JP2001222987A - Gastight lead acid battery - Google Patents

Gastight lead acid battery

Info

Publication number
JP2001222987A
JP2001222987A JP2000030026A JP2000030026A JP2001222987A JP 2001222987 A JP2001222987 A JP 2001222987A JP 2000030026 A JP2000030026 A JP 2000030026A JP 2000030026 A JP2000030026 A JP 2000030026A JP 2001222987 A JP2001222987 A JP 2001222987A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
acid battery
functional
battery
woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000030026A
Other languages
Japanese (ja)
Inventor
Hidetoshi Abe
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2000030026A priority Critical patent/JP2001222987A/en
Publication of JP2001222987A publication Critical patent/JP2001222987A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gastight lead acid battery in which the growth of dendrites is considerably suppresses and the stable electric property is obtained. SOLUTION: The gastight lead acid battery is equipped with either a woven cloth (functional woven cloth) or a non-woven cloth (functional non-woven cloth) 3 having ion exchange capability is placed adjacent to both negative and positive electrodes. With this structure, Pb2+ ion leaked from either the positive electrode 1 or the negative electrode 2 is captured in a good yield in the functional non-woven cloth 3, followed by the reasonable suppression of the growth of dendrites at the negative electrode 2, resulting in a long life lead acid battery with remarkable battery properties.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、デンドライト(樹
枝状晶)の成長が十分に抑制され、良好な電池特性が安
定して得られる密閉型鉛蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery in which the growth of dendrites (dendrites) is sufficiently suppressed and good battery characteristics are stably obtained.

【0002】[0002]

【従来の技術】鉛蓄電池では、電槽化成するため極板群
が収納された電槽内に電解液を注液したのちや、鉛蓄電
池の使用後に長期間放置したのちは、電解液(硫酸)濃
度が低いため電解液が鉛と反応し、その結果電解液濃度
はさらに低くなり、遂には正負両極から鉛が電解液中へ
Pb2+イオンとして溶出するようになり、このPb2+
オンは充電時に負極に析出してデンドライトが成長す
る。このデンドライトは負極から突出して成長するため
正極と負極の間隔が局部的に狭まり自己放電が増大し、
最悪の場合はデンドライトが正極に接触して短絡が生
じ、電池として機能しなくなる。この現象は電解液量が
少なく電解液濃度の変化が激しい密閉型鉛蓄電池におい
て起き易い。
2. Description of the Related Art In a lead-acid battery, after an electrolyte is poured into a battery case containing an electrode group to form a battery case, or after the lead-acid battery is left for a long time after use, the electrolyte (sulfuric acid) is used. ) The low concentration causes the electrolyte to react with the lead, resulting in a lower concentration of the electrolyte, and eventually lead from the positive and negative electrodes to elute as Pb 2+ ions into the electrolyte, and this Pb 2+ ion Precipitates on the negative electrode during charging and dendrite grows. Since this dendrite protrudes and grows from the negative electrode, the distance between the positive electrode and the negative electrode is locally narrowed, and self-discharge increases,
In the worst case, the dendrite comes into contact with the positive electrode to cause a short circuit, and the battery does not function. This phenomenon tends to occur in a sealed lead-acid battery in which the amount of the electrolyte is small and the concentration of the electrolyte changes drastically.

【0003】この改善策として、電解液の濃度を高くし
て鉛の溶出を抑える方法、またはセパレータを厚くし或
いは活物質の目付け量を増やしてデンドライトの正極へ
の接触を抑える方法などが提案されている。しかし前者
の方法では電池特性が低下したり、正極格子が腐食して
電池寿命が短くなるといった問題があり、後者の方法で
は極板間の抵抗が大きくなり高率放電特性(短時間大電
流放電特性)や低温での放電特性が悪化するという問題
がある。
[0003] As a remedy, there has been proposed a method of suppressing the elution of lead by increasing the concentration of the electrolytic solution, or a method of suppressing the contact of the dendrite with the positive electrode by increasing the thickness of the separator or increasing the basis weight of the active material. ing. However, the former method has problems that the battery characteristics are deteriorated and the battery life is shortened due to corrosion of the positive electrode grid. In the latter method, the resistance between the electrode plates is increased and the high-rate discharge characteristics (short-time large-current discharge) Characteristics) and the discharge characteristics at low temperatures are deteriorated.

【0004】[0004]

【発明が解決しようとする課題】このようなことから、
密閉型鉛蓄電池の正負両極間に設けるセパレータの中央
部分に陽イオン交換膜を介在させ、この交換膜にPb+2
イオンを捕捉させる方法が提案された(特開平6−32
5746号公報)。しかし、この方法によってもデンド
ライトが成長して短絡することがあり、特に電解液の少
ない密閉型鉛蓄電池に応用した場合は前記陽イオン交換
膜の効果は極めて小さかった。そこで、本発明者等は正
負両極間に陽イオン交換膜を介在させてもデンドライト
が成長する原因を調査した。その結果、正極から溶出し
たPb+2イオンの中には交換膜を迂回して負極近傍に達
するものがあり、また負極から溶出したPb+2イオンの
中には負極近傍に滞留したままのものもあり、これらの
Pb+2イオンが充電時などに負極上に析出してデンドラ
イトとして成長して短絡を引き起こすことを突き止め、
さらに研究を進めて本発明を完成させるに至った。本発
明は、デンドライトの成長が十分に抑制され、良好な電
池特性が安定して得られる密閉型鉛蓄電池の提供を目的
とする。
SUMMARY OF THE INVENTION
A cation exchange membrane is interposed at the center of the separator provided between the positive and negative electrodes of the sealed lead-acid battery, and Pb +2
A method for trapping ions has been proposed (JP-A-6-32).
No. 5746). However, even with this method, dendrites may grow and short-circuit, and the effect of the cation exchange membrane is extremely small particularly when applied to a sealed lead-acid battery with a small amount of electrolyte. Therefore, the present inventors investigated the cause of dendrite growth even when a cation exchange membrane was interposed between the positive and negative electrodes. As a result, some Pb +2 ions eluted from the positive electrode bypassed the exchange membrane and reached near the negative electrode, and some Pb +2 ions eluted from the negative electrode remained near the negative electrode. Also found that these Pb +2 ions precipitate on the negative electrode during charging etc. and grow as dendrites to cause a short circuit,
Further research has led to the completion of the present invention. An object of the present invention is to provide a sealed lead-acid battery in which the growth of dendrite is sufficiently suppressed and good battery characteristics are stably obtained.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
イオン交換能を有する織布(以下機能織布という)また
は不織布(以下機能不織布という)が、正極および負極
に当接して設けられていることを特徴とする密閉型鉛蓄
電池である。
According to the first aspect of the present invention,
A sealed lead-acid battery in which a woven fabric (hereinafter referred to as a functional woven fabric) or a nonwoven fabric (hereinafter referred to as a functional nonwoven fabric) having ion exchange capability is provided in contact with a positive electrode and a negative electrode.

【0006】請求項2記載の発明は、前記イオン交換能
を有する織布または不織布が、カルボキシル基などの官
能基が導入された織布または不織布であることを特徴と
する請求項1記載の密閉型鉛蓄電池である。
According to a second aspect of the present invention, the woven fabric or the nonwoven fabric having the ion exchange ability is a woven fabric or a nonwoven fabric into which a functional group such as a carboxyl group is introduced. Type lead-acid battery.

【0007】請求項3記載の発明は、イオン交換能を有
する織布または不織布が、織布または不織布の表面にイ
オン交換樹脂が塗着された織布または不織布であること
を特徴とする請求項1または2記載の密閉型鉛蓄電池で
ある。
According to a third aspect of the present invention, the woven or nonwoven fabric having ion exchange capability is a woven or nonwoven fabric obtained by applying an ion exchange resin to the surface of a woven or nonwoven fabric. 3. A sealed lead-acid battery according to 1 or 2.

【0008】[0008]

【発明の実施の形態】本発明の密閉型鉛蓄電池は、例え
ば、図1(イ)に示すように正極1と負極2の間に陽イ
オン交換能を有する不織布3を正極1および負極2に当
接して設けたもので、正負両極1、2から溶出するPb
2+イオンは機能不織布3に歩留り良く捕捉され負極2で
のデンドライトの成長が十分に抑制される。また不織布
3は電解液の保持性が良いため、これを正極1および負
極2に当接させても高率放電特性などの電池特性が低下
するようなことがない。本発明において、機能不織布3
には不織布10の表層にイオン交換能を持たせたもの
(図1ロ)、不織布10の両面に機能不織布3を複合し
たもの(図1ハ)なども含まれる。前記従来法(特開平
6−325746号公報)では、イオン交換膜を正極お
よび負極に当接させると、イオン交換膜は電解液の保持
性に劣るため電解液の補給が不十分になり、良好な電池
特性が得られない。
BEST MODE FOR CARRYING OUT THE INVENTION A sealed lead-acid battery according to the present invention comprises a non-woven fabric 3 having a cation exchange capability between a positive electrode 1 and a negative electrode 2 as shown in FIG. Pb eluted from both positive and negative electrodes 1 and 2
2+ ions are captured by the functional nonwoven fabric 3 with good yield, and the growth of dendrites on the negative electrode 2 is sufficiently suppressed. Further, since the nonwoven fabric 3 has a good retention of the electrolytic solution, even if the nonwoven fabric 3 is brought into contact with the positive electrode 1 and the negative electrode 2, the battery characteristics such as the high-rate discharge characteristics do not deteriorate. In the present invention, the functional nonwoven fabric 3
Examples thereof include those in which the surface layer of the nonwoven fabric 10 has ion exchange capability (FIG. 1B) and those in which the functional nonwoven fabric 3 is combined on both surfaces of the nonwoven fabric 10 (FIG. 1C). In the conventional method (Japanese Patent Laid-Open No. 6-325746), when the ion exchange membrane is brought into contact with the positive electrode and the negative electrode, the ion exchange membrane is inferior in the retention of the electrolyte, and the replenishment of the electrolyte becomes insufficient. Battery characteristics cannot be obtained.

【0009】本発明において、機能織布または機能不織
布は、織布または不織布に、カルボキシル基(−COO
H)、スルホン酸基(−SO3 H)などの陽イオンを捕
捉する官能基を導入したものである。Pb2+イオンは、
例えば、カルボキシル基には(−COO)2 Pbとして
捕捉され、スルホン酸基には(−SO3 )2 Pbとして
捕捉される。これらはいずれも難溶性の塩であり、Pb
2+イオンが再溶出するようなことがない。陽イオンを捕
捉する官能基にはリン酸基(−PO3 H)、フェノール
性水酸基(−OH)なども適用できる。
In the present invention, a functional woven fabric or a functional nonwoven fabric is obtained by adding a carboxyl group (—COO) to a woven fabric or a nonwoven fabric.
H) and a functional group for capturing a cation such as a sulfonic acid group (-SO3 H). The Pb 2+ ion is
For example, a carboxyl group is trapped as (-COO) 2 Pb, and a sulfonic acid group is trapped as (-SO3) 2 Pb. These are all sparingly soluble salts, and Pb
There is no re-elution of 2+ ions. Phosphoric acid groups (-PO3 H), phenolic hydroxyl groups (-OH) and the like can also be applied to the functional groups for capturing cations.

【0010】本発明において、機能織布または機能不織
布は、織布または不織布を熱濃硫酸中で反応させてスル
ホン基を導入する方法、或いはイオン交換樹脂が分散す
るラテックスに浸漬する方法、織布または不織布にアク
リル酸をグラフト重合させてカルボキシル基を導入する
方法などにより作製できる。特に、前記イオン交換樹脂
が分散するラテックスに浸漬する方法は作業性に優れ望
ましい。
In the present invention, the functional woven fabric or the functional nonwoven fabric may be prepared by reacting the woven fabric or the nonwoven fabric in hot concentrated sulfuric acid to introduce a sulfone group, or immersing in a latex in which an ion exchange resin is dispersed. Alternatively, it can be produced by a method of introducing a carboxyl group by graft-polymerizing acrylic acid to a nonwoven fabric. In particular, a method of immersing in the latex in which the ion exchange resin is dispersed is preferable because of excellent workability.

【0011】本発明において、織布または不織布には、
ポリプロピレン(PP)繊維、ポリエチレン(PE)繊
維、ガラス繊維などの電解液保持性に優れた織布または
不織布が用いられる。従って、本発明で用いる機能織布
または機能不織布はイオン交換能と電解液供給能とを兼
備したもので、この機能織布または機能不織布を用いた
本発明の密閉型鉛蓄電池は良好な電池特性が安定して得
られる。
In the present invention, the woven or nonwoven fabric includes
A woven or nonwoven fabric having excellent electrolytic solution retention properties such as polypropylene (PP) fiber, polyethylene (PE) fiber, and glass fiber is used. Therefore, the functional woven fabric or nonwoven fabric used in the present invention has both ion exchange capacity and electrolytic solution supply ability, and the sealed lead-acid battery of the present invention using this functional woven fabric or functional nonwoven fabric has good battery characteristics. Is obtained stably.

【0012】[0012]

【実施例】以下に、本発明を実施例により詳細に説明す
る。(実施例1)Pb−Ca合金格子に鉛活物質(Pb
O、Pb、PbSO4 が混在したもの)を塗布すること
により充填した極板を7枚(正極3枚と負極4枚)作製
し、図2に示すように正極1と負極2とを交互に配置
し、その間に機能不織布3を正極1と負極2に当接させ
て設けて極板群4とし、これを電槽5内に収納した。図
2で6は電槽5の蓋、7は負極端子(正極端子は図示を
省略)、8は安全弁、9は負極ストラップである。
The present invention will be described below in detail with reference to examples. (Example 1) A lead active material (Pb
Seven electrodes (three positive electrodes and four negative electrodes) were prepared by applying O, Pb, and PbSO4 mixed, and positive electrodes 1 and negative electrodes 2 were alternately arranged as shown in FIG. In the meantime, the functional nonwoven fabric 3 was provided in contact with the positive electrode 1 and the negative electrode 2 to form an electrode plate group 4, which was stored in the battery case 5. In FIG. 2, 6 is a lid of the battery case 5, 7 is a negative electrode terminal (a positive electrode terminal is not shown), 8 is a safety valve, and 9 is a negative electrode strap.

【0013】前記機能不織布には次のa〜cのいずれか
を用いた。即ち、aはポリプロピレン(PP)繊維とポ
リエチレン(PE)繊維を混抄した不織布を95℃の熱
濃硫酸に5分間浸漬してスルホン酸基を目付量200g
/m2 で導入した厚み1mmのもの、bは前記不織布に
アクリル酸をグラフト重合させてカルボキシル基を目付
量200g/m2 で導入した厚み1mmのもの、cは前
記不織布をイオン交換樹脂(スルホン酸系)が分散した
ラテックスに浸漬してスルホン酸基を目付量200g/
2 で導入した厚み1mmのものである。前記目付量
は、例えば、aの場合で〔m−n〕である。但し、mは
熱濃硫酸浸漬後乾燥した機能不織布の1m2 あたりの重
量、nは熱濃硫酸浸漬前の不織布の1m2 あたりの重量
である。
Any of the following a to c was used for the functional nonwoven fabric. That is, a is a nonwoven fabric prepared by mixing polypropylene (PP) fiber and polyethylene (PE) fiber in hot concentrated sulfuric acid at 95 ° C. for 5 minutes to obtain a sulfonic acid group with a basis weight of 200 g.
/ M 2 and a thickness of 1 mm introduced by grafting acrylic acid onto the nonwoven fabric and introducing a carboxyl group at a basis weight of 200 g / m 2 , and c denotes an ion exchange resin (sulfone resin). (Acid-based) in a latex in which sulfonic acid groups are weighed 200 g /
It is 1 mm thick introduced at m 2 . The basis weight is, for example, [mn] in the case of a. Here, m is the weight per 1 m 2 of the functional nonwoven fabric dried after immersion in hot concentrated sulfuric acid, and n is the weight per 1 m 2 of the nonwoven fabric before immersion in hot concentrated sulfuric acid.

【0014】次に、前記極板群4を収納した電槽5内に
比重1.24の希硫酸を注入し、その後、5時間放置し
たのち、10時間率電流で20時間の電槽化成を行って
定格容量10Ahの密閉型鉛蓄電池を製造した。前記密
閉型鉛蓄電池は機能不織布3の種類ごとに各10個づつ
製造した。
Then, dilute sulfuric acid having a specific gravity of 1.24 is poured into the battery case 5 containing the electrode plate group 4 and then left for 5 hours, and then the battery case is formed at a current rate of 10 hours for 20 hours. As a result, a sealed lead-acid battery having a rated capacity of 10 Ah was manufactured. The sealed lead-acid batteries were manufactured in a number of 10 for each type of the functional nonwoven fabric 3.

【0015】(実施例2)正負両極間に、ガラスマット
(厚み0.55mm)の両面に前記a〜cのいずれかの
機能不織布(厚み0.2mm)を複合した複合体を、機
能不織布が正極と負極に当接するように設けた他は、実
施例1と同じ方法により定格容量10Ahの密閉型鉛蓄
電池を製造した。前記機能不織布の目付量は各々50g
/m2 とした。
(Example 2) A composite comprising a glass mat (0.55 mm thick) and a functional non-woven fabric (0.2 mm thick) of any one of the above a to c was formed between the positive and negative electrodes. A sealed lead-acid battery having a rated capacity of 10 Ah was manufactured in the same manner as in Example 1 except that the battery was provided so as to be in contact with the positive electrode and the negative electrode. The basis weight of the functional nonwoven fabric is 50 g each.
/ M 2 .

【0016】(比較例1)正負両極間に、ガラスマット
(厚み0.75mm)の片側に前記a〜cのいずれかの
機能不織布(厚み0.2mm)を複合した複合体を、機
能不織布が負極にガラスマットが正極に当接するように
設けた他は、実施例1と同じ方法により密閉型鉛蓄電池
を製造した。前記機能不織布の目付量は各々50g/m
2 とした。
(Comparative Example 1) A composite in which the functional nonwoven fabric of any of the above a to c (0.2 mm in thickness) was combined on one side of a glass mat (0.75 mm in thickness) between the positive and negative electrodes, A sealed lead-acid battery was manufactured in the same manner as in Example 1, except that the negative electrode was provided with a glass mat in contact with the positive electrode. The basis weight of the functional nonwoven fabric is 50 g / m.
And 2 .

【0017】(比較例2)正負両極間に、機能不織布に
代えて厚み1mmのガラスマットを設けた他は、実施例
1と同じ方法により密閉型鉛蓄電池を製造した。
Comparative Example 2 A sealed lead-acid battery was manufactured in the same manner as in Example 1, except that a glass mat having a thickness of 1 mm was provided between the positive and negative electrodes instead of the functional nonwoven fabric.

【0018】実施例1、2、比較例1、2で製造した各
々の電槽化成後の密閉型鉛蓄電池について下記試験Aを
行った。 試験A:前記各々の密閉型鉛蓄電池を室温に放置したの
ち電圧を測定した。電圧低下が規定値以下のものは良
品、規定値を超えたものは不良品とした。次に、前記試
験Aで良品となった電池について下記試験Bを行った。 試験B:試験Aで良品となった各々の電池を5時間率電
流で放電後、40℃の温度に6ヵ月間放置し、その後室
温に戻し、10時間率電流で15時間充電し、この充電
後の電池について電圧を測定した。電圧が規定値を超え
て低下したものは不良品とした。前記試験Aおよび試験
Bで不良品となった電池を解体して調べたところ、いず
れにもデンドライトによる短絡が認められた。試験Aま
たは試験Bで不良となった電池個数、およびトータルの
不良品率(短絡発生率)を表1に示す。
The following test A was carried out for each of the sealed lead-acid batteries produced in Examples 1 and 2 and Comparative Examples 1 and 2 after formation of the battery case. Test A: The voltage was measured after leaving each of the sealed lead-acid batteries at room temperature. If the voltage drop was below the specified value, it was judged as good, and if it exceeded the specified value, it was judged as defective. Next, the following test B was performed on the battery which became a good product in the test A. Test B: Each battery which became a non-defective cell in test A was discharged at a rate current of 5 hours, left at a temperature of 40 ° C. for 6 months, then returned to room temperature, charged at a rate current of 10 hours, and charged for 15 hours. The voltage was measured for the later battery. If the voltage dropped below the specified value, it was regarded as defective. When the batteries which were defective in the tests A and B were disassembled and examined, a short circuit due to dendrite was found in each of them. Table 1 shows the number of batteries that failed in Test A or Test B, and the total defective rate (short-circuit occurrence rate).

【0019】[0019]

【表1】 [Table 1]

【0020】表1より明らかなように、本発明例のN
o.1〜3(実施例1)はいずれも短絡が生じず、N
o.4〜6(実施例2)は短絡発生率が10%で低かっ
た。これは正負両極から溶出したPb2+イオンが機能不
織布に歩留り良く捕捉されて、デンドライトの成長が十
分に抑制されたためである。試験Aおよび試験Bの両方
で良品となった密閉型鉛蓄電池を充放電を多数回繰り返
して使用したが、いずれも高率放電特性に優れまた自己
放電率の小さい良好な電池特性を安定して示した。これ
に対し、比較例のNo.7〜9(比較例1)は、いずれ
も短絡発生率が高かった。これは機能不織布が正極に当
接していないためである。また比較例のNo.10(比
較例2)はガラスマットを介在させただけの従来の電池
のため試験A、Bを行う間に全てに短絡が生じた。な
お、ガラスマットの両面にイオン交換樹脂が分散したラ
テックスを塗着してガラスマットの表層のみにイオン交
換能を持たせるようにした場合も良好な結果が得られ
た。
As is clear from Table 1, N of the present invention example
o. No short circuit occurred in any of Examples 1 to 3 (Example 1), and N
o. 4 to 6 (Example 2) had a low short-circuit occurrence rate of 10%. This is because Pb 2+ ions eluted from both the positive and negative electrodes were captured by the functional nonwoven fabric with good yield, and the growth of dendrites was sufficiently suppressed. The sealed lead-acid battery, which became a good product in both test A and test B, was used by repeating charging and discharging many times, and all of them were excellent in high-rate discharge characteristics and stable in good battery characteristics with small self-discharge rate. Indicated. On the other hand, in Comparative Example No. 7 to 9 (Comparative Example 1) all had high short-circuit occurrence rates. This is because the functional nonwoven fabric is not in contact with the positive electrode. In addition, in Comparative Example No. No. 10 (Comparative Example 2) was a conventional battery only with a glass mat interposed, and short-circuits occurred in all tests A and B. Good results were also obtained when a latex in which an ion exchange resin was dispersed was applied to both surfaces of the glass mat so that only the surface layer of the glass mat had ion exchange capability.

【0021】[0021]

【発明の効果】以上に述べたように、本発明の密閉型鉛
蓄電池は、正負両極間に、イオン交換能と電解液供給能
を兼備する機能織布または機能不織布を、前記正負両極
に当接して設けたものなので、デンドライトの成長が十
分に抑制されまた良好な電池特性が安定して得られる。
依って、工業上顕著な効果を奏する。
As described above, in the sealed lead-acid battery of the present invention, a functional woven fabric or a functional nonwoven fabric having both ion exchange ability and electrolyte supply ability is applied between the positive and negative electrodes. Since they are provided in contact with each other, the growth of dendrites is sufficiently suppressed, and good battery characteristics are stably obtained.
Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)〜(ハ)は本発明で用いる機能不織布の
実施形態を示す縦断面説明図である。
FIGS. 1A to 1C are explanatory longitudinal sectional views showing an embodiment of a functional nonwoven fabric used in the present invention.

【図2】本発明の密閉型鉛蓄電池の実施形態を示す縦断
面説明図である。
FIG. 2 is an explanatory longitudinal sectional view showing an embodiment of the sealed lead-acid battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 陽イオン交換能を有する不織布(機能不織布) 4 極板群 5 電槽 6 電槽の蓋 7 負極端子 8 安全弁 9 負極集電用ストラップ 10 不織布 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Nonwoven fabric having a cation exchange ability (functional nonwoven fabric) 4 Electrode plate group 5 Battery case 6 Battery case lid 7 Negative terminal 8 Safety valve 9 Negative current collecting strap 10 Nonwoven fabric

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換能を有する織布または不織布
が、正極および負極に当接して設けられていることを特
徴とする密閉型鉛蓄電池。
1. A sealed lead-acid battery characterized in that a woven or nonwoven fabric having ion exchange capability is provided in contact with a positive electrode and a negative electrode.
【請求項2】 前記イオン交換能を有する織布または不
織布が、カルボキシル基などの官能基が導入された織布
または不織布であることを特徴とする請求項1記載の密
閉型鉛蓄電池。
2. The sealed lead-acid battery according to claim 1, wherein the woven or nonwoven fabric having the ion exchange ability is a woven or nonwoven fabric into which a functional group such as a carboxyl group is introduced.
【請求項3】 イオン交換能を有する織布または不織布
が、織布または不織布の表面にイオン交換樹脂が塗着さ
れた織布または不織布であることを特徴とする請求項1
または2記載の密閉型鉛蓄電池。
3. The woven or non-woven fabric having an ion exchange ability is a woven or non-woven fabric in which an ion exchange resin is applied to the surface of a woven or non-woven fabric.
Or the sealed lead-acid battery according to 2.
JP2000030026A 2000-02-08 2000-02-08 Gastight lead acid battery Pending JP2001222987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030026A JP2001222987A (en) 2000-02-08 2000-02-08 Gastight lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030026A JP2001222987A (en) 2000-02-08 2000-02-08 Gastight lead acid battery

Publications (1)

Publication Number Publication Date
JP2001222987A true JP2001222987A (en) 2001-08-17

Family

ID=18555097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030026A Pending JP2001222987A (en) 2000-02-08 2000-02-08 Gastight lead acid battery

Country Status (1)

Country Link
JP (1) JP2001222987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100815A1 (en) * 2016-12-02 2018-06-07 旭化成株式会社 Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these
JP2020009630A (en) * 2018-07-09 2020-01-16 日立化成株式会社 Lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100815A1 (en) * 2016-12-02 2018-06-07 旭化成株式会社 Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these
US11489233B2 (en) 2016-12-02 2022-11-01 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these
JP2020009630A (en) * 2018-07-09 2020-01-16 日立化成株式会社 Lead storage battery
JP7274830B2 (en) 2018-07-09 2023-05-17 エナジーウィズ株式会社 lead acid battery

Similar Documents

Publication Publication Date Title
US11211635B2 (en) Battery, battery pack, and uninterruptible power supply
JPWO2018229875A1 (en) Liquid lead storage battery
EP1415356A4 (en) Electrode for lead storage battery and method for manufacturing thereof
EP4220750A1 (en) Solid-state battery anode comprising polymer layer for preventing micro-short circuit, and solid-state battery comprising same
JPH10233208A (en) Nonaqueous electrolyte secondary battery
JP2012124096A (en) Lead acid battery
JP2001222987A (en) Gastight lead acid battery
JPS62115657A (en) Sealed nickel-hydrogen storage battery
JP7128482B2 (en) lead acid battery
JPS62103976A (en) Cathode plate for enclosed lead storage battery
JP2004014283A (en) Valve regulated lead battery
JP3491473B2 (en) Battery pack
JPH01100869A (en) Sealed lead storage battery
JP3582068B2 (en) How to charge lead storage batteries
JP2021061127A (en) Lead acid battery positive electrode and lead acid battery
JP3496241B2 (en) How to charge lead storage batteries
JP2024025093A (en) Lead storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPH0246653A (en) Lead-acid battery
JPH05283073A (en) Lithium secondary battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JP2005183238A (en) Control valve type lead storage battery
JPH09330732A (en) Lead-acid battery
JPS58165244A (en) Nickel-zinc battery
JPH01281683A (en) Lead storage battery