JPH09330732A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH09330732A
JPH09330732A JP8168576A JP16857696A JPH09330732A JP H09330732 A JPH09330732 A JP H09330732A JP 8168576 A JP8168576 A JP 8168576A JP 16857696 A JP16857696 A JP 16857696A JP H09330732 A JPH09330732 A JP H09330732A
Authority
JP
Japan
Prior art keywords
sulfuric acid
diluted sulfuric
sodium silicate
lead
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8168576A
Other languages
Japanese (ja)
Inventor
Naohiro Ootake
直浩 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP8168576A priority Critical patent/JPH09330732A/en
Publication of JPH09330732A publication Critical patent/JPH09330732A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the reduction in hydrogen over-voltage of a negative electrode and improve the voltage characteristic by adding a prescribed % of sodium silicate to a diluted sulfuric acid electrolyte. SOLUTION: A positive electrode plate formed of a grid base consisting of a Pb-Sb alloy and an active material paste consisting of lead powder and diluted sulfuric acid which is filled therein, and a negative electrode plate form of a grid base consisting of a Pb-Ca alloy and an active material paste formed of lead oxide and diluted sulfuric acid which is filled therein are formed. A number of batteries having a 5-hour rate capacity of 48 Ah which contains an electrode group formed of these negative and positive electrode plates and a separator interposed between them and 3.9l of a diluted sulfuric acid electrolyte having a specific gravity at 20 deg.C of 1.280 are manufactured. In the manufacture of each electrolyte, 0.08-3.82wt.% of sodium silicate is added and dissolved to the diluted sulfuric acid electrolyte as capturing agent. At a result of charge and discharge cycle tests for these batteries, 0.9-4.0wt.% of sodium silicate is added to the diluted sulfuric acid electrolyte, whereby the metal ion eluted from the positive electrode is prevented from being deposited on the negative electrode to provide an effect of improvement in starting voltage of the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などに用い
る鉛蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead storage battery used in automobiles and the like.

【0002】[0002]

【従来の技術】従来、Pbを主体とし、これに少量のS
bなどの金属を添加して成るPb−Sbなどの鉛合金製
基板に、鉛粉に希硫酸を加え、良く練合して成る活物質
ペーストを充填し、乾燥、化成して成る陽極板とPb−
Caなどの鉛合金製基板に、酸化鉛に希硫酸を加え、良
く練合して成る活物質ペーストを充填し、乾燥、化成し
て成る陰極板と、これら陰,陽極板間に介在させたセパ
レータとから成る極板群と希硫酸電解液とを内蔵した鉛
蓄電池は公知である。
2. Description of the Related Art Conventionally, Pb is mainly used and a small amount of S is added to it.
An anode plate made by adding an active material paste made by adding dilute sulfuric acid to lead powder and well kneading the mixture to a lead alloy substrate made of Pb-Sb made by adding a metal such as b, drying, and forming. Pb-
A cathode plate made by adding lead oxide such as Ca to a lead alloy substrate with dilute sulfuric acid and thoroughly kneading the mixture, drying and forming a cathode plate was interposed between these cathode and anode plates. A lead acid battery having a built-in electrode group consisting of a separator and a dilute sulfuric acid electrolyte is known.

【0003】[0003]

【発明が解決しようとする課題】上記の鉛蓄電池は、充
放電サイクルが進行するに伴い、該正極のPb−Sb
系、その他の各種合金系鉛合金製基板中の添加金属が硫
酸電解液に金属イオンとして溶出し、陰極板に析出して
水素過電圧を低下させる不都合があった。かゝる不都合
を防止するため、硫酸電解液などにPb−Sb系鉛合金
製陽極板より流出したアンチモンイオンを捕捉する捕捉
剤を添加し、負極への析出を防止することが知られてい
る。本発明は、上記の公知の捕捉剤とは異なる新規な捕
捉剤を知見し、これにより上記の不都合を解消すること
を目的とする。
SUMMARY OF THE INVENTION The lead-acid battery described above has Pb-Sb of the positive electrode as the charging / discharging cycle progresses.
However, there has been a problem that the added metal in the lead alloy substrate made of various alloys and other alloys is eluted as metal ions into the sulfuric acid electrolyte and deposited on the cathode plate to lower the hydrogen overvoltage. In order to prevent such inconvenience, it is known to add a scavenger that traps antimony ions flowing out from a Pb-Sb-based lead alloy anode plate to a sulfuric acid electrolytic solution or the like to prevent precipitation on the negative electrode. . The present invention aims at finding a novel scavenger different from the above-mentioned known scavengers, and thereby eliminating the above-mentioned inconvenience.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決した鉛蓄電池を提供するもので、希硫酸電解液に珪
酸ナトリウムを0.9〜4.0wt.%添加することを
特徴とする。
SUMMARY OF THE INVENTION The present invention provides a lead-acid battery that solves the above-mentioned problems, in which sodium silicate is added in an amount of 0.9 to 4.0 wt. %.

【0005】[0005]

【発明の実施の形態】次に、本発明の実施例につき説明
する。Pb−Sb系合金から成る格子基板に、鉛粉に希
硫酸を加え、良く練合して成る活物質ペーストを充填
し、乾燥、化成を施して成る陽極板と、Pb−Ca系合
金から成る格子基板に酸化鉛に希硫酸を加え、良く練合
して成る活物質ペーストを充填し、乾燥、化成を施して
成る陰極板と、これら陰陽極板間にポリオレフィン製セ
パレータとガラスマットとを積層したものを介在して成
る極板群と、20℃での比重1.280の希硫酸電解液
を3.9リットルとを内蔵した5時間率容量48Ahの
自動車用鉛蓄電池を多数作製する。この場合、その夫々
の電解液としては、該希硫酸電解液に、捕捉剤として珪
酸ナトリウム(Na2 SiO3 、分子量122g)を
0.08M/l、0.1M/l、0.2M/l及び0.
4M/lを添加溶解した本発明の電解液を内蔵するもの
を作製した。該希硫酸電解液に対する珪酸ナトリウムの
濃度、0.08M/l、0.1M/l、0.2M/l及
び0.4M/lは、夫々珪酸ナトリウムが0.080重
量%(39.9g)、0.95重量%(47.6g)、
1.91重量%(95.2g)、3.82重量%(19
0.3g)添加されたことに夫々相当する。
Next, an embodiment of the present invention will be described. A grid substrate made of a Pb-Sb alloy, lead powder mixed with dilute sulfuric acid and well kneaded, filled with an active material paste, dried and formed into an anode plate, and a Pb-Ca alloy. Dilute sulfuric acid is added to lead oxide on a grid substrate, well kneaded, filled with an active material paste, dried, and formed into a cathode plate, and a polyolefin separator and a glass mat are laminated between the cathode and anode plates. A large number of lead acid batteries for automobiles having a 5-hour rate capacity of 48 Ah, in which an electrode plate group including the above-mentioned elements and a 3.9 liters of a dilute sulfuric acid electrolytic solution having a specific gravity of 1.280 at 20 ° C. are built, are manufactured. In this case, as the respective electrolytic solutions, 0.08 M / l, 0.1 M / l, 0.2 M / l of sodium silicate (Na 2 SiO 3 , molecular weight 122 g) as a scavenger was added to the diluted sulfuric acid electrolytic solution. And 0.
A device containing the electrolytic solution of the present invention in which 4 M / l was added and dissolved was prepared. The concentration of sodium silicate with respect to the diluted sulfuric acid electrolyte solution, 0.08 M / l, 0.1 M / l, 0.2 M / l and 0.4 M / l, is 0.080% by weight of sodium silicate (39.9 g), respectively. , 0.95% by weight (47.6 g),
1.91 wt% (95.2 g), 3.82 wt% (19
0.3 g), respectively.

【0006】このように、珪酸ナトリウムの添加量を異
にした夫々の鉛蓄電池と無添加の鉛蓄電池につき、次の
ような充放電サイクル試験を行った。即ち、充放電サイ
クルの進行に伴う75℃での軽負荷寿命試験を行い、サ
イクル寿命、減液量、充電末期電流につき検べた。軽負
荷寿命試験は、周囲温度75℃という温度条件以外はS
BA(日本蓄電池工業界規格)に基づくもので、充電
は、14.8±0.03V(制限電流25A)で10分
行い、放電は、25±0.05Aで4分行う充、放電サ
イクルを1回とし、480回毎に56時間放置し、放置
後、356Aの判定電流で30秒間放電を行い、30秒
目電圧が7.2Vとなり、再び上昇しない時点を寿命と
して判定するもので、その時点までの充放電サイクル回
数をその電池の寿命とするものであるが、本発明の場合
は、自動車用電池の使用環境を特に考慮し、SBA規格
の周囲温度40〜45℃に代え、各電池を75℃の恒温
槽に入れ、75℃の周囲環境下で、上記の軽負荷寿命試
験を行った。また、この充放電サイクル試験において、
その充放電サイクルの進行に伴う電解液の減液量と充電
末期電流を判定した。その結果を図1(a)、図1
(b)、図1(c)に夫々示す。
[0006] Thus, the following charge / discharge cycle test was conducted for each lead storage battery with different addition amount of sodium silicate and no addition storage battery. That is, a light load life test at 75 ° C. was carried out as the charge / discharge cycle progressed, and the cycle life, the liquid reduction amount, and the end-of-charge current were examined. Light load life test is S except for ambient temperature 75 ℃.
Based on BA (Japan storage battery industry standard), charging is performed at 14.8 ± 0.03V (limited current 25A) for 10 minutes, discharging is performed at 25 ± 0.05A for 4 minutes. It is set as 1 time and left for 480 times for 56 hours, after which it is discharged for 30 seconds at the judgment current of 356 A, and the voltage at the 30th second becomes 7.2 V, and it is judged as the life when the voltage does not rise again. The number of charge / discharge cycles up to the point of time is taken as the life of the battery, but in the case of the present invention, in consideration of the use environment of the automobile battery, the ambient temperature of the SBA standard is changed to 40 to 45 ° C. Was placed in a constant temperature bath of 75 ° C., and the above-mentioned light load life test was performed under an ambient environment of 75 ° C. Also, in this charge / discharge cycle test,
The amount of electrolyte reduction and the end-of-charge current were determined with the progress of the charge / discharge cycle. The results are shown in FIG.
1B and 1C, respectively.

【0007】これらの図1(a)〜(c)に示す比較グ
ラフから明らかなように、珪酸ナトリウムを添加した場
合は、無添加の場合に比し、その電池のサイクル寿命は
向上し、減液量は少なく、また充電末期電流も小さくて
すむ添加効果が認められるが、その添加効果は、その添
加量が、0.80wt.%では、無添加の場合と殆ど変
わらず、僅かな添加効果しかないが、添加量が0.95
wt.%以上〜3.82wt.%で著しい添加効果が得
られることが判る。尚、多くの試験の結果、添加量は
0.9wt.%以上4wt.%までが好ましく、4w
t.%を越えると飽和状態となり、電解液に溶解しきれ
ず、効果は同等であるため、これ以上の添加は不経済で
ある。
As is clear from the comparative graphs shown in FIGS. 1 (a) to 1 (c), the cycle life of the battery is improved and decreased when sodium silicate is added, as compared with the case where no sodium silicate is added. Although the liquid amount is small and the end-of-charge current is small, the addition effect is recognized. The addition effect is that the addition amount is 0.80 wt. %, There is almost no difference from the case of no addition and there is only a slight addition effect, but the addition amount is 0.95.
wt. % Or more to 3.82 wt. It can be seen that a significant addition effect can be obtained with%. As a result of many tests, the addition amount was 0.9 wt. % Or more 4 wt. % Is preferred, 4w
t. If it exceeds%, it becomes saturated and cannot be completely dissolved in the electrolytic solution, and the effect is the same. Therefore, any further addition is uneconomical.

【0008】更に、これらの電池につき、珪酸ナトリウ
ムの添加による悪影響の有無を、添加直後の5時間率容
量を測定して比較した。その結果は、下記表1の通りで
あった。
Furthermore, the presence or absence of adverse effects due to the addition of sodium silicate in these batteries was compared by measuring the 5-hour capacity immediately after the addition. The results are shown in Table 1 below.

【0009】[0009]

【表1】 [Table 1]

【0010】表1中、( )内の数値は、無添加の場合
の測定値を100とした場合の対比値である。上記表1
から明らかなように、0.9wt.%以上の添加量で
は、全く悪影響はみられなかった。
In Table 1, the numerical value in parentheses is a comparison value when the measured value without addition is 100. Table 1 above
As is clear from 0.9 wt. %, No adverse effect was observed.

【0011】更に、これらの電池について、下記の要領
で試験し、過放電放置後の添加効果を検べた。これらの
各電池を、過放電放置前に、次のように試験し、75
℃、14.2Vの過充電電流値を測定した。即ち、先ず
(a)各電池をJIS 5301に従い、5時間率容量
の放電電流で充電を行い、15分毎に電圧を測定し、そ
の測定を3回連続して一定値を示す完全充電状態にし
て、75℃の恒温水槽に入れ、電池が75℃に達し、1
4.2Vの定電圧充電を行ったときの充電電流値を測定
した。次に、(b)これらの各電池を、5時間率放電
後、40℃で30日間放置する過放電放置後、前記
(a)と同様に試験し、その充電電流値を測定した。そ
の結果を下記表2に示す。
Further, these batteries were tested in the following manner, and the effect of addition after standing for over discharge was examined. Each of these batteries was tested as follows, before being left over-discharged.
An overcharge current value of 14.2 V at ℃ was measured. That is, first, (a) each battery is charged according to JIS 5301 with a discharge current of a 5-hour rate capacity, the voltage is measured every 15 minutes, and the measurement is performed three times in succession to a fully charged state showing a constant value. Then, put it in a constant temperature water bath at 75 ° C and let the battery reach 75 ° C.
The charging current value when the constant voltage charging of 4.2V was performed was measured. Next, (b) each of these batteries was discharged at a rate of 5 hours and then allowed to stand for over discharge at 40 ° C. for 30 days, and then tested in the same manner as in (a) above, and the charging current value was measured. The results are shown in Table 2 below.

【0012】[0012]

【表2】 [Table 2]

【0013】上記表2中、( )内の値は、無添加の場
合の測定値を100とした場合の対比値である。表2か
ら明らかなように、0.95wt.%以上の添加量で
は、電池の過放電放置後においても、無添加の電池に比
し過充電電流値の値は極めて著しく小さくなる。このこ
とは、かゝる添加量で正極鉛合金格子より電解液に溶出
したアンチモンなどの金属イオンが陰極に析出すること
が著しく防止されるので、負極の水素過電圧の低下が防
止され、電池の起電圧が向上する効果をもたらすことが
判る。換言すれば、自動車用鉛蓄電池では一般に定電圧
充電を行うため、電池電圧が低下すると、設定電圧に到
達しにくくなり、充電電流値が大きくなり過充電になる
が、これが防止される効果をもたらす。
In Table 2 above, the values in parentheses are comparison values when the measured value without addition is 100. As is clear from Table 2, 0.95 wt. When the amount added is at least%, the value of the overcharge current becomes extremely remarkably smaller than that of the non-added battery even after the battery is left overdischarged. This significantly prevents the metal ions such as antimony eluted in the electrolytic solution from the positive electrode lead alloy grid from depositing on the cathode at such an added amount, thus preventing the hydrogen overvoltage of the negative electrode from being lowered and reducing the battery It can be seen that the electromotive voltage is improved. In other words, lead-acid batteries for automobiles generally perform constant voltage charging, so when the battery voltage drops, it becomes difficult to reach the set voltage, and the charging current value increases and overcharging occurs, but this has the effect of being prevented. .

【0014】上記の実施例では、陽極の鉛合金製基板と
して、Pb−Sb系合金から成るものを用いたが、これ
に代え、Pb−Sn、Pb−Caなどの鉛合金製のもの
でも良い。また、上記のハイブリッド仕様の鉛蓄電池に
限定されない。
In the above embodiment, the substrate made of Pb-Sb alloy was used as the lead alloy substrate for the anode, but it may be made of lead alloy such as Pb-Sn or Pb-Ca instead. . Further, the lead specification battery is not limited to the hybrid specification.

【0015】[0015]

【発明の効果】このように本願発明によるときは、鉛蓄
電池の希硫酸電解液に、0.9〜4.0wt.%の珪酸
ナトリウムを添加したことにより、陽極から溶出した金
属イオンを捕捉し、陰極に析出することが防止されるの
で、陰極の水素過電圧の低下を防止し、電圧特性の向上
をもたらす。
As described above, according to the present invention, 0.9 to 4.0 wt. % Of sodium silicate, the metal ions eluted from the anode are trapped and prevented from being deposited on the cathode, so that the hydrogen overvoltage of the cathode is prevented from lowering and the voltage characteristics are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1(a)】 希硫酸電解液への珪酸ナトリウムの添
加量と電池寿命との関係を示す比較グラフ。
FIG. 1 (a) is a comparative graph showing the relationship between the amount of sodium silicate added to a dilute sulfuric acid electrolytic solution and the battery life.

【図1(b)】 珪酸ナトリウムの添加量と充放電サイ
クルの進行に伴う減液との関係を示す比較グラフ。
FIG. 1 (b) is a comparative graph showing the relationship between the amount of sodium silicate added and the liquid reduction with the progress of charge / discharge cycles.

【図1(c)】 珪酸ナトリウムの添加量と電池の充電
末期電流との関係を示す比較グラフ。
FIG. 1 (c) is a comparative graph showing the relationship between the amount of sodium silicate added and the end-of-charge current of the battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希硫酸電解液に珪酸ナトリウムを0.9
〜4.0wt.%添加することを特徴とする鉛蓄電池。
1. A dilute sulfuric acid electrolytic solution containing 0.9% sodium silicate.
~ 4.0 wt. % Lead-acid battery.
JP8168576A 1996-06-07 1996-06-07 Lead-acid battery Pending JPH09330732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8168576A JPH09330732A (en) 1996-06-07 1996-06-07 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8168576A JPH09330732A (en) 1996-06-07 1996-06-07 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH09330732A true JPH09330732A (en) 1997-12-22

Family

ID=15870617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8168576A Pending JPH09330732A (en) 1996-06-07 1996-06-07 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH09330732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832375B1 (en) * 2006-11-22 2008-05-28 세방하이테크 주식회사 A Gel electrolyte of Long Life Valve regulated sealed lead acid battery for Solar and Wind Power

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832375B1 (en) * 2006-11-22 2008-05-28 세방하이테크 주식회사 A Gel electrolyte of Long Life Valve regulated sealed lead acid battery for Solar and Wind Power

Similar Documents

Publication Publication Date Title
JP2000251896A (en) Lead-acid battery and its manufacture
JPH09330732A (en) Lead-acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JPH0574464A (en) Sealed lead-acid storage battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH10189029A (en) Manufacture for sealed lead storage battery
JP2523585B2 (en) Sealed lead acid battery
JP3577709B2 (en) Sealed lead-acid battery
CA1041164A (en) Maintenance-free battery and method for reducing the current draw of such batteries
JP2007213896A (en) Lead-acid storage battery
JPS61198574A (en) Lead storage battery
JP2024025093A (en) Lead storage battery
JP2001157376A (en) Method of charging sealed lead accumulator
JP2003132937A (en) Manufacturing method of lead storage battery
JP2001222987A (en) Gastight lead acid battery
JPH10188964A (en) Sealed lead-acid battery
JPH0864227A (en) Sealed lead-acid battery
CN116114084A (en) Method of manufacturing lead acid battery assembly
JP2003151641A (en) Charging and discharging control method for lead battery
JPS61151972A (en) Paste type lead storage battery
JPS63146358A (en) Enclosed lead storage battery
JPH0193058A (en) Lead-acid battery
JPH0589873A (en) Negative electrode plate for lead-acid storage battery
JPH10106573A (en) Sealed lead-acid battery
JPS63298979A (en) Sealed lead-acid battery