛との総和質量が化成
終了後の正極活物質の総質量に対して90wt%となる
時点との間に、放置を入れることを特徴とする鉛蓄電池
の化成方法。
An active material in contact with a surface of a positive electrode grid has a thickness of 1%.
Between the point in time when a layer of lead dioxide from 50 μm or more to 550 μm or less is generated and the point in time when the total mass of lead dioxide and lead sulfate becomes 90 wt% with respect to the total mass of the positive electrode active material after the formation is completed A method for forming a lead storage battery, wherein the method is to leave the battery unattended.
JP34541399A 1999-12-03 1999-12-03 Method of chemical conversion for lead battery Pending JP2001160394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34541399A JP2001160394A (en) 1999-12-03 1999-12-03 Method of chemical conversion for lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34541399A JP2001160394A (en) 1999-12-03 1999-12-03 Method of chemical conversion for lead battery

Publications (1)

Publication Number Publication Date
JP2001160394A true JP2001160394A (en) 2001-06-12

Family

ID=18376440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34541399A Pending JP2001160394A (en) 1999-12-03 1999-12-03 Method of chemical conversion for lead battery

Country Status (1)

Country Link
JP (1) JP2001160394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184124A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing valve regulated lead acid battery, and valve regulated lead acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184124A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing valve regulated lead acid battery, and valve regulated lead acid battery

Similar Documents

Publication Publication Date Title
CN103487348A (en) Method used for testing corrosion rate of battery grids
Pavlov et al. Influence of H2SO4 concentration on the performance of lead-acid battery negative plates
KR20190048552A (en) Manufacturing method of anode plate of lead acid battery using spray coating of Graphene aqueous solution
US3607408A (en) Dry-charged lead acid storage battery having partially recharged electrodes and method
JP2001160394A (en) Method of chemical conversion for lead battery
Kirchev et al. Studies of the pulse charge of lead-acid batteries for PV applications: Part I. Factors influencing the mechanism of the pulse charge of the positive plate
JP4923574B2 (en) Lead acid battery
JP5196732B2 (en) Method for producing lead-acid battery
CN107311229A (en) A kind of sea urchin shape air electrode material and preparation method thereof
JP2004014283A (en) Valve regulated lead battery
Papazov et al. Influence of temperature on expander stability and on the cycle life of negative plates
JP2003346890A (en) Valve regulated lead-acid battery and its manufacturing method
KR100782986B1 (en) Pulse formation of a cell
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JPS6216506B2 (en)
JPS58115775A (en) Lead-acid battery
JPH01302661A (en) Lead acid battery and its manufacture
JP4390481B2 (en) Lead acid battery
JP2003323913A (en) Method for manufacturing lead storage battery
JP2006318775A (en) Manufacturing method of pasty activator for anode
JPH08115718A (en) Manufacture of lead-acid battery
JP2008091189A (en) Sealed lead acid storage battery
US20020012839A1 (en) Electrolyte solution, a method for making such electrolyte solution and lead-acid batteries using such electrolyte solution
JPH0992268A (en) Clad type lead-acid battery and manufacture of clad tube for clad type lead-acid battery
JPH05151987A (en) Manufacture of sealed type lead acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213