JP2009129725A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2009129725A
JP2009129725A JP2007303974A JP2007303974A JP2009129725A JP 2009129725 A JP2009129725 A JP 2009129725A JP 2007303974 A JP2007303974 A JP 2007303974A JP 2007303974 A JP2007303974 A JP 2007303974A JP 2009129725 A JP2009129725 A JP 2009129725A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
lead
performance
lignin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007303974A
Other languages
Japanese (ja)
Inventor
Koji Kogure
耕二 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2007303974A priority Critical patent/JP2009129725A/en
Publication of JP2009129725A publication Critical patent/JP2009129725A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that the charging/discharging performance of a lead storage battery is deteriorated in a severe usage form like an idling stop vehicle. <P>SOLUTION: A filling method of a negative electrode paste is changed to make the charging/discharging reaction effective through proper composition of lignin, carbon quantity and barium sulfate quantity for an additive agent. Further, without changing the total quantity and types of lignin, carbon and barium sulfate, charging accepting performance can be improved without causing deterioration in the high-efficiency discharging performance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は鉛蓄電池の負極板の性能向上に関するものである。   The present invention relates to an improvement in the performance of a negative electrode plate of a lead storage battery.

鉛蓄電池を構成する極板は、鉛粉を各種添加剤と混合し、希硫酸と水を混合して鉛ペースト(以下ペーストと略す)を作製し、前記ペーストを鉛合金製の集電体に充填して作製する。極板は正極と負極があるが、特に負極では性能向上のため、ペーストに従来から数種類の添加剤が添加されている。このうち、リグニンといった有機エキスパンダは、活物質表面に吸着して充電の際に生成する金属鉛の凝集を抑える働きがある。カーボンは放電の際に生成する不導性の硫酸鉛をはじめ、負極板の導電性を向上させるために負極ペーストに添加されている。また、硫酸バリウムは放電の際に生成する硫酸鉛の生成核として作用している。そのため、硫酸バリウムの添加量が多く、その粒子径が小さいほど、硫酸鉛の粒子径も小さくなり活物質微細化効果が高くなることが知られている。   The electrode plate constituting the lead storage battery is prepared by mixing lead powder with various additives, mixing dilute sulfuric acid and water to produce a lead paste (hereinafter abbreviated as paste), and using the paste as a current collector made of lead alloy. Fill to make. The electrode plate includes a positive electrode and a negative electrode. In particular, in the negative electrode, several kinds of additives have been conventionally added to the paste in order to improve performance. Among these, organic expanders such as lignin have a function of suppressing the aggregation of metallic lead generated during charging by being adsorbed on the surface of the active material. Carbon is added to the negative electrode paste in order to improve the conductivity of the negative electrode plate, including non-conductive lead sulfate produced during discharge. In addition, barium sulfate acts as a lead nucleus of lead sulfate generated during discharge. Therefore, it is known that as the amount of barium sulfate added is larger and the particle size is smaller, the particle size of lead sulfate is smaller and the effect of refining the active material is enhanced.

しかしながら、鉛蓄電池の活物質は鉛と電解液である硫酸であるため、リグニン、カーボン、硫酸バリウムといった添加剤は極板中に含まれているだけで鉛と硫酸の化学反応、電気化学反応を阻害してしまう。そのため、過剰な量の添加剤を加えると鉛蓄電池の入出力性能が低下することになる。そのため、添加剤の添加量の最適化は重要課題である。一般にリグニンやカーボンが負極ペーストに添加される量は鉛粉に対して0.2重量%程度と小さいが、フェノール性の水酸基やカルボキシル基といった吸着サイトをもつため、活物質である鉛粒子に吸着しやすいため、電池性能を向上させるが、逆に性能低下もある。   However, since the active material of lead-acid batteries is lead and sulfuric acid, which is an electrolytic solution, additives such as lignin, carbon, and barium sulfate are contained in the electrode plate, and the chemical reaction between lead and sulfuric acid and the electrochemical reaction are carried out. It will interfere. Therefore, if an excessive amount of additive is added, the input / output performance of the lead-acid battery is degraded. Therefore, optimization of the additive amount is an important issue. Generally, the amount of lignin and carbon added to the negative electrode paste is as small as about 0.2% by weight with respect to the lead powder, but it has adsorption sites such as phenolic hydroxyl groups and carboxyl groups, so it adsorbs to the lead particles as the active material. Battery performance is improved, but there is also a decrease in performance.

一方で近年、鉛蓄電池はエンジン始動と停止が繰り返されるいわゆるアイドリングストップ車のような使用形態で使用されることが多くなり、このような状態であると、鉛蓄電池は常に充電性不足状態に陥っているため、負極活物質の硫酸鉛の粗大化、いわゆるサルフェーションが進行していくため、鉛蓄電池は早期に寿命の低下してしまうことが知られている。このことを防ぐため鉛蓄電池の充電受け入れ性能、高率放電性能、サイクル寿命性能が延長するよう特許文献1のようなことが試みられてきたが、更なる充電受け入れ性能の向上、高率放電性能の低下のしない鉛蓄電池が求められている。   On the other hand, in recent years, lead-acid batteries are often used in a form of use such as a so-called idling stop vehicle in which the engine is started and stopped repeatedly. In such a state, the lead-acid batteries are always in a state of insufficient chargeability. Therefore, it is known that lead storage batteries have a short life because lead sulfate, which is a negative electrode active material, becomes coarser, so-called sulfation proceeds. In order to prevent this, attempts have been made such as Patent Document 1 to extend the charge acceptance performance, high rate discharge performance, and cycle life performance of lead-acid batteries, but further improvement in charge acceptance performance, high rate discharge performance. There is a need for lead-acid batteries that do not degrade.

特開2003−142086号公報Japanese Patent Laid-Open No. 2003-142086

充電時や放電時の初期の化学反応は極板表面の鉛が同じく活物質である電解液の硫酸と反応していくため、極板表面の活物質比表面積が大きいほど、充放電反応性が向上する。しかし、活物質比表面積が大きいと放電した際に早期に不導性の硫酸鉛化が進行してしまうため、高率放電性能は低下してしまう。また、高率放電持続性能を向上するためには、硫酸鉛化の進行を抑えることになり、初期の充放電反応性が低下してしまう。一般に、充電受け入れ性能と高率放電性能は相反する性能である。前述のアイドリングストップ車のような過酷な使用環境では、これら2つの性能の大幅な向上が求められている。   In the initial chemical reaction during charging and discharging, lead on the electrode plate reacts with sulfuric acid in the electrolyte, which is also the active material. Therefore, the larger the active material specific surface area of the electrode plate surface, the higher the charge / discharge reactivity. improves. However, if the specific surface area of the active material is large, non-conductive lead sulfate progresses at an early stage when discharging, resulting in a decrease in high rate discharge performance. Further, in order to improve the high rate discharge sustainability, the progress of lead sulfate formation is suppressed, and the initial charge / discharge reactivity is lowered. In general, charge acceptance performance and high rate discharge performance are contradictory performances. In a severe use environment such as the idling stop vehicle described above, a significant improvement in these two performances is required.

本発明は上記事項を鑑みて、前記負極板中のリグニンとカーボンを負極板外層部より負極板内層部に多く存在させ、硫酸バリウムは負極板内層部よりも負極板外層部に多く存在させることで充電受け入れ性能を向上させ、さらに高率放電性能を向上させる。   In the present invention, in view of the above matters, the lignin and carbon in the negative electrode plate are present in the negative electrode plate inner layer portion more than the negative electrode plate outer layer portion, and the barium sulfate is present in the negative electrode plate outer layer portion more than the negative electrode plate inner layer portion. To improve the charge acceptance performance, and further improve the high rate discharge performance.

本発明では、添加剤の種類を替えることなく、また、負極板中の添加剤の総添加量を増やすことなく、負極板内層部と外層部の添加剤の添加量を調節するだけで効果的に充放電反応を進行させ、高率放電性能の低下なく入力性能を向上させることが可能である。   In the present invention, it is effective only by adjusting the additive amount of the inner layer part and the outer layer part of the negative electrode plate without changing the kind of additive and without increasing the total amount of additive in the negative electrode plate. It is possible to advance the charge / discharge reaction and improve the input performance without degrading the high rate discharge performance.

以下具体例をあげて本発明を詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to specific examples. However, the present invention is not limited to the examples unless it exceeds the gist of the invention.

本発明の実施例を以下に説明する。
(負極板の作製)
鉛粉にリグニンとカーボンと硫酸バリウムを添加し、乾式混合した。次に鉛粉に対して13%重量%の希硫酸(比重1.26/20℃換算)と、鉛粉に対して12%重量%の水を加えながら混練して負極ペーストを作製した。
Examples of the present invention will be described below.
(Preparation of negative electrode plate)
Lignin, carbon and barium sulfate were added to the lead powder and dry mixed. Next, 13% by weight dilute sulfuric acid (specific gravity 1.26 / 20 ° C conversion) with respect to the lead powder and 12% by weight water with respect to the lead powder were kneaded to prepare a negative electrode paste.

リグニン、カーボン及び硫酸バリウムの添加率を表1に示す。添加率は鉛粉に対する重量%である。従来品はペースト13に相当する。なお、リグニンとカーボンは合算値を示すが、これらの配合比は任意に調整でき、以下の効果は同様である。   The addition rates of lignin, carbon and barium sulfate are shown in Table 1. The addition rate is% by weight with respect to the lead powder. The conventional product corresponds to the paste 13. In addition, although lignin and carbon show a total value, these compounding ratios can be adjusted arbitrarily and the following effects are the same.

Figure 2009129725
Figure 2009129725

表1のペースト1からペースト25を厚さ0.6mmのエキスパンド集電体(Ca:0.05%、Sn:0.5%、残部:Pb)に充填し、表2に示す組み合わせで合計25仕様の負極板を作製した。なお、ここで表記されている負極板内層部とは通常の半分の充填量で格子に最初に均一に充填した部分を指し、この状態で半乾燥させ、残り半分の充填量のペーストを負極板の裏表から均一に充填した。このときに充填した部分を負極板外層部とする。   Paste 1 to paste 25 in Table 1 were filled into an expanded current collector (Ca: 0.05%, Sn: 0.5%, balance: Pb) having a thickness of 0.6 mm, and a total of 25 combinations were made as shown in Table 2. The negative electrode plate of specification was produced. Here, the negative electrode plate inner layer portion described here refers to a portion where the lattice is first uniformly filled with a normal half filling amount, and is semi-dried in this state, and the remaining half filling amount paste is applied to the negative electrode plate. It was filled uniformly from the front and back of the. The portion filled at this time is defined as the negative electrode plate outer layer portion.

表2のNo.13は従来品のため、負極板内層部と外層部の差はない。また、各ペースト中の添加剤の総量は、従来品と同量になるように調整した。   No. in Table 2 Since 13 is a conventional product, there is no difference between the inner layer portion and the outer layer portion of the negative electrode plate. Further, the total amount of additives in each paste was adjusted to be the same as that of the conventional product.

前記25仕様の負極板を通常の方法に従い、温度50℃、湿度95%の雰囲気下に18時間放置して熟成した後、温度50℃の雰囲気下で乾燥して未化成負極板を得た。   According to a normal method, the negative electrode plate of 25 specifications was left to mature for 18 hours in an atmosphere of 50 ° C. and 95% humidity, and then dried in an atmosphere of 50 ° C. to obtain an unformed negative electrode plate.

Figure 2009129725
Figure 2009129725

(正極板の作製)
正極板は鉛粉と鉛粉に対して0.01重量%のカットファィバーを乾式混合して、鉛粉に対して13%重量%の希硫酸(比重1.26/20℃換算)と鉛粉に対して12%重量%の水を混練して正極ペーストを作製した。この正極ペーストを鋳造格子体からなる正極集電体(Ca:0.05%、Sn:0.5%、残部:Pb)に充填して、温度50℃、湿度95%の雰囲気下に18時間放置して熟成した後、温度50℃の雰囲気下で乾燥して未化成正極板を得た。
(電池の組立・化成)
ガラス繊維からなるセパレータを介して1枚の未化成負極板と2枚の未化成正極板で構成された極板群を作製し、これを電槽に挿入して2V単板電池を組立てた。この電池に希硫酸(比重1.28/20℃換算)を注液し、通電電流1.0Aで15時間化成した後、電解液を排出し、再び比重1.28(20℃換算)の希硫酸を注入して完成とした。
(評価方法)
上記の各2V単板電池について、入力性能および高率放電性能を測定した。入力性能は電池の充電状態(SOC)が90%になった状態、つまり満充電状態から電池容量の10%を放電し、2.33Vで定電圧充電した際の5秒目電流値を測定した。このときの電流値が大きいほど初期の充電容量が高く、入力性能が良い電池といえる。また、高率放電性能は、5C電流で放電した際の5秒目電圧と電池電圧が1.0Vに達するまでの放電持続時間を測定した。
(Preparation of positive electrode plate)
The positive electrode plate is dry-mixed with 0.01% by weight of lead powder and lead fiber, 13% by weight of dilute sulfuric acid (specific gravity 1.26 / 20 ° C conversion) and lead powder. A positive electrode paste was prepared by kneading 12% by weight of water. This positive electrode paste was filled in a positive electrode current collector (Ca: 0.05%, Sn: 0.5%, balance: Pb) made of a cast grid, and 18 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 95%. After standing and aging, it was dried in an atmosphere at a temperature of 50 ° C. to obtain an unformed positive electrode plate.
(Battery assembly and formation)
An electrode plate group composed of one unformed negative electrode plate and two unformed positive electrode plates was produced via a glass fiber separator, and this was inserted into a battery case to assemble a 2V single plate battery. Dilute sulfuric acid (specific gravity 1.28 / 20 ° C conversion) was poured into this battery, and after 15 hours of chemical formation at an electric current of 1.0 A, the electrolyte was discharged, and the specific gravity 1.28 (20 ° C conversion) was diluted again. Completed by injecting sulfuric acid.
(Evaluation methods)
About each said 2V single plate battery, the input performance and the high rate discharge performance were measured. The input performance was measured when the state of charge (SOC) of the battery was 90%, that is, when the battery capacity was discharged from 10% of the fully charged state and the battery was charged at a constant voltage of 2.33 V for the 5th second . The larger the current value at this time, the higher the initial charge capacity, and the better the input performance. Moreover, the high rate discharge performance measured the discharge duration until the 5th-second voltage and battery voltage reached 1.0V at the time of discharging at 5 C current.

評価方法としては、入力性能および高率放電性能の2つの指標を比較するのは難しいため、従来品の入力性能を100、出力性能を100とし、合算して200が従来品レベルとして相対評価した。結果を表3に示す。   As an evaluation method, it is difficult to compare the two indexes of input performance and high-rate discharge performance. Therefore, the input performance of the conventional product is set to 100 and the output performance is set to 100. . The results are shown in Table 3.

Figure 2009129725
Figure 2009129725

No.13の従来品の数値200を上回るのは、No.17であった。この負極板は、内層部の仕様がペースト17、外層部の仕様がペースト9である。これより、負極板内層部ペースト中のリグニン、カーボン添加量と負極板外層部のリグニン、カーボン添加量の比率が3:1であり、かつ、前記負極板内層部ペースト中の硫酸バリウム添加量と負極板外層部の硫酸バリウム添加量の比率が1:3であるとき、高率放電性能の低下なく入力性能を向上させることが分かる。   No. It is No. that exceeds the numerical value 200 of the conventional product of No. 13. 17. In this negative electrode plate, the specification of the inner layer portion is paste 17 and the specification of the outer layer portion is paste 9. Thus, the ratio of the lignin and carbon addition amount in the negative electrode plate inner layer paste to the lignin and carbon addition amount in the negative electrode outer layer portion is 3: 1, and the barium sulfate addition amount in the negative electrode plate inner layer paste and It can be seen that when the ratio of the amount of barium sulfate added to the outer layer portion of the negative electrode plate is 1: 3, the input performance is improved without deterioration of the high rate discharge performance.

本発明の3層(内層1、外層2)の負極活物質ペーストは、負極添加剤の総量を変えずに、また、新規のリグニン、カーボンを用いることなく充電受入れ性と出力性能を向上することが可能な方法である。さらに試行した結果、リグニン、カーボンの種類によらず同様の結果を得た。従って、本発明では負極添加剤の適正な配合方法を提起でき、アイドリングストップ車のような過酷な鉛蓄電池の使用形態に適するものである。   The three-layer negative electrode active material paste (inner layer 1, outer layer 2) of the present invention improves charge acceptance and output performance without changing the total amount of negative electrode additive and without using new lignin and carbon. Is possible. As a result of further trials, similar results were obtained regardless of the types of lignin and carbon. Therefore, in the present invention, an appropriate blending method of the negative electrode additive can be proposed, and it is suitable for a severe form of use of a lead storage battery such as an idling stop vehicle.

Claims (2)

鉛ペーストを鉛合金製の集電体に充填して作製する負極板を用いる鉛蓄電池において、前記負極板中のリグニンとカーボンを負極板外層部より負極板内層部に多く存在させ、硫酸バリウムは負極板内層部よりも負極板外層部に多く存在させた負極板を用いることを特徴とする鉛蓄電池。    In a lead storage battery using a negative electrode plate prepared by filling a lead alloy current collector with a lead paste, lignin and carbon in the negative electrode plate are present more in the negative electrode plate inner layer than in the negative electrode plate outer layer, and barium sulfate is A lead-acid battery using a negative electrode plate that is present more in the outer layer part of the negative electrode plate than in the inner layer part of the negative electrode plate. 前記負極板内層部ペースト中のリグニン、カーボン添加量と負極板外層部のリグニン、カーボン添加量の比率が3:1であり、かつ、前記負極板内層部ペースト中の硫酸バリウム添加量と負極板外層部の硫酸バリウム添加量の比率が1:3であることを特徴とする請求項1記載の鉛蓄電池。   The ratio of the lignin and carbon addition amount in the negative electrode plate inner layer paste to the lignin and carbon addition amount in the negative electrode outer layer portion is 3: 1, and the barium sulfate addition amount and negative electrode plate in the negative electrode inner layer paste The lead acid battery according to claim 1, wherein the ratio of the amount of barium sulfate added to the outer layer is 1: 3.
JP2007303974A 2007-11-26 2007-11-26 Lead storage battery Pending JP2009129725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007303974A JP2009129725A (en) 2007-11-26 2007-11-26 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007303974A JP2009129725A (en) 2007-11-26 2007-11-26 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2009129725A true JP2009129725A (en) 2009-06-11

Family

ID=40820445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303974A Pending JP2009129725A (en) 2007-11-26 2007-11-26 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2009129725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056537A2 (en) * 2009-10-26 2011-05-12 Axion Power International, Inc. Energy storage device with limited lignin in negative electrode
WO2021082929A1 (en) * 2019-10-31 2021-05-06 双登集团股份有限公司 Negative electrode lead paste additive for high specific energy lead acid storage battery and preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056537A2 (en) * 2009-10-26 2011-05-12 Axion Power International, Inc. Energy storage device with limited lignin in negative electrode
WO2011056537A3 (en) * 2009-10-26 2011-09-22 Axion Power International, Inc. Energy storage device with limited lignin in negative electrode
WO2021082929A1 (en) * 2019-10-31 2021-05-06 双登集团股份有限公司 Negative electrode lead paste additive for high specific energy lead acid storage battery and preparation method

Similar Documents

Publication Publication Date Title
JP5857962B2 (en) Lead acid battery
JP5892429B2 (en) Liquid lead-acid battery
JP5066825B2 (en) Lead acid battery
JP2008047452A (en) Paste type electrode plate and its manufacturing method
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP5194729B2 (en) Lead acid battery
JP2015537345A (en) Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte
JP2003123760A (en) Negative electrode for lead-acid battery
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
JP2008243493A (en) Lead acid storage battery
JP2008243489A (en) Lead acid storage battery
JPWO2015087749A1 (en) Control valve type lead acid battery
JP2009129725A (en) Lead storage battery
JP2011070870A (en) Lead-acid battery
JP2009016143A (en) Manufacturing method of paste type cathode plate for lead storage cell and lead storage cell
JP5668292B2 (en) Method for producing lead-acid battery
JP4441934B2 (en) Method for producing lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
CN102244252A (en) Lead-acid battery cathode active material and lead-acid battery containing same
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JP2007213896A (en) Lead-acid storage battery
JP2008152968A (en) Lead storage battery
CN105702964A (en) Valve-regulated negative additive for lead-acid storage battery for hybrid vehicle