JPH04171672A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH04171672A
JPH04171672A JP2300764A JP30076490A JPH04171672A JP H04171672 A JPH04171672 A JP H04171672A JP 2300764 A JP2300764 A JP 2300764A JP 30076490 A JP30076490 A JP 30076490A JP H04171672 A JPH04171672 A JP H04171672A
Authority
JP
Japan
Prior art keywords
active material
sulfuric acid
lead
dendrites
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2300764A
Other languages
Japanese (ja)
Other versions
JP2959108B2 (en
Inventor
Nobuyuki Takami
高見 宣行
Katsuhiro Takahashi
勝弘 高橋
Yasuhiko Suzui
鈴井 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2300764A priority Critical patent/JP2959108B2/en
Publication of JPH04171672A publication Critical patent/JPH04171672A/en
Application granted granted Critical
Publication of JP2959108B2 publication Critical patent/JP2959108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To suppress the generation of dendrites by specifying the relation between the positive electrode active material weight per cell and the sulfuric acid absolute quantity, and containing at least one kind of alkaline metal ions 0.03mol/1 or above. CONSTITUTION:The relation between the positive electrode active material weight A gr per cell and the sulfuric acid absolute quantity B gr is set to B/A<=0.55, and at least one kind of alkaline metal ions 0.03mol/1 or above are contained. The alkaline metal ions are allowed to exist without controlling the remaining quantity of the sulfuric acid radical in the region where the quantity of the active material is increased and the ratio of sulfuric acid is decreased. The generation of dendrites, which is being increased under the situation that the quantity of the active material must be increased to adapt a lead-acid battery to the lightweight, thin, short and small trend in recent years, is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車や産業用民生機器用に広く用いられてい
る鉛蓄電池の改善をはかるものであり特に近年のバッテ
リー環境の厳しい変化への対応を図るものである。
[Detailed Description of the Invention] Industrial Application Field The present invention aims to improve lead-acid batteries that are widely used in automobiles and industrial consumer equipment, and is particularly aimed at responding to severe changes in the battery environment in recent years. It is something.

従来の技術 近年、鉛蓄電池は用途に限らず限られたスペース密度の
向上が求められ、また自動車ではさらにエンジンルーム
内の過密化や高温度化か進み/< 、7テリーの一層の
耐久力かもとめられている。この傾向に対して基本的に
は極板の改善がなされているが適切な方法は無くそのな
かで最も多く採られているのが極板の枚数を増加したり
活物質の量を増やすなどして活物質の負担を軽くし事実
」二の耐久性を向上する方法である。この傾向の中で新
しい問題が発生してきた。すなわち装置に装着して長い
間装置すると回路のリーク放電によって深い過放電にな
り、このまま放置して置くと充電出来なくなる現象が急
増しつつある。この現象は一般に過放電回復性と総称さ
れるものであるが従来と状況を異にしている。たとえば
この現象は極板の格子にカルシウムの合金を用いる場合
もアンチモン合金を用いる場合もこれらを組み合わせた
いわゆるハイブリッド構造においても発生しており従来
の様に格子の不動態化に依るものではなく、また過放電
時の結晶性硫酸鉛の成長によるいわゆるサルフェーショ
ンでもない。現象的には明らかにデンドライトの生成に
よって微ショートしているのがみられる。ところが困っ
た事にこの現象は極めて激しいもので従来0.1〜0.
2モル/l程度の硫酸ナトリウム等を添加して過放電時
に硫酸イオンの濃度を増やし硫酸鉛の溶解を抑制してデ
ンドライトの成長を防ぐ方法が知られているが、この常
識の方法では同等解決しなかった。従来硫酸ナトリウム
は常温で1.5モルもの溶解度を持ちながら現実には上
記の如き少ない範囲が適用されてきた理由は従来はこの
程度で十分デンドライトの生成を防御出来ていたこと、
硫酸への溶解速度が遅く0.2モル/lも添加しようと
すると沈殿して濃度が管理しにくいこと0.2モルを越
えると急放電特性が大幅に低下するなどの問題があった
ためと思われる。これらの現象が急増し、また従来発生
しないと考えていたある量の添加物を用いた領域で発生
し始めたというのは、ちょうど近年の諸問題に対し活物
質量を増加し始めた時期と一致する。つまり活物質の量
が増えて硫酸イオンがあるかぎり過放電が進み電解液が
中性となり硫酸ナトリウムのかたちで加えた限定された
量のアルカリ金属硫酸塩等が溶解度積の原理に従って鉛
の溶解を抑制する限界を越えてデンドライトの発生に至
っているものと思われる。
Conventional technology In recent years, lead-acid batteries have been required to improve their density in limited spaces, regardless of their use, and in automobiles, the engine room has become increasingly crowded and hot. being sought after. Basically, improvements have been made to the electrode plates in response to this trend, but there is no suitable method, and the most common methods are increasing the number of electrode plates or increasing the amount of active material. This is a method that reduces the burden on the active material and improves its durability. With this trend, new problems have arisen. In other words, if the battery is attached to a device for a long period of time, leakage discharge from the circuit will cause deep overdischarge, and if left as it is, the phenomenon of not being able to be charged is rapidly increasing. This phenomenon is generally referred to as overdischarge recovery, but it is different from the conventional situation. For example, this phenomenon occurs when a calcium alloy or an antimony alloy is used for the electrode plate lattice, or in a so-called hybrid structure that combines these, and is not due to passivation of the lattice as in the past. Also, there is no so-called sulfation caused by the growth of crystalline lead sulfate during overdischarge. In terms of phenomena, it is clearly seen that there is a slight short circuit due to the formation of dendrites. However, the problem is that this phenomenon is extremely severe and conventionally 0.1 to 0.
A known method is to add about 2 mol/l of sodium sulfate, etc. to increase the concentration of sulfate ions during overdischarge, suppress the dissolution of lead sulfate, and prevent the growth of dendrites, but this common sense method provides the same solution. I didn't. Conventionally, sodium sulfate has a solubility of 1.5 mol at room temperature, but the reason why such a small range as above has been applied in reality is that in the past, this level was sufficient to prevent the formation of dendrites.
This is thought to be because the rate of dissolution in sulfuric acid is slow, and if you try to add 0.2 mol/l, it will precipitate, making it difficult to control the concentration, and if it exceeds 0.2 mol, the rapid discharge characteristics will drop significantly. It can be done. The fact that these phenomena rapidly increased and started to occur in areas where certain amounts of additives were used, which were previously thought not to occur, coincided with the time when the amount of active materials began to be increased in response to various problems in recent years. Match. In other words, as long as the amount of active material increases and sulfate ions are present, overdischarge will progress and the electrolyte will become neutral, and a limited amount of alkali metal sulfate added in the form of sodium sulfate will dissolve lead according to the solubility product principle. It seems that dendrites are occurring beyond the limit of suppression.

発明が解決しようとする課題 すなわち社会情勢の変化に対応して活物質の電池体積当
たりの充填量を増加せざるを得ない現実の中でいかに急
放電の特性低下等の副作用を抑制しつつデンドライトの
生成を押さえるかが地球規模で軽薄短小、高耐久力を求
める今日重要な課題になりつつある。
The problem that the invention aims to solve is how to suppress side effects such as sudden discharge characteristic deterioration while suppressing side effects such as deterioration of sudden discharge characteristics in a reality where the amount of active material filled per battery volume has to be increased in response to changes in social conditions. How to suppress the generation of carbon dioxide is becoming an important issue in today's world, where we are looking for lighter, thinner, smaller, and more durable materials.

課題を解決するための手段 上記の課題を解決する手段として本発明はセル当たりの
正極活物質重量Aグラム、硫酸絶対ff1Bグラムとす
るときB/A≦0,55でかつ少なくとも一種のアルカ
リ金属イオンを0.03モル/l以上含むことを特徴と
する。さらにこの効果を効果的に発揮させる手段として
正負極板の間に介在さぜるセパレータのベース厚みを0
.25mm以下としたものである。
Means for Solving the Problems As a means for solving the above-mentioned problems, the present invention provides positive electrode active material weight A grams per cell, sulfuric acid absolute ff1B grams, B/A≦0.55, and at least one alkali metal ion. It is characterized by containing 0.03 mol/l or more. Furthermore, as a means to effectively exhibit this effect, the base thickness of the separator interposed between the positive and negative electrode plates is reduced to 0.
.. The length is 25 mm or less.

作用 すなわち、本発明は活物質の量を増加し硫酸の比率が低
下する領域では硫酸根の残留量をコントロールするので
無くアルカリ金属イオンを存在させる事によって副作用
無くデンドライトの生成を抑制出来るという発見に基ず
く。
In other words, the present invention is based on the discovery that in a region where the amount of active material is increased and the ratio of sulfuric acid is decreased, the formation of dendrites can be suppressed without side effects by not controlling the residual amount of sulfate groups but by allowing alkali metal ions to exist. Base.

この理由は明確でないが、過放電によるデンドライトの
生成が一般に過放電状態で中性化する電解液の中で鉛イ
オンの溶解度が増加しセパレータ等に固定された化合物
の形で固定されず。そしてそれが充電によってほとんど
の場合負極側に接する部分から錯化されてデンドライト
が成長しショートにいたるメカニズムであるならば過放
電時に常識を越えた硫酸ナトリウム量のモル数に相当す
るアルカリ金属イオンの作用によってセパレータの負極
側近傍の液性を変えデンドライトの素になる化合物のセ
パレータへの滞留固定を防止するかもしれない。
The reason for this is not clear, but dendrite formation due to overdischarge generally increases the solubility of lead ions in the electrolyte that becomes neutralized during overdischarge, and is not fixed in the form of a compound fixed to a separator or the like. If this is the mechanism by which dendrites grow due to complexing in most cases from the part in contact with the negative electrode side during charging, leading to a short circuit, then during overdischarge, an amount of alkali metal ions equivalent to the number of moles of sodium sulfate, which exceeds common sense, is generated. This action may change the liquid properties near the negative electrode side of the separator and prevent compounds that form the basis of dendrites from staying and fixing in the separator.

またショートの危険性はセパレータが薄いほど一般には
高いのが常識であるがここでは薄いほど発生が少ない。
It is common knowledge that the thinner the separator is, the higher the risk of short-circuiting; however, here, the thinner the separator, the less likely it will occur.

これは薄いほどセパレータ中での化合物の固定が起こり
にくくまたアルカリ金属イオンの影響を受けやすいもの
と思われる。
It seems that the thinner the separator is, the less likely it is that the compound will be fixed in the separator, and the more likely it will be affected by alkali metal ions.

実施1り1 以下、実施例によって本発明の構成の特徴と効果を述べ
る。
Embodiment 1-1 Hereinafter, the features and effects of the configuration of the present invention will be described with reference to Examples.

B/Aを各種構成しながらアルカリ金属イオン濃度との
マトリックスで48Ahの電池を構成してこれらにつき
9.6Aで10.5Vまで完全に放電し、40℃でさら
にLOWランプをっけ4週間放置しついで開路で2週間
放置してデンドライトの素になるセパレータへの白い化
合物の生成の有無を調べた結果である。ここで試験電池
の中のセパレータを調べて一カ所以上デンドライトの素
となる白い化合物が認められたセパレータの全セパレー
タ数に対する割合をここでは不良発生率Pとした。なお
本発明を実施するに当たり本例では硫酸水溶液に直接水
酸化ナトリウムを添加した。
Construct a 48Ah battery with a matrix of alkali metal ion concentration while configuring B/A in various ways, completely discharge it to 10.5V at 9.6A, and leave it at 40℃ for 4 weeks with a LOW lamp on. The separator was then left open for two weeks to determine whether or not a white compound was formed on the separator, which is the base of dendrites. Here, the separators in the test battery were examined, and the ratio of separators in which a white compound, which is a source of dendrites, was observed at one or more locations relative to the total number of separators was defined as the failure rate P. In carrying out the present invention, sodium hydroxide was directly added to the sulfuric acid aqueous solution in this example.

もちろんカリウムイオンでもリチウムイオンで効果の大
小はあるが類似の効果がある。アルカリ金属イオンの対
イオンとして塩素イオンや硝酸イオンなどを用いるのは
本来の電池反応に良くない影響を与えるので本例のよう
に水酸化物か硫酸化物重硫酸化物を使うのが良い。なお
水酸化物を使っても硫酸中ではアルカリ金属イオンは硫
酸イオンを対イオンとするので結果的には多量の硫酸ア
ルカリ化合物を投入したのと同しになる。たたしここで
の考えは硫酸イオンを中性液のなかに存在させて鉛の溶
解を防ぐというのではなく強制的に放電によって硫酸イ
オンが固定された後に残るアルカリ金属イオンの助けに
よってデンドライトを作る化合物のセパレータへの析出
を抑制しようという狙いである。従って従来の常識より
も多く溶解する必要があり溶解速度の遅い硫酸化合物の
場合は十分液の温度を高めないと多くの部分が沈殿して
しまい濃度管理がしにくい。水酸化物の場合はこの化合
物自体が中和熱を発生しながら溶解するので調整は早く
容易である。
Of course, potassium ions and lithium ions have similar effects, although the effects are different. The use of chloride ions, nitrate ions, etc. as counter ions for alkali metal ions has a negative effect on the original battery reaction, so it is better to use hydroxide, sulfide, or bisulfate as in this example. Even if hydroxide is used, the alkali metal ions in sulfuric acid use sulfate ions as counterions, so the result is the same as adding a large amount of alkali sulfate compound. However, the idea here is not to prevent lead from dissolving by allowing sulfate ions to exist in the neutral solution, but to fix dendrites with the help of alkali metal ions that remain after the sulfate ions are fixed by forced discharge. The aim is to suppress the precipitation of the compound being produced on the separator. Therefore, in the case of a sulfuric acid compound that needs to be dissolved in a larger amount than conventionally known and has a slow dissolution rate, a large portion will precipitate unless the temperature of the solution is raised sufficiently, making it difficult to control the concentration. In the case of hydroxide, the compound itself dissolves while generating heat of neutralization, so adjustment is quick and easy.

第1図は上で述べたB/Aと不良発生率Pとの関係を示
したものである。Xは本発明に基ずく0.03M/l以
上のアルカリ金属イオンを含む場合である。Yは従来の
アルカリ金属イオンを含むがY−1は0.OIM/l、
y−2は002M/I、Zは希硫酸のみの場合である。
FIG. 1 shows the relationship between the above-mentioned B/A and the failure rate P. X is a case in which 0.03 M/l or more of alkali metal ions are included according to the present invention. Y contains conventional alkali metal ions, but Y-1 contains 0. OIM/l,
y-2 is 002M/I, and Z is the case where only dilute sulfuric acid is used.

Zより明らかなように今回のこの現象は比率B/Aか0
55あたりを境にしてそれより低い領域で急激に増加す
る傾向にあることがわかる。この傾向に対して従来前み
の硫酸アルカリ化合物を少量加えたYではそれ程効果が
ない。これに対して本発明の領域では従来の延長以上に
明らかな効果か認められる。またこれらの急放電特性を
見るとやはりアルカリ金属の量が増えるに従って若干低
下する。
As is clear from Z, this phenomenon this time has a ratio of B/A or 0.
It can be seen that there is a tendency to sharply increase in the lower region after reaching around 55. Regarding this tendency, the conventional Y containing a small amount of an alkali sulfate compound is not so effective. On the other hand, in the area of the present invention, the effect is more obvious than that of the conventional extension. Moreover, looking at these rapid discharge characteristics, they decrease somewhat as the amount of alkali metal increases.

その点では添加量は0.2M/l程度に止めたら良い。From that point of view, the amount added should be limited to about 0.2 M/l.

しかしB/Aの低い領域では活物質の量が多いために事
実上の影響はB/Aの高い領域はど大きくない。
However, since the amount of active material is large in the low B/A region, the actual effect is not as great in the high B/A region.

一方、第2図はポリエチレン製微孔セパレータを用いて
B/Aが0.50でセパレータのベース厚みを0.15
,0.20,0.25.0.30にして厚みの影響を調
へた結果を示す。セパレータの物理的な強さはともかく
一般的にいわれる厚いほとショートが起こりにくいと言
う見解に反してデンドライトの素と思われる白い化合物
の蓄積のおこりにくさは0.25mm以下のほうが良い
。物理的な弱さに対してはリブを設けるとかマットを併
用する等によってカバー出来る。このように薄いセパレ
ータを用いることが出来ることは急放電特性か本発明の
適用で若干影響を受けるのを補うのに好都合である。
On the other hand, in Figure 2, a polyethylene microporous separator is used, and the B/A is 0.50 and the base thickness of the separator is 0.15.
, 0.20, 0.25, and 0.30 to investigate the influence of thickness. Regardless of the physical strength of the separator, contrary to the general opinion that the thicker the separator, the less likely short circuits will occur, it is better to have a thickness of 0.25 mm or less in order to prevent accumulation of white compounds that are thought to be the source of dendrites. Physical weaknesses can be covered by providing ribs or using mats. The ability to use such a thin separator is advantageous in compensating for the rapid discharge characteristics, which are slightly affected by the application of the present invention.

発明の効果 以上の如く本発明は近年の軽薄短小に鉛電池か適応して
いくに当たり、活物質の量を増やしていかざるを得ない
状況下で増加しつつあるデンドライトの発生を抑制する
有力な手段を与えるものであってその工業的価値は極め
て大である。
As described above, the present invention is an effective means of suppressing the occurrence of dendrites, which is increasing in the current situation where the amount of active material has to be increased as lead batteries are adapted to lighter, thinner, shorter, and smaller batteries. Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルカリ金属イオン濃度別B/Aと不良発生率
の関係を示す図、第2図はセパレータのベース厚みと不
良発生率との関係を示す図である。 X7本発明の添加量、Y:従来の添加量Z、無添加 代理人の氏名 弁理士 小鍜治 明 ほか2名−]〇 
FIG. 1 is a diagram showing the relationship between B/A according to alkali metal ion concentration and the defective rate, and FIG. 2 is a diagram showing the relationship between the base thickness of the separator and the defective rate. X7 Addition amount of the present invention, Y: Conventional addition amount Z, non-additive Name of agent Patent attorney Akira Okaji and 2 others -]〇

Claims (2)

【特許請求の範囲】[Claims] (1)セル当たりの正極活物質重量をAグラム、硫酸絶
対量をBグラムとするときB/A≦0.55でかつ少な
くとも一種のアルカリ金属イオンを0.03モル/l以
上含むことを特徴とする鉛蓄電池。
(1) When the weight of the positive electrode active material per cell is A gram and the absolute amount of sulfuric acid is B gram, B/A≦0.55 and at least one kind of alkali metal ion is contained at least 0.03 mol/l. lead-acid battery.
(2)正負極板の間に介在させるセパレータのベース厚
みが0.25mm以下であることを特徴とする特許請求
の範囲(1)に記載の鉛蓄電池。
(2) The lead-acid battery according to claim (1), wherein the base thickness of the separator interposed between the positive and negative electrode plates is 0.25 mm or less.
JP2300764A 1990-11-05 1990-11-05 Lead storage battery Expired - Lifetime JP2959108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300764A JP2959108B2 (en) 1990-11-05 1990-11-05 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300764A JP2959108B2 (en) 1990-11-05 1990-11-05 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH04171672A true JPH04171672A (en) 1992-06-18
JP2959108B2 JP2959108B2 (en) 1999-10-06

Family

ID=17888818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300764A Expired - Lifetime JP2959108B2 (en) 1990-11-05 1990-11-05 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2959108B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184124A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing valve regulated lead acid battery, and valve regulated lead acid battery
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
CN105119001A (en) * 2008-05-20 2015-12-02 株式会社杰士汤浅国际 Lead storage battery and process for producing the lead storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184124A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing valve regulated lead acid battery, and valve regulated lead acid battery
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
CN105119001A (en) * 2008-05-20 2015-12-02 株式会社杰士汤浅国际 Lead storage battery and process for producing the lead storage battery

Also Published As

Publication number Publication date
JP2959108B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US4224391A (en) Electrolyte for zinc anode batteries and method of making same
EP3262701B1 (en) Improved water loss separators used with lead acid batteries, systems for improved water loss performance, and methods of manufacture and use thereof
JPH0864226A (en) Lead-acid battery
JPH04171672A (en) Lead-acid battery
RU2342744C1 (en) Lead battery and method for its manufacturing
US3418166A (en) Alkaline storage cell having silicate dissolved in the electrolyte
JPH04155761A (en) Manufacture of lead-acid battery
JPH0436957A (en) Lead-acid storage battery
JP2006155901A (en) Control valve type lead-acid storage battery
CA1041164A (en) Maintenance-free battery and method for reducing the current draw of such batteries
JP2003338271A (en) Separator for lead battery and valve-control led lead battery using the same
JP4250781B2 (en) Lithium secondary battery
JP2003100300A (en) Nonaqueous solution electrolyte secondary battery
JPH08339794A (en) Lead acid battery
CN114400380A (en) Multi-effect lithium battery electrolyte with functions of inhibiting growth of lithium dendrite, optimizing electrochemical performance and efficiently retarding flame
JPH07335272A (en) Life detecting method for sealed lead acid battery
JPH0770321B2 (en) Sealed lead acid battery
JPS607061A (en) Manufacture of plate for sealed lead storage battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JP2001222987A (en) Gastight lead acid battery
JP3480167B2 (en) Ready-to-use lead-acid battery
JPH0552038B2 (en)
JPS63143747A (en) Nonaqueous electrolyte secondary battery
JP2005183238A (en) Control valve type lead storage battery
JPS62145650A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12