JP2008177157A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2008177157A
JP2008177157A JP2007289193A JP2007289193A JP2008177157A JP 2008177157 A JP2008177157 A JP 2008177157A JP 2007289193 A JP2007289193 A JP 2007289193A JP 2007289193 A JP2007289193 A JP 2007289193A JP 2008177157 A JP2008177157 A JP 2008177157A
Authority
JP
Japan
Prior art keywords
lead
storage battery
ppm
lead storage
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007289193A
Other languages
Japanese (ja)
Inventor
Keiichi Wada
圭一 和田
Yoshiharu Horigome
義晴 堀込
Takehiro Tokunaga
雄大 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2007289193A priority Critical patent/JP2008177157A/en
Publication of JP2008177157A publication Critical patent/JP2008177157A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a battery with maintenance-free performance assured, and further, early capacity drop restrained. <P>SOLUTION: The lead storage battery is formed with at least one or more of alkali metals or alkaline earth metals added into chemical solution. An additive volume is from 300 to 4,000 ppm. A current collector contains at least one or more out of As, Sb, Bi (fifth group), Se, and Te (sixth group) elements, with a total of the additive volume from 30 to 150 ppm. A desired current-carrying electrical quantity of the formation is from 90 to 160% of a cathode active material theoretical volume of the lead storage battery. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の始動用の鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery for starting automobiles.

従来、鉛蓄電池の充放電サイクル中に早期容量低下を発生させる問題があった。これは格子表面の放電により格子と活物質の導通が失われ容量が低下するものである。この対策の一つとして、格子近傍に放電しにくいα−PbOを生成させ深い放電をした場合でも格子表面が放電しないようにするものがある。その他にも代表的なものとして、未化成正極板に中性の硫酸塩溶液を含浸させた後、希硫酸を主体とした電解液中で化成し、化成初期に活物質中の中性電解液と格子近傍の活物質を反応させてα−PbOを生成させ、つづいて電解液中の硫酸が拡散して来て反応性の優れたβ−PbOを極板内部および表面に生成させる方法はある。しかし、この方法ではα−PbOの生成場所が不均一で生成量も少なく、また生成量の調整もし難い。 Conventionally, there has been a problem of causing an early capacity decrease during a charge / discharge cycle of a lead storage battery. This is due to the loss of conduction between the lattice and the active material due to the discharge of the lattice surface, resulting in a decrease in capacity. As one of the countermeasures, there is one that generates α-PbO 2 that is difficult to discharge in the vicinity of the lattice so that the lattice surface does not discharge even when deep discharge is performed. As another representative example, a neutral sulfate solution is impregnated on an unformed positive electrode plate, then formed in an electrolyte mainly composed of dilute sulfuric acid, and a neutral electrolyte in an active material in the early stage of formation. And active material in the vicinity of the lattice are reacted to produce α-PbO 2 , followed by diffusion of sulfuric acid in the electrolytic solution to produce β-PbO 2 having excellent reactivity inside and on the surface There is. However, in this method, α-PbO 2 is produced at non-uniform locations, the production amount is small, and the production amount is difficult to adjust.

また鉛蓄電池の早期容量低下という問題を解決するもので、正極格子合金としてアンチモンを0.8重量%以上かつ3重量%以下、砒素を0.1重量%以上かつ0.4重量%以下、銅を0.0005重量%以上かつ0.03重量%以下、銀を0.0005重量%以上かつ0.25重量%以下、錫を0.0005重量%以上かつ0.1重量%以下、ビスマスを0.001重量%以上かつ0.03重量%以下、そしてニッケルを0.0002重量%以上かつ0.003重量%以下含有させた鉛合金を用いたものがある(特許文献1)。   It also solves the problem of early capacity reduction of lead-acid batteries. As the positive grid alloy, antimony is 0.8 wt% to 3 wt%, arsenic is 0.1 wt% to 0.4 wt%, copper 0.0005 wt% or more and 0.03 wt% or less, silver 0.0005 wt% or more and 0.25 wt% or less, tin 0.0005 wt% or more and 0.1 wt% or less, and bismuth 0 There is one using a lead alloy containing 0.001% by weight or more and 0.03% by weight or less and nickel containing 0.0002% by weight or more and 0.003% by weight or less (Patent Document 1).

特開平9−231981号公報Japanese Patent Laid-Open No. 9-231981

しかしながら、特許文献1のような従来の方法でメンテナンスフリータイプの電池を作製した場合、減液量増大、比重低下大の問題が発生し著しくメンテナンスフリー性能が低下する。本発明が解決しようとする課題は、メンテナンスフリー性能を確保し更に早期容量低下を抑えた電池を製造することである。   However, when a maintenance-free type battery is manufactured by a conventional method such as Patent Document 1, problems such as an increase in the amount of liquid reduction and a decrease in specific gravity occur, and the maintenance-free performance is significantly deteriorated. The problem to be solved by the present invention is to manufacture a battery that ensures maintenance-free performance and further suppresses an early capacity drop.

本発明は、鉛−カルシウム合金の集電体からなる未化極板を用いて成る鉛蓄電池において、化成液にアルカリ金属またはアルカリ土類金属を少なくとも1つ以上添加して化成する。前記化成終了後の化成液中には、アルカリ金属またはアルカリ土類金属が、300〜4000ppm含有されている。前記鉛蓄電池の集電体中に、砒素(As)、アンチモン(Sb)、ビスマス(Bi)(周期律表の5族)、セレン(Se)、テルル(Te)(同6族)元素が少なくとも1つ以上含有されている。前記集電体中に含まれる元素の合計が30〜150ppmである。前記化成の通電電気量は、鉛蓄電池の正極活物質理論容量の90〜160%である。   The present invention is a lead storage battery using an unformed electrode plate made of a lead-calcium alloy current collector, and is formed by adding at least one alkali metal or alkaline earth metal to the chemical conversion solution. The chemical conversion liquid after completion of the chemical conversion contains 300 to 4000 ppm of alkali metal or alkaline earth metal. The lead-acid battery current collector contains at least arsenic (As), antimony (Sb), bismuth (Bi) (group 5 of the periodic table), selenium (Se), tellurium (Te) (group 6) elements. Contains one or more. The total of elements contained in the current collector is 30 to 150 ppm. The amount of energized electricity for the chemical conversion is 90 to 160% of the theoretical capacity of the positive electrode active material of the lead acid battery.

本発明により、メンテナンスフリータイプの電池でも早期容量低下を抑えることが出来る。   According to the present invention, an early capacity drop can be suppressed even in a maintenance-free type battery.

以下、本発明を実施例に基づいて詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができる。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the following Example at all, In the range which does not change the summary, it can change suitably and can implement.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(比較例)
比較例の鉛蓄電池は、次のようにして作製した。
(Comparative example)
The lead acid battery of the comparative example was produced as follows.

まず、鉛丹15kgと希硫酸(比重1.26:20℃換算以下同じ)110Lを混練ミキサー中に投入し鉛丹スラリーを作った。前記鉛丹スラリーと鉛粉850kgをペースト練合機に投入し、100Lの水と混練して正極活物質ペーストを作った。次に、この正極活物質ペースト85gをカルシウム合金からなる格子体に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に、温度110℃中に2時間放置して乾燥して未化成正極板を作った。   First, 15 kg of red lead and 110 L of dilute sulfuric acid (specific gravity 1.26: the same as below at 20 ° C.) were charged into a kneading mixer to prepare a red lead slurry. The red lead slurry and 850 kg of lead powder were put into a paste kneader and kneaded with 100 L of water to make a positive electrode active material paste. Next, 85 g of this positive electrode active material paste was filled in a lattice made of a calcium alloy, left to mature at a temperature of 50 ° C. and a humidity of 95% for 18 hours, and then left at a temperature of 110 ° C. for 2 hours. It dried and the unchemically formed positive electrode plate was made.

次に負極板を作った。まず、鉛粉と、該鉛粉に対して15wt%の希硫酸(比重1.26)と、該鉛粉に対して12wt%の水とを混練して負極活物質ペーストを作った。次に、負極活物質ペースト80gをカルシウム合金の格子体からなる集電体に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に温度110℃中に2時間放置して乾燥して未化成負極板を作った。   Next, a negative electrode plate was made. First, a negative electrode active material paste was prepared by kneading lead powder, 15 wt% diluted sulfuric acid (specific gravity 1.26) with respect to the lead powder, and 12 wt% water with respect to the lead powder. Next, 80 g of the negative electrode active material paste was filled in a current collector made of a calcium alloy lattice, left to mature for 18 hours at 50 ° C. and 95% humidity, and then left at 110 ° C. for 2 hours. And dried to produce an unformed negative electrode plate.

次に、未化成負極板8枚と未化成正極板7枚とをセパレータを介して交互に積層して各極板群を作った。   Next, eight unformed negative electrode plates and seven unformed positive electrode plates were alternately laminated via a separator to form each electrode plate group.

次に化成を行った。25℃の雰囲気で22.5A、12時間の定電流で充電を行った。充電に用いた硫酸の比重は1.240とし、各セル700ml注入した。   Next, chemical conversion was performed. Charging was performed at 22.5 A in a 25 ° C. atmosphere at a constant current of 12 hours. The specific gravity of sulfuric acid used for charging was 1.240, and 700 ml of each cell was injected.

以上の手順により、定格電圧12V、定格容量(5時間率容量)55Ahである、比較例の80D26形自動車用鉛蓄電池(JIS D5301記載)を作製した。   By the above procedure, a comparative example 80D26 type lead-acid battery for automobile (described in JIS D5301) having a rated voltage of 12 V and a rated capacity (5 hour rate capacity) of 55 Ah was produced.

(実施の形態1)
実施の形態1の鉛蓄電池は、次のようにして作製した。
(Embodiment 1)
The lead storage battery of Embodiment 1 was produced as follows.

比較例と同様の方法で未化成負極板及び未化成正極板を作製し、未化成負極板8枚と未化成正極板7枚とをセパレータを介して交互に積層して各極板群を作った。なお、正極集電体にはBi及びSbをそれぞれ100ppm含有した物を用いた。   An unformed negative electrode plate and an unformed positive plate are produced in the same manner as in the comparative example, and 8 unformed negative plates and 7 unformed positive plates are alternately laminated via a separator to form each plate group. It was. In addition, the thing containing 100 ppm of Bi and Sb was used for the positive electrode current collector.

次に化成を行った。25℃の雰囲気で17A、12時間の定電流で充電を行った。充電に用いた硫酸の比重は1.265とし、各セル700ml注入した。前記硫酸中には硫酸ナトリウムを充電後のNa量が3000ppmに成るように添加した。   Next, chemical conversion was performed. Charging was performed at a constant current of 17 A for 12 hours in an atmosphere of 25 ° C. The specific gravity of sulfuric acid used for charging was 1.265, and 700 ml of each cell was injected. Sodium sulfate was added to the sulfuric acid so that the amount of Na after charging was 3000 ppm.

以上の手順により、定格電圧12V、定格容量(5時間率容量)55Ahである、実施の形態1の80D26形自動車用鉛蓄電池(JIS D5301記載)を作製した。   By the above procedure, the 80D26 type automotive lead-acid battery (described in JIS D5301) of Embodiment 1 having a rated voltage of 12 V and a rated capacity (5-hour rate capacity) of 55 Ah was produced.

図1にはJIS規定の重負荷寿命試験のサイクル容量変化を示した。試験条件は40℃の周囲温度で20A、1時間放電した後に、5Aで5時間充電する充放電を1サイクルとして充放電を繰り返し、25サイクル毎に20Aで端子電圧が10.2Vになるまで連続放電を行い、放電持続時間を測定した。寿命サイクル数は、容量が5時間率容量の半分、即ち22.5Ahとなる回数とした。   FIG. 1 shows the cycle capacity change of the heavy load life test specified by JIS. The test conditions were 20A at an ambient temperature of 40 ° C. for 1 hour, and then charging / discharging was repeated with 5A charging for 5 hours as one cycle, and continued until the terminal voltage reached 10.2V at 20A every 25 cycles. Discharge was performed and the discharge duration was measured. The number of life cycles was the number of times that the capacity was half of the 5-hour rate capacity, that is, 22.5 Ah.

実施の形態1は、比較例に見られるようなサイクル初期の容量低下がなく、寿命末期まで大きな容量低下が発生しない。また寿命判定容量を切るまでのサイクル数も多くなっている。比較例に見られるサイクル初期の容量低下は、深い充放電によって格子−活物質界面で活物質が放電し集電性が低下したことによる容量低下である。実施の形態1では格子−活物質界面に放電し難いα−PbOを存在させることにより格子−活物質界面の放電を抑制しサイクル中の急激な放電容量の低下を抑えている。なお、正極集電体中に含有させる元素はBi、Sb以外にAs、Se、Teでも同様の効果が得られる。 In the first embodiment, there is no capacity reduction at the beginning of the cycle as seen in the comparative example, and no large capacity reduction occurs until the end of the life. In addition, the number of cycles until the life judgment capacity is cut is increased. The capacity reduction at the initial stage of the cycle seen in the comparative example is a capacity reduction due to the fact that the active material is discharged at the lattice-active material interface due to deep charge / discharge and the current collecting property is reduced. In the first embodiment, the presence of α-PbO 2 that is difficult to discharge at the lattice-active material interface suppresses the discharge at the lattice-active material interface and suppresses a rapid decrease in discharge capacity during the cycle. In addition to Bi and Sb, the same effect can be obtained when As, Se, or Te is used as the element to be contained in the positive electrode current collector.

図2には化成後の化成液中に含まれているナトリウム(Na)量と重負荷寿命のサイクル数の関係を示す。化成液中のナトリウム量が300ppm以上で比較例の180サイクルを超え、4000ppmで最高値を示す。これ以上添加すると、硫酸ナトリウムによる格子腐食が増加するため、化成液中のナトリウムの最適量は300〜4000ppmが望ましい。なお、その他のアルカリ金属、アルカリ土類金属でも検証し、同様の結果が得られた。よって、化成終了後の化成液中にアルカリ金属またはアルカリ土類金属が300〜4000ppm含有されていれば、寿命性能が向上することが分かる。また、アルカリ金属またはアルカリ土類金属は1種類でも、複数の混合状態でも効果は同じであった。   FIG. 2 shows the relationship between the amount of sodium (Na) contained in the chemical liquid after chemical conversion and the number of cycles of heavy load life. When the amount of sodium in the chemical conversion liquid is 300 ppm or more, it exceeds 180 cycles of the comparative example, and the maximum value is shown at 4000 ppm. If added more than this, lattice corrosion due to sodium sulfate increases, so the optimum amount of sodium in the chemical conversion solution is preferably 300 to 4000 ppm. In addition, other alkali metals and alkaline earth metals were also verified, and similar results were obtained. Therefore, it can be seen that if the alkali metal or alkaline earth metal is contained in the chemical conversion liquid after the chemical conversion is 300 to 4000 ppm, the life performance is improved. Moreover, the effect was the same even if one kind of alkali metal or alkaline earth metal was used, or a plurality of mixed states.

図3には、正極集電体中に添加するビスマス(Bi)の含有量と重負荷寿命のサイクル数との関係を示す。Bi量が30以上で比較例の180サイクルを超え、150ppmで最大値を示す。150ppm以上ではメンテナンスフリー性能の低下を招くことから正極集電体に含有するBiの添加量は30〜150ppmが望ましい。なお、Bi以外の5族の元素、As、Sb及び6族の元素Se、Teを用いた場合でも同様の傾向を示す。正極集電体中に5族、6族の元素がある一定量存在する場合、格子−活物質界面に生成する二酸化鉛は安定なα−PbO2またはより安定なβ−PbO2が生成すると考えられ、これにより深い放電を繰り返した場合に格子−活物質界面の活物質の放電を抑えて、早期容量低下を抑制することができる。   FIG. 3 shows the relationship between the content of bismuth (Bi) added to the positive electrode current collector and the number of cycles of heavy load life. A Bi amount of 30 or more exceeds 180 cycles of the comparative example, and a maximum value is shown at 150 ppm. When the content is 150 ppm or more, the maintenance-free performance is deteriorated, so the amount of Bi contained in the positive electrode current collector is desirably 30 to 150 ppm. In addition, the same tendency is shown even when Group 5 elements other than Bi, As and Sb, and Group 6 elements Se and Te are used. When a certain amount of group 5 or group 6 element is present in the positive electrode current collector, the lead dioxide produced at the lattice-active material interface is considered to produce stable α-PbO2 or more stable β-PbO2. Thereby, when deep discharge is repeated, the discharge of the active material at the lattice-active material interface can be suppressed, and the early capacity reduction can be suppressed.

図4には、理論容量に対する化成時の通電電気量の割合である課電量と重負荷寿命のサイクル数との関係を示す。課電量が160%以下で比較例の180サイクルを超え、約120%で最大値を示し、課電量低下に伴いサイクル数が徐々に低下する。尚、課電量90%以下では容量が大幅に低下することから課電量は90〜160%が望ましい。これは課電量が増加することで、早期容量低下の抑制を担う安定なα−PbO2量が減少しサイクル特性が低下するためである。   FIG. 4 shows the relationship between the amount of electricity applied, which is the ratio of the amount of energized electricity during formation with respect to the theoretical capacity, and the number of cycles of heavy load life. When the applied amount is 160% or less, it exceeds 180 cycles of the comparative example, and the maximum value is shown at about 120%, and the number of cycles gradually decreases as the applied amount decreases. In addition, since a capacity | capacitance falls significantly when the applied amount of electricity is 90% or less, the applied amount of electricity is desirably 90 to 160%. This is because the amount of stable α-PbO 2 that is responsible for suppressing early capacity reduction is reduced and the cycle characteristics are deteriorated due to an increase in the amount of power applied.

比較例、実施の形態1の重負荷寿命試験における容量変化を示す図である。It is a figure which shows the capacity | capacitance change in the heavy load life test of a comparative example and Embodiment 1. FIG. 化成後の化成液中のNa量と重負荷寿命のサイクル数の関係を示した図である。It is the figure which showed the relationship between the amount of Na in the chemical liquid after chemical conversion, and the cycle number of heavy load lifetime. 正極集電体中のBi含有量と重負荷寿命のサイクル数の関係を示した図である。It is the figure which showed the relationship between Bi content in a positive electrode electrical power collector, and the cycle number of heavy load lifetime. 課電量と重負荷寿命のサイクル数の関係を示した図である。It is the figure which showed the relationship between the amount of electric charges, and the cycle number of heavy load lifetime.

Claims (5)

鉛−カルシウム合金の集電体からなる未化極板を用いた鉛蓄電池において、化成液にアルカリ金属またはアルカリ土類金属を少なくとも1つ以上添加して化成することを特徴とする鉛蓄電池。 A lead storage battery using an unformed electrode plate made of a lead-calcium alloy current collector, wherein at least one alkali metal or alkaline earth metal is added to the chemical conversion solution for conversion. 前記化成終了後の化成液中にアルカリ金属またはアルカリ土類金属が300〜4000ppm含有することを特徴とする請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the chemical conversion liquid after the chemical conversion contains 300 to 4000 ppm of alkali metal or alkaline earth metal. 前記鉛蓄電池の集電体中にAs、Sb、Bi(5族)、Se、Te(6族)元素を少なくとも1つ以上含有することを特徴とする請求項1又は2記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the current collector of the lead acid battery contains at least one element of As, Sb, Bi (Group 5), Se, or Te (Group 6). 前記集電体中に含まれる元素の合計が30〜150ppmであることを特徴とする請求項3記載の鉛蓄電池。 The lead acid battery according to claim 3, wherein the total amount of elements contained in the current collector is 30 to 150 ppm. 前記化成の通電電気量は、鉛蓄電池の正極活物質理論容量の90〜160%であることを特徴とする請求項1〜4いずれか1項記載の鉛蓄電池。 The lead storage battery according to any one of claims 1 to 4, wherein the amount of electricity supplied during conversion is 90 to 160% of a theoretical capacity of a positive electrode active material of the lead storage battery.
JP2007289193A 2006-12-22 2007-11-07 Lead storage battery Pending JP2008177157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289193A JP2008177157A (en) 2006-12-22 2007-11-07 Lead storage battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006345204 2006-12-22
JP2007289193A JP2008177157A (en) 2006-12-22 2007-11-07 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2008177157A true JP2008177157A (en) 2008-07-31

Family

ID=39704010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289193A Pending JP2008177157A (en) 2006-12-22 2007-11-07 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2008177157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424452B2 (en) 2016-09-30 2022-08-23 Gs Yuasa International Ltd. Lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424452B2 (en) 2016-09-30 2022-08-23 Gs Yuasa International Ltd. Lead-acid battery

Similar Documents

Publication Publication Date Title
AU2017257864B2 (en) Lead-based alloy and related processes and products
CN104471781A (en) Lead-Acid Battery
JP2013218894A (en) Lead acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2008243489A (en) Lead acid storage battery
JP5656068B2 (en) Liquid lead-acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP2008177157A (en) Lead storage battery
JP6398111B2 (en) Lead acid battery
JP4904658B2 (en) Method for producing lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JPH11339788A (en) Lead-acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP6582386B2 (en) Lead acid battery
JP4411860B2 (en) Storage battery
CN103695705A (en) Lead acid battery positive grid alloy for traction
JP2000200598A (en) Sealed lead-acid battery
JPH11329420A (en) Manufacture of lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP4069743B2 (en) Lead acid battery
JPH0414758A (en) Lead-acid accumulator
JP2007213896A (en) Lead-acid storage battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method