JPS63143747A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS63143747A
JPS63143747A JP61291820A JP29182086A JPS63143747A JP S63143747 A JPS63143747 A JP S63143747A JP 61291820 A JP61291820 A JP 61291820A JP 29182086 A JP29182086 A JP 29182086A JP S63143747 A JPS63143747 A JP S63143747A
Authority
JP
Japan
Prior art keywords
alkali metal
negative electrode
charging
grain size
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61291820A
Other languages
Japanese (ja)
Other versions
JPH0763009B2 (en
Inventor
Toru Matsui
徹 松井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
▲吉▼徳 豊口
Teruyoshi Morita
守田 彰克
Hide Koshina
秀 越名
Nobuo Eda
江田 信夫
Yukio Nishikawa
幸男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61291820A priority Critical patent/JPH0763009B2/en
Publication of JPS63143747A publication Critical patent/JPS63143747A/en
Publication of JPH0763009B2 publication Critical patent/JPH0763009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enable a high reliable nonaqueous electrolyte secondary battery excellent in a long charge/discharge life to be available by making a mean crystal grain size of an alkali metal for a negative electrode to be made 20mum<2> or above. CONSTITUTION:A positive electrode, nonaqueous electrolyte having an alkali metal ion conductivity, and alkali metal negative electrode are composing elements in a battery, and a mean crystal grain size of the alkali metal is 20 mum<2> or above. When an alkali metal ion is precipitated from an electrolyte at the time of charging, the alkali metal precipitated on the crystal is globular or thick linear if the crystal grain size of the alkali metal on the negative electrode is large. Therefore, in a next discharge process, an electric contact with a negative electrode surface is fully maintained until almost alkali metal precipitated is melted away in the electrolyte. This enables a nonaqueous electrolyte secondary battery having a long charge/discharge life and a high reliability to be obtained as the negative electrode having a high charging/discharging efficiency can be manufactured even the charging/discharging is made in a high electric current density and a high usage ratio.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、とくにその負極の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to improvement of its negative electrode.

従来の技術 現在まで、Li、 Na等のアルカリ金属を負極活物質
として用い、γ−ブチロラクトン、テトラヒトo7ラン
、プロピレンカーボネート、ジメトキシエタン等の溶媒
中に、溶質として、Li(JO4。
Prior Art Up to now, alkali metals such as Li and Na have been used as negative electrode active materials, and Li (JO4) has been used as a solute in solvents such as γ-butyrolactone, tetrahydro7, propylene carbonate, dimethoxyethane, etc.

LiBF4. LiCd等を溶解した、いわゆる非水電
解質を用いる二次電池の開発が進められてきた。
LiBF4. Development of secondary batteries using so-called non-aqueous electrolytes in which LiCd or the like is dissolved has been progressing.

しかし、この種の二次電池はまだ実用化されていない。However, this type of secondary battery has not yet been put into practical use.

その理由は、充放電回数の寿命が短く、また、充放電に
際しての充放電効率が低いためであり、この性能劣化の
原因は、主に正極及び負極活物質の充放電における化学
的または物理的可逆性の低下である。
The reason for this is that the life of the number of charge and discharge cycles is short, and the charge and discharge efficiency during charge and discharge is low. This is a decrease in reversibility.

負極にLl等のアルカリ金属を用いた場合、充電時には
、電解質中にあるLl等のアルカリ金属イオンが負極上
に析出する。この際、析出するアルカリ金属は、負極上
に一様にまた平滑に析出することはなく、通常、デンド
ライトと呼ばれる樹枝状のアルカリ金属として析出する
。とのデンドライトは活性に富むアルカリ金属であるた
め、電解液を構成する有機溶媒と容易に反応する。この
結果、有機溶媒の分解生成物であるポリマーとアルカリ
金属塩が、デンドライトを被覆しアルカリ金属を不働態
化する。このような充電時に不働態化されたアルカリ金
属は以後の放電に使用されることはないため、この種の
非水電解質二次電池の充放電をくり返すと、負極活物質
であるアルカリ金属が消費されることになる。さらに、
この種の二次電池の充放電をくり返した場合、樹枝状の
デンドライトが成長し、ばなはなだしい場合、デンドラ
イトがセパレータを介して正極にまで達し、内部短絡1
発火という危険がある。
When an alkali metal such as Ll is used for the negative electrode, during charging, alkali metal ions such as Ll in the electrolyte are deposited on the negative electrode. At this time, the precipitated alkali metal does not precipitate uniformly or smoothly on the negative electrode, but usually precipitates as a dendritic alkali metal called dendrite. Since dendrites are highly active alkali metals, they easily react with the organic solvents that make up the electrolyte. As a result, the polymer and alkali metal salt, which are decomposition products of the organic solvent, coat the dendrite and passivate the alkali metal. The alkali metals that are passivated during charging are not used for subsequent discharge, so when this type of non-aqueous electrolyte secondary battery is repeatedly charged and discharged, the alkali metals that are the negative electrode active material are It will be consumed. moreover,
When this type of secondary battery is repeatedly charged and discharged, dendritic dendrites grow, and if the branches grow steadily, the dendrites may reach the positive electrode through the separator, resulting in an internal short circuit.
There is a risk of fire.

上記のような負極の欠点を解決するため、従来より、電
解質、溶媒の化学構造を改良することにより、負極の充
放電効率の向上やデンドライトの低減が試みられている
。例えば、電解質にX−1J−SF6 。
In order to solve the above-mentioned drawbacks of negative electrodes, attempts have been made to improve the charge/discharge efficiency of negative electrodes and reduce dendrites by improving the chemical structures of electrolytes and solvents. For example, X-1J-SF6 as an electrolyte.

溶媒に2−メチルテトラヒドロフラン(ジエー・エル・
ゴールドマン他、ジャーナル・エレクトロケミカル・ソ
サエテー、 127.1461(1980))を用いた
系、及び、この系を基本として、テトラヒドロフラン、
エチレンカーボーネート等の溶媒を添加した系が検討さ
れている。これらの系では、Li等のアルカリ金属表面
上に、アルカリ金属イオン導伝性の皮膜が形成されると
されており、そのためアルカリ金属が不働態化されるこ
とが少ないため、充電によって析出したアルカリ金属は
再び以後の充放電に寄与することができる。すなわち、
負極の充放電効率(クーロン効率)が向上する。
The solvent was 2-methyltetrahydrofuran (G.L.
Goldman et al., Journal Electrochemical Society, 127.1461 (1980)), and based on this system, tetrahydrofuran,
Systems to which solvents such as ethylene carbonate are added are being considered. In these systems, an alkali metal ion conductive film is said to be formed on the surface of an alkali metal such as Li, and as a result, the alkali metal is rarely passivated, so the alkali deposited by charging is The metal can again contribute to subsequent charging and discharging. That is,
The charge/discharge efficiency (Coulomb efficiency) of the negative electrode is improved.

また、アルカリ金属負極は上記のようなアルカリ金属イ
オン導伝性の皮膜におおわれるため、負極全面にわたっ
て活性となる。したがって、充電時に、アルカリ金属イ
オンが負極の特定の部位に析出することがないのでデン
ドライトの発生が少なくなる。
Further, since the alkali metal negative electrode is covered with the alkali metal ion conductive film as described above, the entire surface of the negative electrode becomes active. Therefore, during charging, alkali metal ions are not deposited at specific sites on the negative electrode, so dendrites are less likely to occur.

電流密度が大きい程、まだは、負極利用率が大きい程、
負極の充放電効率が低下する。これは下記の理由による
The larger the current density, the larger the negative electrode utilization rate,
The charge/discharge efficiency of the negative electrode decreases. This is due to the following reasons.

充電時にアルカリ金属が電解液より析出する場合、析電
解液中のアルカリ金属イオンは、負極上にあるアルカリ
金属の結晶核に析出する。充電をさらに進めると、この
結晶核が成長することになる。充電時の電流密度が大き
い場合、充電初期に形成される結晶核は著しく小さく、
また、その数は多い。したがって充電を進めると、細い
線状のアルカリ金属が多数負極上に形成される。このよ
うな細い線状のアルカリ金属を次に放電、すなわち、ア
ルカリ金属イオンとして溶は出すことを行なっだ場合、
アルカリ金属は、線の先端(負極表面に接していない方
)から溶は出すことはなく、線全体が同時に溶は出す。
When an alkali metal is deposited from the electrolyte during charging, the alkali metal ions in the electrolyte are deposited on the alkali metal crystal nuclei on the negative electrode. As the charging progresses further, this crystal nucleus will grow. When the current density during charging is high, the crystal nuclei formed at the beginning of charging are extremely small;
Also, there are many of them. Therefore, as charging progresses, many thin linear alkali metals are formed on the negative electrode. If such a thin linear alkali metal is then discharged, that is, dissolved as alkali metal ions,
Alkali metals do not molten from the tip of the wire (the side that is not in contact with the negative electrode surface), but the entire wire emit molten at the same time.

すなわち、アルカリ金属線全体がますます細くなってい
く。このため、放電過程でアルカリ金属線の負極表面に
接している根本、あるいは、線の途中で線が切断されや
すく、電気的接触を失う。したがって充電時に析出した
アルカリ金属のすべてが次の放電で溶は出すことができ
ない。このことは負極の充放電効率の低下につながる。
In other words, the entire alkali metal wire becomes thinner and thinner. Therefore, during the discharge process, the alkali metal wire is likely to be cut at its root in contact with the negative electrode surface or in the middle of the wire, and electrical contact is lost. Therefore, all of the alkali metal deposited during charging cannot be dissolved during the next discharge. This leads to a decrease in the charging and discharging efficiency of the negative electrode.

また、負極の利用率が高い場合、負極の充放電効率が低
下するのは、充電時に多量のアルカリ金属が析出するた
め、負極表面が起伏に富んだ形状となり、このため、ア
ルカリ金属の析出する部位が多数できることにより、充
電時に上記と同様の線状アルカリ金属が形成されること
が原因である。
In addition, when the utilization rate of the negative electrode is high, the charging and discharging efficiency of the negative electrode decreases because a large amount of alkali metal is deposited during charging, and the negative electrode surface becomes uneven. This is caused by the formation of a large number of sites and the formation of linear alkali metals similar to those described above during charging.

発明が解決しようとする問題点 しかし、上記のような電解質、溶媒を用いても、充電時
の電流密度や負極利用率によって負極の充放電効率が著
しく異なるという問題点がある。
Problems to be Solved by the Invention However, even if the above electrolytes and solvents are used, there is a problem in that the charging and discharging efficiency of the negative electrode varies significantly depending on the current density during charging and the negative electrode utilization rate.

本発明はこのような従来の欠点を除去するものであり、
高電流密度、及び、高利用率で充放電を行なっても、高
い充放電効率をもつ負極を作製することにより、充放電
寿命のすぐれた信頼性の高い非水電解質二次電池を提供
することを目的とする。
The present invention eliminates these conventional drawbacks,
To provide a highly reliable non-aqueous electrolyte secondary battery with an excellent charge/discharge life by producing a negative electrode with high charge/discharge efficiency even when charging/discharging is performed at high current density and high utilization rate. With the goal.

問題点を解決するだめの手段 本発明の非水電解質二次電池は、負極に用いるアルカリ
金属の平均結晶粒度が20μm2以上であることを特徴
とする。
Means for Solving the Problems The non-aqueous electrolyte secondary battery of the present invention is characterized in that the alkali metal used in the negative electrode has an average crystal grain size of 20 μm 2 or more.

作用 この技術的手段による作用は次の様になる。action The effect of this technical means is as follows.

すなわち、充電時にアルカリ金属イオンが電解液中より
析出する場合、負極上にあるアルカリ金属の結晶粒度が
大きいと、この結晶上に析出するアルカリ金属は球状、
もしくは、太い線状となる。
In other words, when alkali metal ions precipitate from the electrolyte during charging, if the crystal grain size of the alkali metal on the negative electrode is large, the alkali metal precipitated on the crystal will be spherical,
Or it becomes a thick line.

このため、次の放電過程では、析出したアルカリ金属の
ほとんどが電解液中に溶は終わるまで負極表面と電気的
接触が充分に保たれる。したがって、充電時に析出した
アルカリ金属のほとんどが、次の放電時に溶は出すこと
ができるので、充放電効率の高い負極が得られる。
Therefore, in the next discharge process, sufficient electrical contact with the negative electrode surface is maintained until most of the precipitated alkali metal is dissolved into the electrolytic solution. Therefore, most of the alkali metal deposited during charging can be dissolved during the next discharge, resulting in a negative electrode with high charge/discharge efficiency.

上記の作用は、負極のアルカリ金属の平均結晶粒度が2
0μm2以上の場合に得られる。
The above action is due to the fact that the average crystal grain size of the alkali metal in the negative electrode is 2.
Obtained when it is 0 μm2 or more.

実施例 以下、本発明の実施例を示す。Example Examples of the present invention will be shown below.

試験はすべてガラスセル中、アルゴン雰囲気下で行なっ
た。
All tests were conducted in glass cells under an argon atmosphere.

作用極(電池の負極にあたるもの)として、21のニッ
ケルエキスバンドメタルに、金属リチウム16.smA
hを圧着したものを用い、対極、及び、参照極にも同様
に金属リチウムを圧着したものを用いた。電解液には、
2−メチルテトラヒドロフランにLiAsF6を1.r
sM/lの割合で溶解したものを用いた。以上のように
作製したガラスセルにおいて、作用極と対極の間で一定
電気容量の充放電、すなわち、リチウムの析出、溶解を
くり返し、作用極の電位を測定し、作用極からリチウム
が溶は出すときの電位が2. OV vs、 Li/L
i+となるまでの析出、溶解の回数(析出、溶解で1回
と数える)を求めた。作用極の充放電効率は次式によっ
て計算した。
As a working electrode (corresponding to the negative electrode of a battery), 21% nickel expanded metal and 16% lithium metal were used. smA
The counter electrode and the reference electrode were also crimped with metallic lithium. The electrolyte contains
1. LiAsF6 in 2-methyltetrahydrofuran. r
A solution dissolved at a ratio of sM/l was used. In the glass cell prepared as described above, charging and discharging of a constant electric capacity between the working electrode and the counter electrode, that is, the precipitation and dissolution of lithium, is repeated, the potential of the working electrode is measured, and lithium is dissolved from the working electrode. When the potential is 2. OV vs, Li/L
The number of times of precipitation and dissolution until reaching i+ (precipitation and dissolution are counted as one time) was determined. The charging and discharging efficiency of the working electrode was calculated using the following formula.

ここで、Qsは作用極と対極の間で析出、溶解させる一
定電気容量、nは作用極の電位が2.0Vvs、 Li
/Li+に達するまでに析出、溶解をくり返した数であ
る。
Here, Qs is a constant capacitance for precipitation and dissolution between the working electrode and the counter electrode, n is the potential of the working electrode of 2.0 V vs. Li
It is the number of times precipitation and dissolution are repeated until reaching /Li+.

第1図は、1mA/cdの充放電電流密度、Qs=1m
Ahの条件で充放電を行なった場合の充放電効率を、作
用極のリチウムの平均結晶粒度に対してプロットした図
である。この図より、平均結晶粒度が20μm2以上で
あれば充放電効率が高く、20μm未満の領域では充放
電効率は極端に低下することがわかる。
Figure 1 shows a charging/discharging current density of 1 mA/cd, Qs = 1 m
FIG. 3 is a diagram plotting the charge/discharge efficiency when charge/discharge is performed under conditions of Ah versus the average crystal grain size of lithium in the working electrode. From this figure, it can be seen that the charging and discharging efficiency is high when the average crystal grain size is 20 μm or more, and the charging and discharging efficiency is extremely reduced in the region of less than 20 μm.

第2図は、Qs = 1 zAhの条件で、充放電効率
を充放電電流密度に対してプロットした図であり、人は
本発明の実施例で、平均結晶粒度が100ノ1m2のリ
チウムを作用極に用いた場合であり、Bは比較例で、平
均結晶粒度が10μm2のリチウムを用いた場合である
。第2図より、本発明では、充放電効率は充放電電流密
度を変化させてもほぼ一定であるのに対し、比較例では
、充放電電流密度を大きくすると、充放電効率が著しく
低下し、6mム/ aA以上の領域では充放電ができな
くなることがわかる。
Fig. 2 is a graph plotting the charging and discharging efficiency against the charging and discharging current density under the condition of Qs = 1 zAh. B is a comparative example in which lithium having an average crystal grain size of 10 μm 2 is used. From FIG. 2, in the present invention, the charge/discharge efficiency remains almost constant even when the charge/discharge current density is changed, whereas in the comparative example, when the charge/discharge current density is increased, the charge/discharge efficiency decreases significantly. It can be seen that charging and discharging cannot be performed in the region of 6 mm/aA or more.

第3図は、1mム/c′IAの条件での充放電効率を作
用極の利用率に対してプロットした図である。ここで利
用率は次式で定義される。
FIG. 3 is a graph in which the charging and discharging efficiency under the condition of 1 mm/c'IA is plotted against the utilization rate of the working electrode. Here, the utilization rate is defined by the following formula.

第3図において、Cは本発明の実施例であり、作用極に
用いたリチウムの平均結晶粒度が100μm2の場合で
あり、Dは比較例であり、平均結晶粒度が10μm2の
リチウムを用いた場合である。
In FIG. 3, C is an example of the present invention, in which the average grain size of lithium used for the working electrode is 100 μm2, and D is a comparative example, in which lithium with an average grain size of 10 μm2 is used. It is.

これより、平均結晶粒度が充分に大きい場合には、利用
率を高くしても充放電効率は極端に低下しないことがわ
かる。
This shows that when the average crystal grain size is sufficiently large, even if the utilization rate is increased, the charge/discharge efficiency does not drop extremely.

なお、本発明では実施例にリチウム、及び1MLiA!
!F6の2−メチルテトラヒドロフランを用いたが、以
上の効果は、他のアルカリ金属や電解液でも同様に得ら
れる。
In addition, in the present invention, lithium and 1MLiA!
! Although F6 2-methyltetrahydrofuran was used, the above effects can be similarly obtained with other alkali metals and electrolytes.

発明の効果 以上の様に本発明によれば、高電流密度、及び高利用率
で充放電を行なっても、高い充放電効率をもつ負極が作
製できるため、充放電寿命のすぐれた信頼性の高い非水
電解質二次電池が得られる。
Effects of the Invention As described above, according to the present invention, a negative electrode with high charge/discharge efficiency can be produced even when charging/discharging is performed at a high current density and high utilization rate, so that a reliable negative electrode with an excellent charge/discharge life can be produced. A high quality non-aqueous electrolyte secondary battery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例である作用極のリチウムの平均
結晶粒度に対して充放電効率をプロットした図、第2図
は充放電電流密度に対して充放電効率をプロットした図
、第3図は作用極のリチウムの利用率に対して充放電効
率をプロットした図である。 A、C・・・・・・本発明、B、D・・・・比較例。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名l3
=!イVδ訃ミ マ E     稗寝幀々眸?
Fig. 1 is a diagram plotting charge/discharge efficiency against the average crystal grain size of lithium in a working electrode according to an example of the present invention, Fig. 2 is a diagram plotting charge/discharge efficiency against charge/discharge current density, Figure 3 is a diagram plotting the charge/discharge efficiency against the utilization rate of lithium in the working electrode. A, C...present invention, B, D...comparative example. Name of agent: Patent attorney Toshio Nakao and 1 other person l3
=! I Vδ Anonymous

Claims (1)

【特許請求の範囲】[Claims] 正極と、アルカリ金属イオン導伝性の非水電解質と、ア
ルカリ金属の負極を構成要素とする電池であって、前記
アルカリ金属の平均結晶粒度が20μm^2以上である
ことを特徴とする非水電解質二次電池。
A non-aqueous battery comprising a positive electrode, an alkali metal ion-conductive non-aqueous electrolyte, and an alkali metal negative electrode, wherein the alkali metal has an average crystal grain size of 20 μm^2 or more. Electrolyte secondary battery.
JP61291820A 1986-12-08 1986-12-08 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH0763009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291820A JPH0763009B2 (en) 1986-12-08 1986-12-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291820A JPH0763009B2 (en) 1986-12-08 1986-12-08 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS63143747A true JPS63143747A (en) 1988-06-16
JPH0763009B2 JPH0763009B2 (en) 1995-07-05

Family

ID=17773836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291820A Expired - Fee Related JPH0763009B2 (en) 1986-12-08 1986-12-08 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0763009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318342B2 (en) 2007-06-22 2012-11-27 Panasonic Corporation All solid-state polymer battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318342B2 (en) 2007-06-22 2012-11-27 Panasonic Corporation All solid-state polymer battery

Also Published As

Publication number Publication date
JPH0763009B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP2002151056A (en) Electrode for lithium secondary battery and lithium secondary battery
JPS59134568A (en) Electrolyte for lithium battery
JPS61208750A (en) Lithium organic secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPS63294666A (en) Lithium-lithium nitride anode
EP0139756A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH0724219B2 (en) Lithium secondary battery
JP2001068162A (en) Nonaqueous electrolyte secondary battery and its charging discharging method
JP3202880B2 (en) Crystalline lithium metal, method for producing the same, and lithium secondary battery
JPH1131526A (en) Lithium secondary battery
JPS58163188A (en) Organic electrolyte secondary cell
JPS63143747A (en) Nonaqueous electrolyte secondary battery
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JP3223035B2 (en) Non-aqueous electrolyte secondary battery
JPH07282846A (en) Nonaqueous electrolytic battery
JP3287927B2 (en) Non-aqueous electrolyte secondary battery
JPH0477426B2 (en)
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP3223599B2 (en) How to charge a lithium secondary battery
JPH06101325B2 (en) Lithium secondary battery
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JPH10172604A (en) Lithium secondary battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees