JP2021061127A - Lead acid battery positive electrode and lead acid battery - Google Patents

Lead acid battery positive electrode and lead acid battery Download PDF

Info

Publication number
JP2021061127A
JP2021061127A JP2019183585A JP2019183585A JP2021061127A JP 2021061127 A JP2021061127 A JP 2021061127A JP 2019183585 A JP2019183585 A JP 2019183585A JP 2019183585 A JP2019183585 A JP 2019183585A JP 2021061127 A JP2021061127 A JP 2021061127A
Authority
JP
Japan
Prior art keywords
positive electrode
fiber
active material
electrode active
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183585A
Other languages
Japanese (ja)
Other versions
JP7410683B2 (en
Inventor
素子 原田
Motoko Harada
素子 原田
格 瀬和
Kaku Sewa
格 瀬和
秀隆 関戸
Hidetaka Sekido
秀隆 関戸
隆之 木村
Takayuki Kimura
隆之 木村
祐一 利光
Yuichi Toshimitsu
祐一 利光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Materials Co Ltd filed Critical Showa Denko Materials Co Ltd
Priority to JP2019183585A priority Critical patent/JP7410683B2/en
Publication of JP2021061127A publication Critical patent/JP2021061127A/en
Application granted granted Critical
Publication of JP7410683B2 publication Critical patent/JP7410683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a lead acid battery positive electrode having an excellent active material utilization rate and a lead acid battery provided with the positive electrode.SOLUTION: A lead acid battery positive electrode 10 includes a positive electrode current collector 14, and a positive electrode active material 15 held in the positive electrode current collector 14, and the positive electrode active material 15 includes a first fiber having a fiber diameter of 10 μm or more, and a second fiber having a fiber diameter of 7 μm or less.SELECTED DRAWING: Figure 2

Description

本発明は、鉛蓄電池用正極及び鉛蓄電池に関する。 The present invention relates to a positive electrode for a lead storage battery and a lead storage battery.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。鉛蓄電池における正極には、集電体に保持された正極活物質の利用率を向上させることが求められる。正極活物質の利用率に優れる正極を用いると、例えば、所定の放電容量を得るための正極活物質の使用量を減らすことができ、その結果、鉛蓄電池の軽量化を図ることができる。 Lead-acid batteries are widely used in industry and are used, for example, in automobile batteries, backup power sources, and main power sources for electric vehicles. The positive electrode in a lead storage battery is required to improve the utilization rate of the positive electrode active material held in the current collector. When a positive electrode having an excellent utilization rate of the positive electrode active material is used, for example, the amount of the positive electrode active material used to obtain a predetermined discharge capacity can be reduced, and as a result, the weight of the lead storage battery can be reduced.

これに対して、例えば特許文献1には、正極の活物質利用率を高めるために、正極の活物質中に塩基性硫酸鉛及び黒鉛を添加し、電解液中にリン酸を1質量%以下含有した鉛蓄電池が開示されている。 On the other hand, for example, in Patent Document 1, in order to increase the utilization rate of the active material of the positive electrode, basic lead sulfate and graphite are added to the active material of the positive electrode, and phosphoric acid is 1% by mass or less in the electrolytic solution. The contained lead-acid battery is disclosed.

特開2011−165378号公報Japanese Unexamined Patent Publication No. 2011-165378

しかし、活物質利用率には、未だ改善の余地がある。そこで、本発明は、活物質利用率に優れる鉛蓄電池用正極及び当該正極を備える鉛蓄電池を提供することを目的とする。 However, there is still room for improvement in the active material utilization rate. Therefore, an object of the present invention is to provide a positive electrode for a lead storage battery having an excellent utilization rate of an active material and a lead storage battery provided with the positive electrode.

本発明の一側面は、正極集電体と、正極集電体に保持された正極活物質とを備える鉛蓄電池用正極に関する。この正極活物質は、繊維径が10μm以上である第一の繊維と、繊維径が7μm以下である第二の繊維と、を含む。 One aspect of the present invention relates to a positive electrode for a lead storage battery including a positive electrode current collector and a positive electrode active material held in the positive electrode current collector. This positive electrode active material includes a first fiber having a fiber diameter of 10 μm or more and a second fiber having a fiber diameter of 7 μm or less.

正極活物質中の第一の繊維の質量基準の含有量は、正極活物質中の第二の繊維の質量基準の含有量以上であってよい。第一の繊維及び第二の繊維は、ポリマー繊維であってよく、アクリル繊維であってよい。 The mass-based content of the first fiber in the positive electrode active material may be greater than or equal to the mass-based content of the second fiber in the positive electrode active material. The first fiber and the second fiber may be polymer fibers or acrylic fibers.

本発明の他の一側面は、上記の正極を備える鉛蓄電池に関する。 Another aspect of the present invention relates to the lead-acid battery provided with the above-mentioned positive electrode.

本発明によれば、活物質利用率に優れる鉛蓄電池用正極及び当該正極を備える鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a positive electrode for a lead storage battery having an excellent utilization rate of an active material and a lead storage battery including the positive electrode.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。It is a perspective view which shows the overall structure and the internal structure of the lead storage battery which concerns on one Embodiment. 図1に示した鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery shown in FIG.

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 FIG. 1 is a perspective view showing the overall configuration and internal structure of the lead storage battery according to the embodiment. As shown in FIG. 1, the lead-acid battery 1 includes an electric tank 2 having an open upper surface and a lid 3 that closes the opening of the electric tank 2. The battery case 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 for closing the liquid injection port provided in the lid 3.

電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、電解液とが収容されている。 Inside the battery case 2, an electrode group 7, a negative electrode column 8 connecting the electrode group 7 to the negative electrode terminal 4, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 5, and an electrolytic solution are provided. Is housed.

電解液は、希硫酸を含有する。希硫酸は、例えば、化成後の比重(20℃)が1.25〜1.33である希硫酸であってよい。電解液は、例えば、ナトリウムイオンを更に含有していてもよい。ナトリウムイオンは、例えば硫酸ナトリウムを希硫酸に溶解させることにより電解液に含有させることができる。電解液におけるナトリウムイオンの濃度は、例えば、0.005mol/L以上であってよく、0.4mol/L以下であってよい。 The electrolytic solution contains dilute sulfuric acid. The dilute sulfuric acid may be, for example, dilute sulfuric acid having a specific gravity (20 ° C.) of 1.25 to 1.33 after chemical conversion. The electrolytic solution may further contain, for example, sodium ions. Sodium ions can be contained in the electrolytic solution, for example, by dissolving sodium sulfate in dilute sulfuric acid. The concentration of sodium ions in the electrolytic solution may be, for example, 0.005 mol / L or more and 0.4 mol / L or less.

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、負極9と、正極10と、負極9と正極10との間に配置されたセパレータ11と、を備えている。負極9は、負極集電体(負極格子体)12と、負極集電体12に保持された負極活物質13と、を備えている。正極10は、正極集電体(正極格子体)14と、正極集電体14に保持された正極活物質15と、を備えている。なお、本明細書では、化成後の負極から負極集電体を除いたものを「負極活物質」、化成後の正極から正極集電体を除いたものを「正極活物質」とそれぞれ定義する。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a negative electrode 9, a positive electrode 10, and a separator 11 arranged between the negative electrode 9 and the positive electrode 10. The negative electrode 9 includes a negative electrode current collector (negative electrode lattice body) 12 and a negative electrode active material 13 held by the negative electrode current collector 12. The positive electrode 10 includes a positive electrode current collector (positive electrode lattice body) 14 and a positive electrode active material 15 held by the positive electrode current collector 14. In this specification, the negative electrode after chemical conversion excluding the negative electrode current collector is defined as "negative electrode active material", and the positive electrode after chemical conversion excluding the positive electrode current collector is defined as "positive electrode active material". ..

電極群7は、複数の負極9と正極10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極9及び正極10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。電極群7において、複数の負極9における各負極集電体12が有する耳部12a同士は、負極ストラップ16で集合溶接されている。同様に、複数の正極10における各正極集電体14が有する耳部14a同士は、正極ストラップ17で集合溶接されている。負極ストラップ16及び正極ストラップ17は、それぞれ、負極柱8及び正極柱を介して負極端子4及び正極端子5に接続されている。 The electrode group 7 has a structure in which a plurality of negative electrodes 9 and 10 are alternately laminated in a direction substantially parallel to the opening surface of the battery case 2 via a separator 11. That is, the negative electrode 9 and the positive electrode 10 are arranged so that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2. In the electrode group 7, the ears 12a of the negative electrode current collectors 12 in the plurality of negative electrodes 9 are collectively welded by the negative electrode strap 16. Similarly, the ears 14a of each of the positive electrode current collectors 14 in the plurality of positive electrodes 10 are collectively welded by the positive electrode strap 17. The negative electrode strap 16 and the positive electrode strap 17 are connected to the negative electrode terminal 4 and the positive electrode terminal 5 via the negative electrode column 8 and the positive electrode column, respectively.

セパレータ11は、例えば袋状に形成されており、負極9を収容している。セパレータ11は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等で形成されている。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。 The separator 11 is formed in a bag shape, for example, and houses the negative electrode 9. The separator 11 is made of, for example, polyethylene (PE), polypropylene (PP), or the like. The separator 11 may have inorganic particles such as SiO 2 and Al 2 O 3 adhered to a woven fabric, a non-woven fabric, a porous film, or the like formed of these materials.

負極集電体12及び正極集電体14は、それぞれ、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb−Sn−Ca系合金)であってよい。 The negative electrode current collector 12 and the positive electrode current collector 14 are each made of a lead alloy. The lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead. Specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn). -Ca-based alloy) may be used.

負極活物質は、Pb成分として少なくともPbを含み、必要に応じて、Pb以外のPb成分(例えばPbSO)及び添加剤を更に含む。負極活物質は、好ましくは、多孔質の海綿状鉛(Spongy Lead)を含む。Pb成分の含有量は、負極活物質の全質量を基準として、90質量%以上又は95質量%以上であってよく、99質量%以下又は98質量%以下であってよい。なお、負極活物質の全質量は、例えば、鉛蓄電池から負極(負極集電体及び負極活物質)を取り出して水洗し、負極を十分に乾燥させた後に測定した負極の質量と、負極集電体の質量との差から算出することができる。乾燥は、例えば、50℃で24時間行う。 The negative electrode active material contains at least Pb as a Pb component, and further contains a Pb component other than Pb (for example, PbSO 4) and an additive, if necessary. The negative electrode active material preferably contains porous spongy lead. The content of the Pb component may be 90% by mass or more or 95% by mass or more, and may be 99% by mass or less or 98% by mass or less, based on the total mass of the negative electrode active material. The total mass of the negative electrode active material is, for example, the mass of the negative electrode measured after the negative electrode (negative electrode current collector and negative electrode active material) is taken out from the lead storage battery, washed with water, and the negative electrode is sufficiently dried, and the negative electrode current collection. It can be calculated from the difference from the mass of the body. Drying is carried out, for example, at 50 ° C. for 24 hours.

添加剤としては、例えば、スルホ基及び/又はスルホン酸塩基を有する樹脂、硫酸バリウム、炭素材料(炭素繊維を除く)及び繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。 Examples of additives include resins having a sulfo group and / or a sulfonic acid base, barium sulfate, carbon materials (excluding carbon fibers) and fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.). Can be mentioned.

スルホ基及び/又はスルホン酸塩基を有する樹脂は、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種であってよい。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Resins having a sulfo group and / or a sulfonic acid base include lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and formaldehyde). It may be at least one selected from the group consisting of condensates). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.

正極活物質は、Pb成分であるPbOと、繊維径が10μm以上である第一の繊維と、繊維径が7μm以下である第二の繊維とを含む。第一の繊維及び第二の繊維は、カットファイバーとも呼ばれる。正極活物質は、必要に応じて、PbO以外のPb成分(例えばPbSO)及び添加剤を更に含んでいてよい。 The positive electrode active material includes PbO 2 which is a Pb component, a first fiber having a fiber diameter of 10 μm or more, and a second fiber having a fiber diameter of 7 μm or less. The first fiber and the second fiber are also called cut fibers. The positive electrode active material may further contain a Pb component (for example, PbSO 4 ) other than PbO 2 and an additive, if necessary.

Pb成分の含有量は、低温高率放電性能及びサイクル性能が更に向上する観点から、正極活物質の全質量を基準として、好ましくは90質量%以上、より好ましくは95質量%以上である。Pb成分の含有量は、製造コストの低減及び軽量化の観点から、正極活物質の全質量を基準として、好ましくは99.9質量%以下、より好ましくは98質量%以下である。なお、正極活物質の全質量は、例えば、鉛蓄電池から正極(正極集電体及び正極活物質)を取り出して水洗し、正極を十分に乾燥させた後に測定した正極の質量と、正極集電体の質量との差から算出することができる。乾燥は、例えば、50℃で24時間行う。 The content of the Pb component is preferably 90% by mass or more, more preferably 95% by mass or more, based on the total mass of the positive electrode active material, from the viewpoint of further improving the low temperature and high rate discharge performance and the cycle performance. The content of the Pb component is preferably 99.9% by mass or less, more preferably 98% by mass or less, based on the total mass of the positive electrode active material, from the viewpoint of reducing the production cost and weight. The total mass of the positive electrode active material is, for example, the mass of the positive electrode measured after taking out the positive electrode (positive electrode current collector and positive electrode active material) from the lead storage battery, washing the positive electrode with water, and sufficiently drying the positive electrode, and the positive electrode current collection. It can be calculated from the difference from the mass of the body. Drying is carried out, for example, at 50 ° C. for 24 hours.

正極活物質は、好ましくは、Pb成分としてβ−PbOを含む。正極活物質は、Pb成分として、α−PbOを更に含んでいてもよい。すなわち、正極活物質は、一実施形態において、Pb成分としてβ−PbOのみを含んでいてよく、他の一実施形態において、Pb成分としてα−PbO及びβ−PbOを含んでいてよい。 The positive electrode active material preferably contains β-PbO 2 as a Pb component. The positive electrode active material may further contain α-PbO 2 as a Pb component. That is, the positive electrode active material may contain only β-PbO 2 as a Pb component in one embodiment, and may contain α-PbO 2 and β-PbO 2 as a Pb component in another embodiment. ..

第一の繊維及び第二の繊維は、繊維状(細長形状)の材料である。本明細書において、「繊維」は、アスペクト比が100以上である形状を有する材料として定義される。当該アスペクト比は、繊維の光学顕微鏡像から算出される、繊維径の最大長さと、当該最大長さを有する方向に垂直な方向における繊維の最小長さ(繊維径)との比(最大長さ/最小長さ)として定義される。 The first fiber and the second fiber are fibrous (elongated) materials. In the present specification, "fiber" is defined as a material having a shape having an aspect ratio of 100 or more. The aspect ratio is the ratio (maximum length) of the maximum length of the fiber diameter calculated from the optical microscope image of the fiber to the minimum length (fiber diameter) of the fiber in the direction perpendicular to the direction having the maximum length. / Minimum length).

第一の繊維及び第二の繊維は、それぞれ、例えば、ポリマー繊維、炭素繊維等であってよい。ポリマー繊維としては、例えば、ポリオレフィン繊維(ポリエチレン、ポリプロピレン等を含む繊維)、ポリエステル繊維(ポリエチレンテレフタレート等を含む繊維)、アクリル繊維(ポリアクリレート、ポリメタクリレート等を含む繊維)などが挙げられる。第一の繊維及び第二の繊維は、優れた充放電性能(充電受入性能、低温高率放電性能等)が得られる観点から、それぞれ、好ましくはポリマー繊維、より好ましくはアクリル繊維である。第一の繊維及び第二の繊維は、互いに同じ材料の繊維であってよく、互いに異なる材料の繊維であってもよい。 The first fiber and the second fiber may be, for example, a polymer fiber, a carbon fiber, or the like, respectively. Examples of the polymer fiber include polyolefin fiber (fiber containing polyethylene, polypropylene and the like), polyester fiber (fiber containing polyethylene terephthalate and the like), acrylic fiber (fiber containing polyacrylate, polymethacrylate and the like) and the like. The first fiber and the second fiber are preferably polymer fibers, more preferably acrylic fibers, respectively, from the viewpoint of obtaining excellent charge / discharge performance (charge acceptance performance, low temperature high rate discharge performance, etc.). The first fiber and the second fiber may be fibers of the same material as each other, or may be fibers of different materials from each other.

第一の繊維の繊維径は、繊維の強度を確保し、正極活物質中の繊維の分散性を向上させる観点から、上述したとおり10μm以上であり、好ましくは10.5μm以上、より好ましくは11μm以上である。第一の繊維の繊維径は、例えば15μm以下であってよい。 The fiber diameter of the first fiber is 10 μm or more, preferably 10.5 μm or more, more preferably 11 μm, as described above, from the viewpoint of ensuring the strength of the fiber and improving the dispersibility of the fiber in the positive electrode active material. That is all. The fiber diameter of the first fiber may be, for example, 15 μm or less.

第二の繊維の繊維径は、正極活物質中に硫酸の拡散パスを好適に形成できる観点から、上述したとおり7μm以下であり、好ましくは6.5μm以下、より好ましくは6μm以下、更に好ましくは5.5μm以下である。第二の繊維の繊維径は、2μm以上であってよく、活物質利用率を更に向上させる観点から、好ましくは3μm以上、より好ましくは3.5μm以上、更に好ましくは4μm以上、特に好ましくは4.5μm以上である。 The fiber diameter of the second fiber is 7 μm or less, preferably 6.5 μm or less, more preferably 6 μm or less, still more preferably 6 μm or less, as described above, from the viewpoint of being able to preferably form a diffusion path of sulfuric acid in the positive electrode active material. It is 5.5 μm or less. The fiber diameter of the second fiber may be 2 μm or more, and from the viewpoint of further improving the utilization rate of the active material, it is preferably 3 μm or more, more preferably 3.5 μm or more, still more preferably 4 μm or more, and particularly preferably 4 It is 5.5 μm or more.

正極活物質が第一の繊維及び第二の繊維を含むことは、光学顕微鏡を用いて正極活物質の任意の断面を観察することで確認できる。また、第一及び第二の繊維の繊維径は、上述した繊維の最小長さに相当するものであり、繊維の光学顕微鏡像から測定される。 It can be confirmed that the positive electrode active material contains the first fiber and the second fiber by observing an arbitrary cross section of the positive electrode active material using an optical microscope. The fiber diameters of the first and second fibers correspond to the minimum lengths of the fibers described above, and are measured from an optical microscope image of the fibers.

第一の繊維は、例えば、日本エクスラン工業株式会社(型番K−701−1.0TS30等)から入手可能である。第二の繊維は、例えば、三菱ケミカル株式会社(型番D122等)から入手可能である。 The first fiber can be obtained from, for example, Japan Exlan Co., Ltd. (model number K-701-1.0TS30, etc.). The second fiber can be obtained from, for example, Mitsubishi Chemical Corporation (model number D122, etc.).

正極活物質中の第一の繊維の質量基準の含有量は、耐久性を向上させる観点から、正極活物質中の第二の繊維の質量基準の含有量以上であることが好ましい。同様の観点から、正極活物質中の第一の繊維の質量基準の含有量は、正極活物質中の第二の繊維の質量基準の含有量に対して、より好ましくは、1.3倍以上、1.5倍以上、2倍以上、3倍以上、3.5倍以上、又は4倍以上であってよい。利用率を更に向上させる観点から、正極活物質中の第一の繊維の質量基準の含有量は、正極活物質中の第二の繊維の質量基準の含有量に対して、好ましくは、8倍以下、7倍以下、又は6倍以下である。 The mass-based content of the first fiber in the positive electrode active material is preferably equal to or higher than the mass-based content of the second fiber in the positive electrode active material from the viewpoint of improving durability. From the same viewpoint, the mass-based content of the first fiber in the positive electrode active material is more preferably 1.3 times or more the mass-based content of the second fiber in the positive electrode active material. , 1.5 times or more, 2 times or more, 3 times or more, 3.5 times or more, or 4 times or more. From the viewpoint of further improving the utilization rate, the mass-based content of the first fiber in the positive electrode active material is preferably 8 times the mass-based content of the second fiber in the positive electrode active material. Below, it is 7 times or less, or 6 times or less.

正極活物質中の第一の繊維及び第二の繊維の合計の含有量は、正極活物質の泥状化による脱落を抑制できる観点から正極活物質の全質量を基準として、好ましくは0.02質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。第一の繊維及び第二の繊維の合計の含有量は、優れた充放電性能(充電受入性能、低温高率放電性能等)が得られる観点から、正極活物質の全質量を基準として、好ましくは2.5質量%以下、より好ましくは0.8質量%以下、更に好ましくは0.4質量%以下である。 The total content of the first fiber and the second fiber in the positive electrode active material is preferably 0.02 based on the total mass of the positive electrode active material from the viewpoint of suppressing the dropping of the positive electrode active material due to mudification. It is mass% or more, more preferably 0.05 mass% or more, still more preferably 0.1 mass% or more. The total content of the first fiber and the second fiber is preferably based on the total mass of the positive electrode active material from the viewpoint of obtaining excellent charge / discharge performance (charge acceptance performance, low temperature high rate discharge performance, etc.). Is 2.5% by mass or less, more preferably 0.8% by mass or less, still more preferably 0.4% by mass or less.

添加剤としては、例えば、炭素材料(炭素繊維を除く。)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive include carbon materials (excluding carbon fibers). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.

以上のとおり、正極活物質が第一の繊維及び第二の繊維を含むことにより、正極における活物質利用率が向上する。利用率が向上する理由として、正極活物質中に互いに異なる繊維径の繊維が存在することにより、硫酸の拡散パスが増加し、その結果、充放電に寄与する正極活物質の量が増加するためであると本発明者らは推察している。 As described above, when the positive electrode active material contains the first fiber and the second fiber, the active material utilization rate in the positive electrode is improved. The reason for the improvement in utilization rate is that the presence of fibers having different fiber diameters in the positive electrode active material increases the diffusion path of sulfuric acid, and as a result, the amount of the positive electrode active material that contributes to charging and discharging increases. The present inventors speculate that this is the case.

鉛蓄電池1は、車両のエンジン始動用及び補機用の鉛蓄電池として好適に用いられる。すなわち、本発明の一実施形態は、上述した鉛蓄電池1の車両のエンジン始動、又は車両の補機への応用である。 The lead-acid battery 1 is suitably used as a lead-acid battery for starting an engine of a vehicle and for an auxiliary machine. That is, one embodiment of the present invention is an application of the lead-acid battery 1 described above to a vehicle engine start or a vehicle auxiliary machine.

鉛蓄電池1は、例えば、電極(負極及び正極)を得る電極製造工程と、電極を含む構成部材を組み立てて鉛蓄電池1を得る組立工程とを備える製造方法により製造される。 The lead-acid battery 1 is manufactured by, for example, a manufacturing method including an electrode manufacturing step of obtaining electrodes (negative electrode and positive electrode) and an assembly step of assembling constituent members including the electrodes to obtain the lead-acid battery 1.

電極製造工程では、例えば、負極集電体12に負極活物質ペーストを保持させた後に、熟成及び乾燥することにより未化成の負極9を得ると共に、正極集電体14に正極活物質ペーストを保持させた後に、熟成及び乾燥することにより未化成の正極10を得る。 In the electrode manufacturing process, for example, the negative electrode current collector 12 holds the negative electrode active material paste, and then matures and dries to obtain an unmodified negative electrode 9, and the positive electrode current collector 14 holds the positive electrode active material paste. After the aging, the unchemicald positive electrode 10 is obtained by aging and drying.

組立工程では、例えば、得られた負極及び正極を、セパレータ11を介して積層し、同極性の電極の集電部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の鉛蓄電池を作製する。次に、未化成の鉛蓄電池に希硫酸を入れて、直流電流を通電して電槽化成する。続いて、化成後の硫酸の比重(20℃)を適切な電解液の比重に調整することで、鉛蓄電池1が得られる。 In the assembly step, for example, the obtained negative electrodes and positive electrodes are laminated via the separator 11 and the current collecting portions of electrodes having the same polarity are welded with a strap to obtain an electrode group. This group of electrodes is arranged in an electric tank to produce an unchemical lead-acid battery. Next, dilute sulfuric acid is put into a non-chemical lead-acid battery, and a direct current is applied to form an electric tank. Subsequently, the lead storage battery 1 is obtained by adjusting the specific gravity (20 ° C.) of the sulfuric acid after chemical conversion to an appropriate specific gravity of the electrolytic solution.

化成に用いる硫酸の比重(20℃)は、1.15〜1.25であってよい。化成後の硫酸の比重(20℃)は、好ましくは1.25〜1.33、より好ましくは1.26〜1.30である。化成条件及び硫酸の比重は、電極のサイズに応じて調整することができる。化成処理は、組立工程において実施されてもよく、電極製造工程において実施されてもよい(タンク化成)。 The specific gravity (20 ° C.) of sulfuric acid used for chemical conversion may be 1.15 to 1.25. The specific gravity (20 ° C.) of sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30. The chemical conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode. The chemical conversion treatment may be carried out in the assembly process or in the electrode manufacturing process (tank chemical conversion).

以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.

<実施例1>
(正極の作製)
鉛粉100質量部に対して、繊維A(アクリル繊維、繊維径(最小長さ)11μm、最大長さ3mm)0.224質量部と、繊維B(アクリル繊維、繊維径5.0μm、繊維長さ3mm)0.051質量部、硫酸ナトリウム0.025質量部、鉛丹とを加えて乾式混合した。次に、鉛粉及び繊維からなる混合物100質量部に対して、水10.5質量部を加えると共に、鉛丹を含む希硫酸(比重1.28)16.3質量部を段階的に加え、40分混練して正極活物質ペーストを作製した。なお、鉛丹の配合量は、合計で10質量部とした。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式正極集電体に、正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度60℃で24時間乾燥して、未化成の正極を得た。
<Example 1>
(Preparation of positive electrode)
Fiber A (acrylic fiber, fiber diameter (minimum length) 11 μm, maximum length 3 mm) 0.224 parts by mass and fiber B (acrylic fiber, fiber diameter 5.0 μm, fiber length) with respect to 100 parts by mass of lead powder. 3 mm) 0.051 part by mass of sodium sulfate, 0.025 part by mass of sodium sulfate, and lead tan were added and mixed dry. Next, 10.5 parts by mass of water was added to 100 parts by mass of the mixture composed of lead powder and fibers, and 16.3 parts by mass of dilute sulfuric acid (specific gravity 1.28) containing lead tan was added stepwise. The mixture was kneaded for 40 minutes to prepare a positive electrode active material paste. The total amount of lead tan was 10 parts by mass. An expanded positive electrode current collector produced by expanding a rolled sheet made of a lead alloy was filled with a positive electrode active material paste and then aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it was dried at a temperature of 60 degreeC for 24 hours to obtain an unchemical positive electrode.

(負極の作製)
鉛粉100質量部に対して、バニレックスN(高純部分脱スルホンリグニンスルホン酸ナトリウム、商品名、日本製紙株式会社製)0.3質量部、ポリエチレンテレフタレート(PET)繊維0.1質量部、硫酸バリウム1.0質量部、及びファーネスブラック0.1質量部の混合物を添加し、乾式混合した。次に、この混合物に水を加えて混練した後、比重1.280の希硫酸を少量ずつ添加しながら更に混練して、負極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式負極集電体に、この負極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の負極を得た。
(Preparation of negative electrode)
With respect to 100 parts by mass of lead powder, 0.3 parts by mass of Vanillex N (highly pure partially desulfonated sodium lignin sulfonate, trade name, manufactured by Nippon Paper Co., Ltd.), 0.1 parts by mass of polyethylene terephthalate (PET) fiber, sulfate. A mixture of 1.0 part by mass of barium and 0.1 part by mass of furnace black was added and mixed dry. Next, water was added to this mixture and kneaded, and then the mixture was further kneaded while adding dilute sulfuric acid having a specific gravity of 1.280 little by little to prepare a negative electrode active material paste. The expanded negative electrode current collector produced by expanding a rolled sheet made of a lead alloy was filled with this negative electrode active material paste and then aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it was dried at a temperature of 50 degreeC for 16 hours to obtain an unchemical negative electrode.

(評価用鉛蓄電池の組み立て)
袋状に加工したポリエチレン製のセパレータに、未化成の負極を挿入した。次に、未化成の正極1枚と、袋状セパレータに挿入された未化成の負極2枚とを交互に積層した。続いて、各電極に対して、板状の鉛シートを用いてアーク溶接することで端子を作製した。その後、電極を電槽に挿入すると共に、ナトリウムイオン濃度が0.05mol/Lになるように硫酸ナトリウムを溶解させた比重1.26の希硫酸を電槽内に注入し、40℃の水槽に入れて40分間静置した。その後、課電量(基準:正極活物質の理論化成電気量)300%で化成を行った。なお、化成後の電解液(硫酸溶液)の比重を1.29(20℃)に調整した。以上のようにして、2V単板セル(評価用鉛蓄電池)を組み立てた。
(Assembly of lead-acid battery for evaluation)
An unchemical negative electrode was inserted into a bag-shaped polyethylene separator. Next, one unchemical positive electrode and two unchemical negative electrodes inserted into the bag-shaped separator were alternately laminated. Subsequently, terminals were manufactured by arc welding each electrode using a plate-shaped lead sheet. After that, the electrode is inserted into the electric tank, and dilute sulfuric acid having a specific gravity of 1.26 in which sodium sulfate is dissolved so that the sodium ion concentration becomes 0.05 mol / L is injected into the electric tank and placed in a water tank at 40 ° C. It was put in and allowed to stand for 40 minutes. Then, the chemical conversion was carried out with a charge amount (reference: theoretical chemical conversion electric amount of the positive electrode active material) of 300%. The specific gravity of the electrolytic solution (sulfuric acid solution) after chemical conversion was adjusted to 1.29 (20 ° C.). As described above, a 2V single plate cell (lead-acid battery for evaluation) was assembled.

<実施例2>
正極活物質ペースト作製時に用いる繊維Bの含有量を0.106質量部に変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
<Example 2>
A lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 1 except that the content of the fiber B used in the preparation of the positive electrode active material paste was changed to 0.106 parts by mass.

<実施例3>
正極活物質ペースト作製時に用いる繊維Bの含有量を0.161質量部に変更した以外は、実施例1と同様にして、鉛蓄電池を作製した。
<Example 3>
A lead-acid battery was produced in the same manner as in Example 1 except that the content of the fiber B used in producing the positive electrode active material paste was changed to 0.161 parts by mass.

<実施例4>
正極活物質ペースト作製時に用いる繊維Bを繊維C(アクリル繊維、繊維径(最小長さ)3.3μm、最大長さ3mm)に変更した以外は、実施例1と同様にして、鉛蓄電池を作製した。
<Example 4>
A lead-acid battery was produced in the same manner as in Example 1 except that the fiber B used for producing the positive electrode active material paste was changed to fiber C (acrylic fiber, fiber diameter (minimum length) 3.3 μm, maximum length 3 mm). did.

<比較例1>
正極活物質ペースト作製時に繊維Bを用いなかった以外は、実施例1と同様にして、鉛蓄電池を作製した。
<Comparative example 1>
A lead storage battery was produced in the same manner as in Example 1 except that the fiber B was not used when producing the positive electrode active material paste.

<比較例2>
正極活物質ペースト作製時に用いる繊維Aの含有量を0.33質量部に変更し、繊維Bを用いなかった以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
<Comparative example 2>
The lead-acid battery was prepared and each measurement was carried out in the same manner as in Example 1 except that the content of the fiber A used in the preparation of the positive electrode active material paste was changed to 0.33 parts by mass and the fiber B was not used.

(活物質利用率の評価)
各実施例及び比較例の鉛蓄電池の正極における活物質利用率を以下のとおり評価した。
25℃環境下において、0.2Cの電流値で終止電圧1.75Vの定電流放電を行い、このときの放電容量を測定した。測定された放電容量を用いて、活物質利用率を下記式により算出した。結果を表1に示す。
活物質利用率(%)=[測定された放電容量]/[正極活物質の理論容量]×100
なお、正極活物質の理論容量は、「正極内の酸化鉛重量(g)×0.22(Ah/g)」により求められる。
(Evaluation of active material utilization rate)
The active material utilization rate in the positive electrode of the lead-acid batteries of each Example and Comparative Example was evaluated as follows.
In an environment of 25 ° C., a constant current discharge with a final voltage of 1.75 V was performed at a current value of 0.2 C, and the discharge capacity at this time was measured. Using the measured discharge capacity, the active material utilization rate was calculated by the following formula. The results are shown in Table 1.
Active material utilization rate (%) = [Measured discharge capacity] / [Theoretical capacity of positive electrode active material] x 100
The theoretical capacity of the positive electrode active material is determined by "weight of lead oxide in the positive electrode (g) x 0.22 (Ah / g)".

Figure 2021061127
Figure 2021061127

1…鉛蓄電池、9…負極、10…正極、11…セパレータ、12…負極集電体、13…負極活物質、14…正極集電体、15…正極活物質。
1 ... Lead-acid battery, 9 ... Negative electrode, 10 ... Positive electrode, 11 ... Separator, 12 ... Negative electrode current collector, 13 ... Negative electrode active material, 14 ... Positive electrode current collector, 15 ... Positive electrode active material.

Claims (5)

正極集電体と、前記正極集電体に保持された正極活物質とを備え、
前記正極活物質が、繊維径が10μm以上である第一の繊維と、繊維径が7μm以下である第二の繊維と、を含む、鉛蓄電池用正極。
A positive electrode current collector and a positive electrode active material held by the positive electrode current collector are provided.
A positive electrode for a lead storage battery, wherein the positive electrode active material includes a first fiber having a fiber diameter of 10 μm or more and a second fiber having a fiber diameter of 7 μm or less.
前記正極活物質中の前記第一の繊維の質量基準の含有量が、前記正極活物質中の前記第二の繊維の質量基準の含有量以上である、請求項1に記載の正極。 The positive electrode according to claim 1, wherein the mass-based content of the first fiber in the positive electrode active material is equal to or greater than the mass-based content of the second fiber in the positive electrode active material. 前記第一の繊維及び前記第二の繊維がポリマー繊維である、請求項1又は2に記載の正極。 The positive electrode according to claim 1 or 2, wherein the first fiber and the second fiber are polymer fibers. 前記第一の繊維及び前記第二の繊維がアクリル繊維である、請求項1〜3のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 3, wherein the first fiber and the second fiber are acrylic fibers. 請求項1〜4のいずれか一項に記載の正極を備える、鉛蓄電池。
A lead-acid battery comprising the positive electrode according to any one of claims 1 to 4.
JP2019183585A 2019-10-04 2019-10-04 Positive electrode for lead-acid batteries and lead-acid batteries Active JP7410683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183585A JP7410683B2 (en) 2019-10-04 2019-10-04 Positive electrode for lead-acid batteries and lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183585A JP7410683B2 (en) 2019-10-04 2019-10-04 Positive electrode for lead-acid batteries and lead-acid batteries

Publications (2)

Publication Number Publication Date
JP2021061127A true JP2021061127A (en) 2021-04-15
JP7410683B2 JP7410683B2 (en) 2024-01-10

Family

ID=75380328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183585A Active JP7410683B2 (en) 2019-10-04 2019-10-04 Positive electrode for lead-acid batteries and lead-acid batteries

Country Status (1)

Country Link
JP (1) JP7410683B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854561A (en) * 1981-09-28 1983-03-31 Yuasa Battery Co Ltd Manufacture of storage battery
JP2003524281A (en) * 1999-10-06 2003-08-12 スクワナクック テクノロジーズ エルエルシー Battery paste
JP2006004688A (en) * 2004-06-16 2006-01-05 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2006294330A (en) * 2005-04-07 2006-10-26 Shin Kobe Electric Mach Co Ltd Positive plate for lead-acid battery and its manufacturing method
US20170346076A1 (en) * 2016-05-31 2017-11-30 Johns Manville Lead-acid battery systems and methods
WO2019064854A1 (en) * 2017-09-28 2019-04-04 株式会社Gsユアサ Lead acid storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854561A (en) * 1981-09-28 1983-03-31 Yuasa Battery Co Ltd Manufacture of storage battery
JP2003524281A (en) * 1999-10-06 2003-08-12 スクワナクック テクノロジーズ エルエルシー Battery paste
JP2006004688A (en) * 2004-06-16 2006-01-05 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2006294330A (en) * 2005-04-07 2006-10-26 Shin Kobe Electric Mach Co Ltd Positive plate for lead-acid battery and its manufacturing method
US20170346076A1 (en) * 2016-05-31 2017-11-30 Johns Manville Lead-acid battery systems and methods
WO2019064854A1 (en) * 2017-09-28 2019-04-04 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
JP7410683B2 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
KR101828602B1 (en) Improved energy storage device
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
JP6977770B2 (en) Liquid lead-acid battery
JP5748091B2 (en) Lead acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP6388094B1 (en) Lead acid battery
JP7010556B2 (en) Positive electrode plate and lead acid battery
JP5396216B2 (en) Lead acid battery
WO2019088040A1 (en) Lead storage battery separator and lead storage battery
JP2020167079A (en) Lead-acid battery
JP2012124096A (en) Lead acid battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
WO2020066763A1 (en) Lead battery
JP2004327299A (en) Sealed lead-acid storage battery
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
JP7223870B2 (en) Positive electrode plate, lead-acid battery and manufacturing method thereof
JP7285206B2 (en) Method for determining electrode performance, lead-acid battery, and method for manufacturing the same
JP6164502B2 (en) Lead acid battery
JP6677436B1 (en) Lead storage battery
JP2021096900A (en) Lead acid battery
JP2020161316A (en) Positive electrode plate and lead acid battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
WO2019234862A1 (en) Lead storage battery
WO2021131033A1 (en) Negative electrode material for lead acid storage batteries for system power stabilization or load leveling, and method for producing same
WO2019234860A1 (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220628

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20221227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7410683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150