JP2005347032A - Sealed lead acid storage battery - Google Patents

Sealed lead acid storage battery Download PDF

Info

Publication number
JP2005347032A
JP2005347032A JP2004163459A JP2004163459A JP2005347032A JP 2005347032 A JP2005347032 A JP 2005347032A JP 2004163459 A JP2004163459 A JP 2004163459A JP 2004163459 A JP2004163459 A JP 2004163459A JP 2005347032 A JP2005347032 A JP 2005347032A
Authority
JP
Japan
Prior art keywords
glass fiber
separator
sealed lead
short circuit
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004163459A
Other languages
Japanese (ja)
Inventor
Takafumi Kondo
隆文 近藤
Satoshi Minoura
敏 箕浦
Kenichi Maeda
謙一 前田
Nobukazu Tanaka
伸和 田中
Shinsuke Kobayashi
真輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004163459A priority Critical patent/JP2005347032A/en
Publication of JP2005347032A publication Critical patent/JP2005347032A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed lead acid storage battery in which the degradation of life performance can be suppressed by improving short circuit resistance. <P>SOLUTION: A separator with a structure in which a microporous film is clipped by glass fiber layers is used and inorganic powder is arranged between the glass fiber layers, thereby, a short circuit at the time of over discharge of the battery is suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は密閉式鉛蓄電池に関するものである。   The present invention relates to a sealed lead-acid battery.

鉛蓄電池は集電体に活物質を充填することで正極板、負極板を得て、これらの間に微細ガラス繊維層からなるセパレータを介することで両極間の絶縁を図る特徴を持つ。従来の密閉式鉛蓄電池は保持できる電解液量が限定されており、開放系電池に比べ性能的に劣る面があった。これらの面を改善するために特許文献1のようにセパレータ中に無機粉体を配置する処理を施すことで、必要な電解液の保持性を向上させ性能向上を図ることが提案されている。   A lead-acid battery has a feature that a positive electrode plate and a negative electrode plate are obtained by filling an active material into a current collector, and insulation between both electrodes is achieved by interposing a separator made of a fine glass fiber layer therebetween. Conventional sealed lead-acid batteries have a limited amount of electrolyte that can be held, and have a performance inferior to open batteries. In order to improve these aspects, it has been proposed to improve the performance by improving the retention of the necessary electrolyte by performing a process of arranging inorganic powder in the separator as in Patent Document 1.

特開平5−151947号JP-A-5-151947

従来、電池が過放電放置状態になった場合、硫酸濃度の著しい低下により元々活物質中に存在している硫酸鉛、または放電により生成した硫酸鉛を溶解する。この状態で充電した場合、硫酸鉛がセパレータ中のガラス繊維層中に連続的に析出する。そのことからガラス繊維を伝って両極間の短絡を引き起こすことがあり、寿命特性の低下につながった。   Conventionally, when a battery is left in an overdischarged state, lead sulfate originally present in the active material or lead sulfate produced by discharge is dissolved due to a significant decrease in sulfuric acid concentration. When charged in this state, lead sulfate is continuously deposited in the glass fiber layer in the separator. As a result, a short circuit between the two poles may be caused through the glass fiber, leading to a decrease in life characteristics.

前記課題を解決するために、本発明の密閉式鉛蓄電池用セパレータは、硫酸鉛のガラス繊維層中での連続的な析出を抑制し、またさらにガラス繊維層間に微孔性フィルムを挟みこむことでさらに過放電放置時の短絡抑制を図ったものである。   In order to solve the above problems, the sealed lead-acid battery separator of the present invention suppresses continuous precipitation of lead sulfate in a glass fiber layer, and further sandwiches a microporous film between the glass fiber layers. Furthermore, the short circuit suppression at the time of overdischarge leaving is aimed at.

微孔性フィルムをガラス繊維層で挟んだ構造のセパレータを用い、さらにガラス繊維層間に無機粉体を配したことで過放電放置時の短絡抑制を図ることができた。また電池の内部抵抗が上昇することによる出力低下の影響も少ない。   By using a separator having a structure in which a microporous film is sandwiched between glass fiber layers, and further by arranging inorganic powder between the glass fiber layers, it was possible to suppress a short circuit when left overdischarged. In addition, there is little influence of a decrease in output due to an increase in internal resistance of the battery.

密閉式鉛蓄電池用セパレータとして、作製方法やコストの観点から2枚のガラス繊維層で1枚の微孔性フィルムを挟んだ3層構造とするのが望ましい。   As a separator for a sealed lead-acid battery, it is desirable to have a three-layer structure in which one microporous film is sandwiched between two glass fiber layers from the viewpoint of manufacturing method and cost.

本発明を適用した円筒型密閉式鉛蓄電池の実施例を以下に示す。   Examples of cylindrical sealed lead-acid batteries to which the present invention is applied are shown below.

まず、Pb−Sb系合金である帯状の打ち抜き集電体に所定量の活物質を充填することで、正極板、負極板を得た。セパレータに関しては熱溶着によってガラス繊維層にポリエチレン製フィルムを挟むことで得た。電池の高出力化を考慮するとセパレータの厚みはできるだけ薄いものが適しており0.4mmとした。ここで得たセパレータに対してスプレー方式で極板面当り1.0mg〜5.0mg程度になるようにコロイダルシリカを分散させることで無機粉体をガラス繊維層内に配置を試みた。その後乾燥工程を経ることで図1のようなセパレータを作製した。その後正極、負極間にセパレータが挟み込まれるように捲回を行い、熟成、乾燥工程を経て極板群を得た。極板群の集電タブについては群溶接を行い、群挿入後に蓋を取り付けることで未化2V単電池を得た。その後、硫酸比重1.270の電解液を注液し、課電量300%、42h、25℃の条件にて初期充電を行うことで初期容量15Ah相当の2V単電池を作製した。作製した電池について表1に示す。   First, a positive electrode plate and a negative electrode plate were obtained by filling a strip-shaped punched current collector, which is a Pb—Sb alloy, with a predetermined amount of active material. The separator was obtained by sandwiching a polyethylene film between the glass fiber layers by heat welding. In consideration of increasing the output of the battery, the thinnest separator thickness is suitable and is set to 0.4 mm. An attempt was made to dispose the inorganic powder in the glass fiber layer by dispersing colloidal silica so that the separator obtained was about 1.0 mg to 5.0 mg per electrode plate surface by a spray method. Thereafter, a separator as shown in FIG. 1 was produced through a drying process. Thereafter, winding was performed so that the separator was sandwiched between the positive electrode and the negative electrode, and an electrode group was obtained through an aging and drying process. The current collecting tab of the electrode plate group was subjected to group welding, and a lid was attached after inserting the group to obtain an unmodified 2V single cell. Thereafter, an electrolytic solution having a sulfuric acid specific gravity of 1.270 was injected, and an initial charge was performed under the conditions of an applied amount of 300%, 42 h, and 25 ° C., thereby producing a 2 V single battery having an initial capacity of 15 Ah. The produced batteries are shown in Table 1.

Figure 2005347032
Figure 2005347032

作製した電池について設定した電流(10、30、90、180、300、500A)で放電し、5秒目の電池電圧を測定することで出力特性の比較をした結果を図2に示す。ガラス繊維間にポリエチレン製フィルムを挟んだ処理を行ったことで、内部抵抗が上昇し、電池の出力特性が低下することが懸念されたが、図2からは本発明セパレータを用いた実施例1及び実施例2においては比較例と同等の出力性能であった。しかし、フィルム厚みが最も厚い実施例3については他のものと比較すると出力性能としては劣る。 FIG. 2 shows the result of comparing the output characteristics by discharging the battery with the current (10, 30, 90, 180, 300, 500 A) set for the manufactured battery and measuring the battery voltage at 5 seconds. Although there was a concern that the internal resistance increased and the output characteristics of the battery decreased due to the treatment in which the polyethylene film was sandwiched between the glass fibers, Example 1 using the separator of the present invention was used from FIG. And in Example 2, it was the output performance equivalent to a comparative example. However, Example 3 with the thickest film thickness is inferior in output performance as compared with other examples.

次に、作製した電池について初期容量に対して0.05C(約0.75A)の電流が電池間に流れるように抵抗を接続し、4日間放置させて過放電放置状態にして短絡が起きやすい環境を作った。その後、2.5V、0.3C(制限電流4.5A)にて定電圧充電を行った。これを1サイクルとしてサイクル終了後に短絡を充電カーブにより確認を行った。図3に短絡していない場合および短絡した際の充電カーブをそれぞれ示した。まず短絡していない場合は定電圧に達した時点で電流が減衰していく。それに対して短絡を起こした場合は、充電末期まで電流の減衰が見られない。このような観点から短絡の有無を判断した。短絡が見られなかった電池に関してはこのサイクルを繰り返し行う。図4にサイクルに伴う充電末期電流の変化を示す。図中の破線は充電末期電流がその電流に達した時点を寿命としたものである。まず、ガラス繊維層内の無機粉体の有無における耐短絡性の比較を行った。無機粉体のない比較例2に対して無機粉体を配置した比較例1はサイクル特性に優れることから、無機粉体をガラス繊維層内に配置したことによって、耐短絡性に関して効果が得られた。本発明セパレータを用いた実施例に関して他のものと比較すると耐短絡性に関して比較例と同等または優れた結果であった。特にフィルム厚みが最も厚い実施例3については特に優れた結果であった。   Next, a resistance is connected so that a current of 0.05 C (about 0.75 A) flows between the batteries with respect to the initial capacity of the manufactured battery, and the battery is left to stand for 4 days to easily leave a short circuit. Created an environment. Thereafter, constant voltage charging was performed at 2.5 V and 0.3 C (limited current 4.5 A). This was regarded as one cycle, and a short circuit was confirmed by a charge curve after the cycle was completed. FIG. 3 shows charging curves when not short-circuited and when short-circuited. First, when not short-circuited, the current attenuates when reaching a constant voltage. On the other hand, when a short circuit occurs, no current decay is observed until the end of charging. From such a viewpoint, the presence or absence of a short circuit was determined. This cycle is repeated for batteries that did not show a short circuit. FIG. 4 shows the change in the end-of-charge current associated with the cycle. The broken line in the figure indicates the life when the end-of-charge current reaches that current. First, the short circuit resistance in the presence or absence of inorganic powder in the glass fiber layer was compared. Since Comparative Example 1 in which the inorganic powder is arranged with respect to Comparative Example 2 having no inorganic powder is excellent in cycle characteristics, the effect of short circuit resistance can be obtained by arranging the inorganic powder in the glass fiber layer. It was. Compared with the other examples using the separator of the present invention, the results of the short circuit resistance were the same as or superior to those of the comparative example. Particularly, Example 3 having the thickest film thickness was a particularly excellent result.

なお、本実施例では無機粉体としてシリカを用いたが、これと同じような無機粉体としてアルミナ、チタニア等を用いても同様の効果が得られた。また、これらを混合しても同様の効果が得られるので、必ずしも1種類に限定するものではない。   In this example, silica was used as the inorganic powder, but the same effect was obtained when alumina, titania, or the like was used as the same inorganic powder. Moreover, since the same effect is acquired even if these are mixed, it does not necessarily limit to one type.

本発明セパレータの断面図である。It is sectional drawing of this invention separator. 本発明セパレータを用いたときの電池出力特性を示す図である。It is a figure which shows a battery output characteristic when this invention separator is used. 定電圧充電による短絡有無の判断図である。It is a judgment figure of the presence or absence of the short circuit by constant voltage charge. 本発明品の耐短絡性を示す図である。It is a figure which shows the short circuit resistance of this invention goods.

符号の説明Explanation of symbols

1 微孔性フィルム
2 無機粉体
3 ガラス繊維層
1 Microporous film 2 Inorganic powder 3 Glass fiber layer

Claims (2)

正極板と負極板とをセパレータを介して極板群を構成する密閉式鉛蓄電池であって、前記セパレータは微孔性フィルムをガラス繊維層で挟んだ構造であり、前記ガラス繊維層中に無機粉体を配したことを特徴とする密閉式鉛蓄電池。   A sealed lead-acid battery in which a positive electrode plate and a negative electrode plate constitute a plate group via a separator, the separator having a structure in which a microporous film is sandwiched between glass fiber layers, and the glass fiber layer is inorganic. Sealed lead-acid battery characterized by powder distribution. 前記無機粉体はシリカ、アルミナ、チタニアのいずれか1種以上であることを特徴とする請求項1記載の密閉式鉛蓄電池。   The sealed lead-acid battery according to claim 1, wherein the inorganic powder is at least one of silica, alumina, and titania.
JP2004163459A 2004-06-01 2004-06-01 Sealed lead acid storage battery Pending JP2005347032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163459A JP2005347032A (en) 2004-06-01 2004-06-01 Sealed lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163459A JP2005347032A (en) 2004-06-01 2004-06-01 Sealed lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2005347032A true JP2005347032A (en) 2005-12-15

Family

ID=35499220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163459A Pending JP2005347032A (en) 2004-06-01 2004-06-01 Sealed lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2005347032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091857A1 (en) * 2012-12-12 2014-06-19 日本電気株式会社 Separator, electrode element, energy storage device, and method for producing separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091857A1 (en) * 2012-12-12 2014-06-19 日本電気株式会社 Separator, electrode element, energy storage device, and method for producing separator
US9755204B2 (en) 2012-12-12 2017-09-05 Nec Corporation Separator, electrode element, electric energy storage device and method for producing separator

Similar Documents

Publication Publication Date Title
WO2014097522A1 (en) Lead-acid battery
JP6331161B2 (en) Control valve type lead acid battery
JP2008243487A (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6045329B2 (en) Lead acid battery
JP2008130516A (en) Liquid lead-acid storage battery
JP6164266B2 (en) Lead acid battery
JP2002260714A (en) Valve controlled lead storage battery
JP2017188477A (en) Lead storage battery
JP2011070904A (en) Separator for lead-acid battery and lead-acid battery using it
JP5061460B2 (en) Control valve type lead acid battery manufacturing method and control valve type lead acid battery
JP6197426B2 (en) Lead acid battery
JP2005347032A (en) Sealed lead acid storage battery
JP6136342B2 (en) Control valve type lead acid battery
JP6921037B2 (en) Lead-acid battery
JP2013145664A (en) Control valve type lead storage battery
JP2005190686A (en) Cylindrical closed-type lead acid storage battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2005268061A (en) Lead storage cell
JP5504383B1 (en) Lead acid battery
JP2005183238A (en) Control valve type lead storage battery
JP2001143679A (en) Sealed lead battery
JP2002164079A (en) Control valve type lead-acid battery
JP2021061127A (en) Lead acid battery positive electrode and lead acid battery