JP2006318659A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2006318659A
JP2006318659A JP2005137014A JP2005137014A JP2006318659A JP 2006318659 A JP2006318659 A JP 2006318659A JP 2005137014 A JP2005137014 A JP 2005137014A JP 2005137014 A JP2005137014 A JP 2005137014A JP 2006318659 A JP2006318659 A JP 2006318659A
Authority
JP
Japan
Prior art keywords
battery
electrode plate
positive electrode
lead
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005137014A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
博 安田
Seiji Anzai
誠二 安齋
Sadao Furuya
定男 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005137014A priority Critical patent/JP2006318659A/en
Publication of JP2006318659A publication Critical patent/JP2006318659A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery suitable for a business-use car such as a bus or a truck, or a cycle service-use car by improving deep discharge life characteristics. <P>SOLUTION: The lead-acid battery is equipped with an electrode plate group comprising a negative plate, a positive plate having a positive electrode grid containing at least Sb, and a separator whose main component is glass fibers having a diameter of 5.0 μm or less, and the positive plate and the negative plate are immersed in an electrolyte. Preferably, the pressure applied to the electrode plate group ia set to 4.9-29.4 kPa and the diameter of the glass fibers is set to 0.5-1.5 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、正極活物質に二酸化鉛、負極活物質に鉛、電解液に希硫酸を用いる電池である。その歴史は古く、自動車用電源、電力貯蔵用電源、大小の移動用電源、通信用電源など最も広い範囲に普及した二次電池である。   A lead acid battery is a battery that uses lead dioxide as a positive electrode active material, lead as a negative electrode active material, and dilute sulfuric acid as an electrolyte. It has a long history, and is the most widely used secondary battery such as automobile power supplies, power storage power supplies, large and small mobile power supplies, and communication power supplies.

中でも、液式の鉛蓄電池は電解液である希硫酸が、正極板、負極板およびセパレータを完全に浸漬した状態で構成される。このような液式鉛蓄電池では、使用中に電解液中の水の分解反応により、電解液が減少していく。   In particular, the liquid lead-acid battery is configured in a state in which dilute sulfuric acid, which is an electrolytic solution, is completely immersed in the positive electrode plate, the negative electrode plate, and the separator. In such a liquid lead-acid battery, the electrolytic solution decreases during use due to the decomposition reaction of water in the electrolytic solution.

このような水の分解反応速度は負極板の水素過電圧によって大きく影響を受け、中でもPb中に含まれたSbは負極板の水素過電圧を低下させるため、水の分解反応が促進され、電解液が減少する。   Such a water decomposition reaction rate is greatly influenced by the hydrogen overvoltage of the negative electrode plate. In particular, Sb contained in Pb lowers the hydrogen overvoltage of the negative electrode plate. Decrease.

このような電解液の減少を抑制するために、Pb−Ca系合金を正・負両極の格子体に使用した電池も広く使われている(特許文献1参照)。ところが、正極格子中に含まれるSbは格子−活物質間および、活物質粒子同士間の結合力を向上させる(特許文献2参照)。また、負極格子中に含まれるSbは、水素過電圧を低下させ、定電圧充電時の充電電気量が増大するため、特に深い放電を含む充放電サイクル寿命が向上する。   In order to suppress such a decrease in the electrolytic solution, a battery using a Pb—Ca alloy as a positive / negative bipolar grid is also widely used (see Patent Document 1). However, Sb contained in the positive electrode lattice improves the bonding force between the lattice and the active material and between the active material particles (see Patent Document 2). In addition, Sb contained in the negative electrode lattice decreases the hydrogen overvoltage and increases the amount of charge electricity at the time of constant voltage charging, so that the charge / discharge cycle life including particularly deep discharge is improved.

このような、格子中にSbを含む鉛蓄電池は、減液性能に劣り、補水の頻度が高くなるという欠点を有するが、バス・トラック用やタクシー用、あるいはサイクルサービスなどの深放電での寿命特性が要求される分野で用いられている。
特開平6−267544号公報 特開平4−132167号公報
Such lead-acid batteries containing Sb in the grid have the disadvantage that the liquid reducing performance is inferior and the frequency of water replenishment is high, but the life in deep discharge such as for buses, trucks, taxis or cycle services Used in fields where characteristics are required.
JP-A-6-267544 JP-A-4-132167

本発明は、上記のような正極にPb−Sb合金を用いた鉛蓄電池において、さらに深放電寿命特性に優れた鉛蓄電池を提供すること、また電解液面が若干低下したとしても容量低下を抑制した鉛蓄電池を提供することを目的とする。   The present invention provides a lead storage battery using a Pb—Sb alloy for the positive electrode as described above, and further provides a lead storage battery with excellent deep discharge life characteristics, and suppresses a decrease in capacity even if the electrolyte level is slightly reduced. An object of the present invention is to provide a lead acid battery.

前記した課題を解決するために、本発明の請求項1に係る発明は、負極板と、少なくともPb−Sb合金からなる正極格子を備えた正極板と、繊維径5.0μm以下のガラス繊維を主体とするマット状のセパレータとからなる極板群を備え、前記正極板および負極板が電解液に浸漬されたことを特徴とする鉛蓄電池を示すものである。   In order to solve the above-described problems, the invention according to claim 1 of the present invention includes a negative electrode plate, a positive electrode plate provided with a positive electrode lattice made of at least a Pb—Sb alloy, and glass fibers having a fiber diameter of 5.0 μm or less. A lead storage battery comprising an electrode plate group including a mat-like separator as a main component, wherein the positive electrode plate and the negative electrode plate are immersed in an electrolytic solution.

また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、前記極板群に加えられた群圧を4.9kPa〜29.4kPaとしたことを特徴とする。   Further, the invention according to claim 2 of the present invention is characterized in that, in the lead storage battery of claim 1, a group pressure applied to the electrode plate group is set to 4.9 kPa to 29.4 kPa.

また、本発明の請求項3に係る発明は、請求項1もしくは2の鉛蓄電池において、前記ガラス繊維の繊維径を0.5μm〜1.5μmとしたことを特徴とする。   The invention according to claim 3 of the present invention is characterized in that, in the lead-acid battery of claim 1 or 2, the fiber diameter of the glass fiber is set to 0.5 μm to 1.5 μm.

前記の構成を備えた本発明の鉛蓄電池は、従来のものと比較してより優れた深放電寿命特性を有し、電解液面の減少によっても放電容量の低下を抑制することができる。   The lead storage battery of the present invention having the above-described configuration has a deep discharge life characteristic superior to that of the conventional one, and can suppress a decrease in discharge capacity even by a decrease in the electrolyte surface.

以下、本発明の実施の形態による鉛蓄電池を、図面を参照しながら説明する。   Hereinafter, a lead storage battery according to an embodiment of the present invention will be described with reference to the drawings.

本発明の鉛蓄電池1は図1に示したように、Pb−Sb合金等のSbを含む正極格子を備えた正極板2と、負極板3と、繊維径5.0μm以下のガラス繊維を主体とするマット状のセパレータ4とからなる極板群9を備える。   As shown in FIG. 1, the lead storage battery 1 of the present invention is mainly composed of a positive electrode plate 2 having a positive electrode lattice containing Sb such as a Pb—Sb alloy, a negative electrode plate 3, and a glass fiber having a fiber diameter of 5.0 μm or less. An electrode plate group 9 including a mat-like separator 4 is provided.

さらに本発明の鉛蓄電池1は、正極板2および負極板3の極板面を浸漬する電解液5を有する。   Furthermore, the lead storage battery 1 of the present invention has an electrolytic solution 5 that immerses the electrode plate surfaces of the positive electrode plate 2 and the negative electrode plate 3.

上記の構成を有した本発明の鉛蓄電池は、優れた深放電寿命特性を有する。また、特に極板群に加える群圧を4.9kPa〜29.4kPaとすることにより、さらに優れた寿命特性を得ることができる。また、ガラス繊維の繊維径を0.5μm〜1.5μmとすることにより、さらに優れた寿命特性を得られる。また電解液面5aが低下した場合においても、5時間率放電容量の低下を抑制することができる。   The lead storage battery of the present invention having the above-described configuration has excellent deep discharge life characteristics. In addition, particularly excellent life characteristics can be obtained by setting the group pressure applied to the electrode plate group to 4.9 kPa to 29.4 kPa. Further, when the fiber diameter of the glass fiber is 0.5 μm to 1.5 μm, further excellent life characteristics can be obtained. Further, even when the electrolytic solution surface 5a is lowered, it is possible to suppress the reduction in the 5-hour rate discharge capacity.

本発明の鉛蓄電池に用いる正極格子は、正極活物質同士および正極活物質−格子間の良好な結合力を得るために必要なSbを含む。例えば、正極格子として1.0〜5.0質量%程度のSbを含むPb−Sb合金を用いることができる。また、正極格子として母材としてSbをふくまないPb−Ca合金、Pb−Ba合金等のPb合金を用い、活物質と接する正極格子表面にSbもしくはPb−Sb合金の層を形成したものを用いてもよい。   The positive electrode lattice used in the lead storage battery of the present invention contains Sb necessary for obtaining a good bonding force between the positive electrode active materials and between the positive electrode active material and the lattice. For example, a Pb—Sb alloy containing about 1.0 to 5.0% by mass of Sb can be used as the positive electrode lattice. Further, a Pb alloy such as a Pb—Ca alloy or a Pb—Ba alloy that does not contain Sb as a base material is used as a positive electrode lattice, and an Sb or Pb—Sb alloy layer is formed on the surface of the positive electrode lattice in contact with the active material. May be.

また、本発明においては、負極格子を特に限定するものでないが、従来から使用されている、Pb−Sb合金、Pb−Ca合金、Pb−Sn合金、Pb−Ba合金を用いることができる。また、同極性の極板耳を集合溶接するストラップ6についても従来から使用されているPb−Sb合金やPb−Sn合金を用いることができる。   In the present invention, the negative electrode lattice is not particularly limited, but conventionally used Pb—Sb alloy, Pb—Ca alloy, Pb—Sn alloy, and Pb—Ba alloy can be used. Moreover, the Pb-Sb alloy and the Pb-Sn alloy which are conventionally used can also be used for the strap 6 that collectively welds the electrode plates having the same polarity.

なお、本発明の鉛蓄電池1は、電池内部で発生した酸素・水素ガスを電池外部に放出するための経路7をその電池外装8に有する。経路7の形成方法としては、従来の鉛蓄電池のように、電池の蓋等に設けた液口に排気孔を有した排気栓を装着する構成が適用できる。また、酸素・水素ガスが電池外に放出でき、電池内圧の異常上昇を抑制できればよいので、電池外装8の耐圧強度から許容できる電池内圧未満の開弁圧を有した弁機構を経路7上に設けてもよい。   The lead storage battery 1 of the present invention has a path 7 in the battery exterior 8 for releasing oxygen / hydrogen gas generated inside the battery to the outside of the battery. As a method of forming the path 7, a configuration in which an exhaust plug having an exhaust hole is attached to a liquid port provided on a battery lid or the like, as in a conventional lead storage battery, can be applied. In addition, since it is sufficient that oxygen / hydrogen gas can be released outside the battery and an abnormal increase in battery internal pressure can be suppressed, a valve mechanism having a valve opening pressure lower than the battery internal pressure allowable from the pressure resistance strength of the battery exterior 8 is provided on the path 7. It may be provided.

以下、本発明の鉛蓄電池の特徴と効果について詳しく説明する。   Hereinafter, the features and effects of the lead storage battery of the present invention will be described in detail.

以下に示す本発明例の電池と比較例の電池を作成し、各電池の寿命サイクル数と初期放電容量を測定した。   The following batteries of the present invention and comparative batteries were prepared, and the number of life cycles and initial discharge capacity of each battery were measured.

(電池A1〜電池A25)
電池A1〜電池A25(以下、総称して電池群Aという)。は正極格子として2.5質量%のSbを含むPb−Sb合金からなる鋳造格子体と、ガラス繊維マットからなるセパレータを用いた電池である。
(Battery A1 to Battery A25)
Battery A1 to Battery A25 (hereinafter collectively referred to as battery group A). Is a battery using a cast lattice body made of a Pb—Sb alloy containing 2.5% by mass of Sb as a positive electrode lattice and a separator made of a glass fiber mat.

正極格子体に、一酸化鉛と金属鉛および鉛丹(Pb34)を成分とする鉛粉を水および希硫酸で混練して得た正極用活物質ペーストを充填し、熟成乾燥して未化成状態の正極板を作成した。 The positive electrode grid is filled with an active material paste for positive electrode obtained by kneading lead powder containing lead monoxide, metallic lead and red lead (Pb 3 O 4 ) with water and dilute sulfuric acid, and aged and dried. A positive electrode plate in an unformed state was prepared.

負極板は、0.07質量%のCaを含むPb−Ca合金からなる鋳造格子体に、一酸化鉛と金属鉛を成分とする鉛粉に硫酸バリウム、リグニンおよびカーボンを添加し、水と希硫酸で混練して得た負極用活物質ペーストを充填し、熟成乾燥して未化成状態の負極板を作成した。   The negative electrode plate is obtained by adding barium sulfate, lignin and carbon to lead powder containing lead monoxide and metal lead as a component in a cast grid made of a Pb—Ca alloy containing 0.07% by mass of Ca. The negative electrode active material paste obtained by kneading with sulfuric acid was filled and aged and dried to prepare an unformed negative electrode plate.

上記した正極板5枚と負極板6枚を用いてJIS D5301(始動用鉛蓄電池)で規定する55D23形(12V48Ah)電池を作成した。なお、ガラス繊維マットセパレータは19.6kPa加圧時の厚さ1.0mmのものを用いた。   A 55D23 type (12V48Ah) battery defined by JIS D5301 (lead storage battery for starting) was prepared using the above-described five positive electrode plates and six negative electrode plates. A glass fiber mat separator having a thickness of 1.0 mm when pressed with 19.6 kPa was used.

電池群Aは、表1に示したように、ガラス繊維マットの繊維径を0.2μm〜15μmとし、群圧を0kPa〜39.2kPaに変化させた。なお、群圧0kPaのものは、正極板および負極板とセパレータとが接触した状態としたものである。   In the battery group A, as shown in Table 1, the fiber diameter of the glass fiber mat was changed to 0.2 μm to 15 μm, and the group pressure was changed from 0 kPa to 39.2 kPa. The group pressure of 0 kPa is a state in which the positive electrode plate and the negative electrode plate are in contact with the separator.

Figure 2006318659
Figure 2006318659

なお、正極・負極のストラップにはアンチモンを含まない、Pb−2.5質量%Sn合金とした。電池を組立後、電池の蓋に設けた液口から密度1.200g/cm3(20℃換算時)の希硫酸を加えて電槽化成し、化成終了後に希硫酸電解液の密度を1.280g/cm3(20℃換算時)、かつ電解液面を正・負極ストラップ上面から上方に25.0mmの位置に調整した。 In addition, the Pb-2.5 mass% Sn alloy which does not contain antimony was used for the strap of a positive electrode and a negative electrode. After assembling the battery, dilute sulfuric acid with a density of 1.200 g / cm 3 (when converted to 20 ° C.) is added from the liquid port provided on the battery lid to form a battery case. The electrolyte surface was adjusted to a position of 25.0 mm upward from the upper surfaces of the positive and negative electrode straps at 280 g / cm 3 (when converted to 20 ° C.).

電解液密度と液面とを調整した後、液口に排気栓を装着した。なお、排気栓は電池内で発生した酸素・水素ガスを電池外に排出するための排気孔が設けられている。   After adjusting the electrolyte density and the liquid level, an exhaust plug was attached to the liquid port. The exhaust plug is provided with an exhaust hole for discharging oxygen / hydrogen gas generated in the battery to the outside of the battery.

(電池B1〜電池B25)
電池B1〜電池B25(以下、総称して電池群Bという)。は電池群Aで用いたPb−Sb合金の正極格子に替えて、1.2質量%のSnと0.07質量%のCaを含むPb−Sn-Ca合金からなる鋳造格子体を用いた電池であり、その他の構成は電池群Aと同様である。この正極格子合金中のSb定量分析をおこなったところ、Pb合金中のSb濃度として検出限界である0.0001質量%未満であり、実質的にSbが含まれていないものであった。
(Battery B1 to Battery B25)
Battery B1 to Battery B25 (hereinafter collectively referred to as battery group B). Is a battery using a cast lattice body made of a Pb—Sn—Ca alloy containing 1.2 mass% Sn and 0.07 mass% Ca instead of the positive electrode grid of the Pb—Sb alloy used in the battery group A. Other configurations are the same as those of the battery group A. When the Sb quantitative analysis in this positive electrode lattice alloy was conducted, it was less than 0.0001 mass% which is a detection limit as Sb density | concentration in Pb alloy, and Sb was not included substantially.

なお、電池群Aと同様、電池群Bについても、表2で示したように、ガラス繊維マットの繊維径を0.2μm〜15μmとし、群圧を0kPa〜39.2kPaに変化させた。なお、群圧0kPaのものは、正極板および負極板とセパレータとが接触した状態としたものである。   Similar to the battery group A, as shown in Table 2, for the battery group B, the fiber diameter of the glass fiber mat was changed from 0.2 μm to 15 μm, and the group pressure was changed from 0 kPa to 39.2 kPa. The group pressure of 0 kPa is a state in which the positive electrode plate and the negative electrode plate are in contact with the separator.

Figure 2006318659
Figure 2006318659

(電池C1〜C6)
電池C1〜電池C6(以下、総称して電池群Cという。)は電池群Aで用いたガラス繊維マットセパレータに換えて、0.1μm〜5μmの微孔を有したポリエチレンシートセパレータを用いた電池であり、その他の構成は電池群Aと同様である。
(Batteries C1 to C6)
Batteries C1 to C6 (hereinafter collectively referred to as battery group C) are batteries using polyethylene sheet separators having micropores of 0.1 μm to 5 μm instead of the glass fiber mat separator used in battery group A. Other configurations are the same as those of the battery group A.

ポリエチレンシートセパレータの厚みは0.5mmであり、正極板に対向する面に高さ0.5mmの線条リブの複数を7.0mm間隔で平行に極板上下方向に設けたものである。したがって、このセパレータの総厚みは1.0mmである。   The thickness of the polyethylene sheet separator is 0.5 mm, and a plurality of strip ribs having a height of 0.5 mm are provided on the surface facing the positive electrode plate in parallel in the vertical direction of the electrode plate at intervals of 7.0 mm. Therefore, the total thickness of this separator is 1.0 mm.

なお、電池群Aと同様、電池群Cについても、表3で示したように、群圧を0kPa〜39.2kPaに変化させた。なお、群圧0kPaのものは、正極板および負極板とセパレータに設けたリブの先端とが接触した状態としたものである。   Similar to the battery group A, as shown in Table 3, for the battery group C, the group pressure was changed from 0 kPa to 39.2 kPa. In the case of the group pressure of 0 kPa, the positive electrode plate and the negative electrode plate are in contact with the tips of the ribs provided on the separator.

Figure 2006318659
Figure 2006318659

(電池D1〜D6)
電池D1〜電池D6(以下、総称して電池群Dという。)は、電池群Cで用いたPb−Sb合金の正極格子に替えて、1.2質量%のSnと0.07質量%のCaを含むPb−Sn-Ca合金からなる鋳造格子体を用いた電池であり、その他の構成は電池群Cと同様である。
(Batteries D1 to D6)
The batteries D1 to D6 (hereinafter collectively referred to as the battery group D) are replaced with the positive electrode lattice of the Pb—Sb alloy used in the battery group C, 1.2 mass% Sn and 0.07 mass%. The battery uses a cast lattice body made of a Pb—Sn—Ca alloy containing Ca, and the other configuration is the same as that of the battery group C.

なお、電池群Cと同様、電池群Dについても、表4で示したように、群圧を0kPa〜39.2kPaに変化させた。なお、群圧0kPaのものは、正極板および負極板とセパレータに設けたリブの先端とが接触した状態としたものである。   As with the battery group C, as shown in Table 4, the group pressure of the battery group D was changed from 0 kPa to 39.2 kPa. In the case of the group pressure of 0 kPa, the positive electrode plate and the negative electrode plate are in contact with the tips of the ribs provided on the separator.

Figure 2006318659
Figure 2006318659

上記した電池群A〜Dの各電池について、JIS D5301で規定する重負荷寿命試験(40℃)および5時間率放電容量試験を行った。各試験条件を以下に示す。   About each battery of above-mentioned battery group AD, the heavy load life test (40 degreeC) prescribed | regulated by JISD5301 and the 5-hour rate discharge capacity test were done. Each test condition is shown below.

(重負荷寿命試験)
(1)放電
20A、1時間
(2)充電
5A、5時間
(3)容量確認
上記(1)および(2)の放電−充電を25回毎に、20A放電
(終止電圧10.2V)
(4)容量確認後の充電
5A充電し、15分毎に測定した蓄電池の端子電圧が3回連続して一定の値にな るまで充電する
(5)寿命判定
(3)での放電容量が24Ahにまで低下した時点を寿命とする。
(Heavy load life test)
(1) Discharge 20A, 1 hour (2) Charge 5A, 5 hours (3) Capacity check Discharge-charge of the above (1) and (2) every 25 times, 20A discharge
(End voltage 10.2V)
(4) Charging after capacity confirmation Charge 5A and charge the battery until the terminal voltage of the storage battery measured every 15 minutes reaches a constant value three times continuously. (5) Life judgment The discharge capacity in (3) is The point of time when the pressure drops to 24 Ah is defined as the life.

(5時間率放電容量試験)
(1)放電
9.6A(終止電圧10.5V)
放電電流と放電時間の積より5時間率放電容量を求める。
(5-hour rate discharge capacity test)
(1) Discharge 9.6A (end voltage 10.5V)
The 5-hour rate discharge capacity is obtained from the product of the discharge current and the discharge time.

なお、5時間率放電容量試験については、電解液面が正・負極ストラップ上面から上方に25.0mmの規定位置(「液面正規」状態)にある初期状態のものと、電解液中の水分を故意に蒸発させて、負極板の上部が電解液に露出した状態(「液面低下」状態)としたものについて測定した。   For the 5-hour rate discharge capacity test, the electrolyte surface is in an initial state where the electrolyte surface is 25.0 mm above the upper surface of the positive and negative straps (“liquid surface normal” state), and the moisture in the electrolyte solution Was intentionally evaporated to measure the state in which the upper part of the negative electrode plate was exposed to the electrolyte (“liquid level lowered” state).

負極板上部の露出度合いは、負極板面の高さ寸法110mmに対して上部30mmが電解液から露出した状態とした。ここでは、液口栓を脱着した状態の電池を、温度設定50℃、湿度設定0RH%の恒温恒湿槽中で加温し、電解液中の水分を蒸発させた。   The degree of exposure of the upper part of the negative electrode plate was such that the upper part 30 mm was exposed from the electrolyte with respect to the height dimension 110 mm of the negative electrode plate surface. Here, the battery with the liquid spigot removed was heated in a constant temperature and humidity chamber with a temperature setting of 50 ° C. and a humidity setting of 0 RH% to evaporate water in the electrolyte.

前述の各電池の重負荷寿命試験結果および5時間率放電容量試験結果を表5〜表8に示す。   Tables 5 to 8 show the heavy load life test results and 5-hour rate discharge capacity test results of the respective batteries described above.

Figure 2006318659
Figure 2006318659

Figure 2006318659
Figure 2006318659

Figure 2006318659
Figure 2006318659

Figure 2006318659
Figure 2006318659

(重負荷寿命試験結果)
表1に示した結果から、寿命サイクル数はガラス繊維の繊維径によって著しく変化し、繊維径5.0μm以下の範囲で優れた寿命特性を得ることができ、特に0.5μm〜1.5μmの範囲で特に優れた寿命特性を得ることができる。
(Heavy load life test results)
From the results shown in Table 1, the number of life cycles varies significantly depending on the fiber diameter of the glass fiber, and excellent life characteristics can be obtained in the range of the fiber diameter of 5.0 μm or less, particularly 0.5 μm to 1.5 μm. A particularly excellent life characteristic can be obtained within a range.

特に、群圧を4.9kPa〜29.4kPaによりさらに優れた寿命特性を得ることができる。繊維マットに適切な群圧が加えられることにより、正極活物質の脱落が抑制され、良好な深放電寿命特性が得られる。   In particular, even better life characteristics can be obtained with a group pressure of 4.9 kPa to 29.4 kPa. When an appropriate group pressure is applied to the fiber mat, dropping of the positive electrode active material is suppressed, and good deep discharge life characteristics are obtained.

但し、群圧を39.2kPaとした場合には寿命サイクル数は若干低下する。これは群圧により、セパレータ内の空孔体積および空孔のサイズが小さくなり、電解液中のイオン拡散が若干阻害されたことによる。   However, when the group pressure is 39.2 kPa, the life cycle number slightly decreases. This is because, due to the group pressure, the pore volume in the separator and the size of the pores are reduced, and ion diffusion in the electrolytic solution is slightly inhibited.

繊維径0.2μmの場合は、0.5μmの場合と比較して寿命特性が若干低下する傾向にある。繊維径0.2μmの場合は、比較的低い群圧においてもセパレータ内の空孔の大きさが小さくなり、電気抵抗が増大し、その結果、寿命が若干低下したと考えられる。   When the fiber diameter is 0.2 μm, the life characteristics tend to be slightly lower than when the fiber diameter is 0.5 μm. When the fiber diameter is 0.2 μm, it is considered that the pore size in the separator is reduced even at a relatively low group pressure, the electrical resistance is increased, and as a result, the life is slightly reduced.

繊維径15μmの場合は、群圧を変化させても、ガラス繊維マットによる正極活物質脱落抑制効果が殆ど得られない。ガラス繊維によって形成される空孔サイズが大きくなり、ガラス繊維が有効に活物質粒子の脱落を抑制できない状態となるためと推測される。活物質粒子径に対して空孔サイズが大きくなりすぎると、ガラス繊維マットによる活物質粒子の保持効果が極端に低下すると考えられる。   When the fiber diameter is 15 μm, even if the group pressure is changed, the positive electrode active material drop-off suppressing effect by the glass fiber mat is hardly obtained. It is presumed that the size of the pores formed by the glass fibers is increased, and the glass fibers are in a state in which the active material particles cannot be effectively prevented from falling off. If the pore size is too large with respect to the active material particle diameter, it is considered that the holding effect of the active material particles by the glass fiber mat is extremely lowered.

一方、表2に示した結果から、正極格子合金をSbを含まない、Pb−Sn−Ca合金とした電池群Bは、ガラス繊維径や群圧を変化させても、寿命特性に大きく影響せず、本発明の電池に比較しても劣った寿命特性しか得られなかった。   On the other hand, from the results shown in Table 2, the battery group B in which the positive electrode lattice alloy does not contain Sb and is a Pb—Sn—Ca alloy does not greatly affect the life characteristics even if the glass fiber diameter or the group pressure is changed. In addition, inferior life characteristics were obtained even when compared with the battery of the present invention.

表7および表8に示した結果から、ポリエチレンシートセパレータを用いた電池群Cおよび電池群Dは、ガラス繊維マットを用いた電池群Aおよび電池群Bに比較して、正極格子と群圧の影響を受けず、220〜270サイクル程度の寿命サイクル数しか得ることができなかった。   From the results shown in Table 7 and Table 8, the battery group C and the battery group D using the polyethylene sheet separator were compared with the battery group A and the battery group B using the glass fiber mat. It was not affected and only a life cycle number of about 220 to 270 cycles could be obtained.

これらのことから、重負荷寿命試験での寿命特性、すなわち深放電寿命特性を顕著に改善するためには、正極格子合金としてSbを含み、かつ特定範囲の繊維径を有したガラス繊維マットセパレータを用いる構成を同時に満足することが必要である。本発明の寿命改善効果は、ガラス繊維マットによる正極活物質を保持する効果と、正極格子中のSbによる、格子−活物質界面を良好な状態に保つ効果が同時に得られたことによる相乗的な効果であると考えられる。   From these, in order to significantly improve the life characteristics in the heavy load life test, that is, the deep discharge life characteristics, a glass fiber mat separator containing Sb as a positive electrode lattice alloy and having a fiber diameter in a specific range is used. It is necessary to satisfy the configuration used at the same time. The life improvement effect of the present invention is synergistic because the effect of maintaining the positive electrode active material by the glass fiber mat and the effect of maintaining the lattice-active material interface in a good state by Sb in the positive electrode lattice are obtained at the same time. It is considered to be an effect.

(5時間率放電容量試験結果)
5時間率放電容量に関しては、液面が正規にある状態では、全ての電池について規格(48Ah)を満足する特性が得られた。しかしながら、ポリエチレンシートセパレータを用いた電池群Cおよび電池群Dに属する電池は、ガラス繊維マットをセパレータとして用いた電池群Aおよび電池群Bに属する電池に比較して、液面が低下した場合に、放電容量が顕著に低下する傾向が見られる。
(5 hour rate discharge capacity test results)
Regarding the 5-hour rate discharge capacity, in a state where the liquid level is normal, the characteristics satisfying the standard (48 Ah) were obtained for all the batteries. However, the batteries belonging to the battery group C and the battery group D using the polyethylene sheet separator have a lower liquid level than the batteries belonging to the battery group A and the battery group B using the glass fiber mat as a separator. There is a tendency for the discharge capacity to decrease significantly.

このような傾向は、特に正極格子合金にSbを含む電池群Cで顕著であり、極板が電解液から露出することにより、正極格子合金中のSbが負極に移行し、負極がより酸化しやすい状況にあったと考えられる。   Such a tendency is particularly remarkable in the battery group C in which the positive electrode lattice alloy contains Sb. When the electrode plate is exposed from the electrolytic solution, Sb in the positive electrode lattice alloy moves to the negative electrode, and the negative electrode is more oxidized. It seems that the situation was easy.

一方、本発明の電池A1〜A24および比較例の電池B1〜B24に関しては、負極板が露出した状態であっても、液面低下による放電容量の低下が顕著に抑制されていた。正極格子合金にSbを含む電池群Cに属する各電池が液面低下時の放電容量低下が、Sbを含まない正極格子合金を用いた電池群Dに比較して顕著であったこと、また同様に、正極格子合金にSbを含む比較例の電池A25〜A30の液面低下時の放電容量低下が、Sbを含まない正極格子合金を用いた比較例の電池B25〜B30に比較して顕著であったことを考慮すると、本発明の電池A1〜A24において放電容量低下を抑制する効果が、非比較例の電池B1〜B24において相対的に顕著であるといえる。   On the other hand, regarding the batteries A1 to A24 of the present invention and the batteries B1 to B24 of the comparative examples, the decrease in the discharge capacity due to the decrease in the liquid level was remarkably suppressed even when the negative electrode plate was exposed. In each battery belonging to the battery group C containing Sb in the positive electrode lattice alloy, the discharge capacity reduction at the time of liquid level reduction was significant compared to the battery group D using the positive electrode lattice alloy not containing Sb, and similarly In addition, the discharge capacity reduction at the time of liquid level reduction of the batteries A25 to A30 of the comparative example containing Sb in the positive electrode lattice alloy is remarkable as compared with the batteries B25 to B30 of the comparative example using the positive electrode lattice alloy not containing Sb. In view of this, it can be said that the effects of suppressing the decrease in the discharge capacity in the batteries A1 to A24 of the present invention are relatively remarkable in the batteries B1 to B24 of the non-comparative examples.

負極板が電解液面から露出した場合であっても、ガラス繊維マットの毛細管現象により、電解液から露出した極板に補給され、補給された電解液が放電反応に寄与するとともに、電解液が負極表面を覆うことにより、負極の酸化が抑制されたと考えられる。   Even when the negative electrode plate is exposed from the electrolyte surface, it is replenished to the electrode plate exposed from the electrolyte solution due to the capillary phenomenon of the glass fiber mat, and the replenished electrolyte solution contributes to the discharge reaction, and the electrolyte solution It is thought that the oxidation of the negative electrode was suppressed by covering the negative electrode surface.

ガラス繊維の繊維径を15μmとした電池A26〜電池A30および電池B26〜電池B30は液面低下時の容量低下が大きい。これは繊維径が大きいため、毛細管現象が有効に作用せず、露出した負極板に電解液が十分に補給されなかったことによると考えられる。   The battery A26 to battery A30 and the battery B26 to battery B30 in which the fiber diameter of the glass fiber is 15 μm have a large capacity drop when the liquid level is lowered. This is presumably because the capillary diameter did not act effectively because the fiber diameter was large, and the electrolyte solution was not sufficiently replenished to the exposed negative electrode plate.

また、ガラス繊維径を0.2μmとした、電池A1〜電池A6および電池B1〜電池B6は、ガラス繊維径0.5μm〜5μmの電池と比較して液面低下時の放電容量が若干低下する傾向にある。これはセパレータ内の空孔体積が減少して保持された電解液量が低下したこと、また、この空孔サイズが小さくなり、電解液の拡散が若干阻害されたことによると考えられる。   In addition, the batteries A1 to A6 and the batteries B1 to B6 having a glass fiber diameter of 0.2 μm have a slightly lower discharge capacity when the liquid level is lower than batteries having a glass fiber diameter of 0.5 μm to 5 μm. There is a tendency. This is considered to be due to the fact that the volume of electrolyte retained by decreasing the volume of pores in the separator was decreased, and that the size of the pores was reduced, and the diffusion of the electrolyte was slightly inhibited.

したがって、本発明のように、ガラス繊維径を5.0μm以下とすることにより、液面低下時の容量低下を顕著に抑制できる。特に上述したように、ガラス繊維径を0.5μm〜5.0μmの範囲とすることが好ましい。   Therefore, the capacity | capacitance fall at the time of a liquid level fall can be suppressed notably by setting a glass fiber diameter to 5.0 micrometers or less like this invention. In particular, as described above, the glass fiber diameter is preferably in the range of 0.5 μm to 5.0 μm.

さらに、ガラス繊維マットに加える群圧を29.4kPa以下とすることにより、容量低下をより抑制することができる。群圧を39.2kPaとした場合は、ガラス繊維マット内の空孔体積が減少し、空孔内の保持電解液量が減少するとともに、この空孔のサイズが小さくなり、電解液の拡散度合いが低下するため、液面低下時の放電容量低下が増大すると考えられる。   Furthermore, the capacity | capacitance fall can be suppressed more by making the group pressure added to a glass fiber mat into 29.4 kPa or less. When the group pressure is 39.2 kPa, the pore volume in the glass fiber mat is reduced, the amount of electrolyte retained in the pores is reduced, the size of the pores is reduced, and the degree of diffusion of the electrolyte Therefore, it is considered that the decrease in discharge capacity at the time of liquid level increase increases.

以上、説明してきたように、本発明の鉛蓄電池は優れた深放電寿命特性を有することがわかる。また、特に液式の鉛蓄電池では、電池使用中の減液が発生し、電解液の補充がなされない状態で使用される場合がある。比較例の鉛蓄電池では、そのような場合に放電容量が急激に低下するが、本発明の鉛蓄電池では、このような電解液面の低下による急激な放電容量低下を抑制することができる。   As described above, it can be seen that the lead storage battery of the present invention has excellent deep discharge life characteristics. In particular, a liquid lead-acid battery may be used in a state where the liquid is reduced while the battery is in use and the electrolyte is not replenished. In the lead storage battery of the comparative example, the discharge capacity rapidly decreases in such a case, but in the lead storage battery of the present invention, it is possible to suppress such a rapid discharge capacity decrease due to the decrease in the electrolyte surface.

本発明に鉛蓄電池は、優れた深放電寿命特性を有し、電解液面低下時の容量維持特性も優れていることから、バス・トラックといった業務車用の始動用鉛蓄電池や、サイクルサービス用の鉛蓄電池として、特に好適である。   The lead storage battery according to the present invention has excellent deep discharge life characteristics and excellent capacity maintenance characteristics when the electrolyte level is lowered. Therefore, the lead storage battery for business vehicles such as buses and trucks, and cycle service It is particularly suitable as a lead storage battery.

本発明の鉛蓄電池の要部断面を示す図The figure which shows the principal part cross section of the lead acid battery of this invention.

符号の説明Explanation of symbols

1 鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 電解液
5a 電解液面
6 ストラップ
7 経路
8 電池外装
9 極板群
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Electrolyte 5a Electrolyte surface 6 Strap 7 Path | route 8 Battery exterior 9 Electrode plate group

Claims (3)

負極板と、少なくともSbを含む正極格子を備えた正極板と、繊維径5.0μm以下のガラス繊維を主体とするセパレータとからなる極板群を備え、前記正極板および負極板が電解液に浸漬されたことを特徴とする鉛蓄電池。 A positive electrode plate group comprising a negative electrode plate, a positive electrode plate including a positive electrode lattice containing at least Sb, and a separator mainly composed of glass fibers having a fiber diameter of 5.0 μm or less, wherein the positive electrode plate and the negative electrode plate are used as an electrolyte solution; A lead-acid battery characterized by being immersed. 前記極板群に加えられた群圧を4.9kPa〜29.4kPaとしたことを特徴とする請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein a group pressure applied to the electrode plate group is set to 4.9 kPa to 29.4 kPa. 前記ガラス繊維の繊維径を0.5μm〜1.5μmとしたことを特徴とする請求項1もしくは2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein a fiber diameter of the glass fiber is set to 0.5 µm to 1.5 µm.
JP2005137014A 2005-05-10 2005-05-10 Lead-acid battery Pending JP2006318659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137014A JP2006318659A (en) 2005-05-10 2005-05-10 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137014A JP2006318659A (en) 2005-05-10 2005-05-10 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2006318659A true JP2006318659A (en) 2006-11-24

Family

ID=37539165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137014A Pending JP2006318659A (en) 2005-05-10 2005-05-10 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2006318659A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022921A (en) * 2013-07-19 2015-02-02 株式会社Gsユアサ Liquid-type lead storage battery, and method for manufacturing liquid-type lead storage battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
JP2020047555A (en) * 2018-09-21 2020-03-26 古河電池株式会社 Liquid lead storage battery
JP2021114404A (en) * 2020-01-17 2021-08-05 古河電池株式会社 Lead acid battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
JP2015022921A (en) * 2013-07-19 2015-02-02 株式会社Gsユアサ Liquid-type lead storage battery, and method for manufacturing liquid-type lead storage battery
JP2020047555A (en) * 2018-09-21 2020-03-26 古河電池株式会社 Liquid lead storage battery
JP2021114404A (en) * 2020-01-17 2021-08-05 古河電池株式会社 Lead acid battery
JP7128483B2 (en) 2020-01-17 2022-08-31 古河電池株式会社 lead acid battery

Similar Documents

Publication Publication Date Title
JP6331161B2 (en) Control valve type lead acid battery
JP2012089310A (en) Lead storage battery
EP3352285B1 (en) Lead storage battery
JP5138391B2 (en) Control valve type lead acid battery
JP6525167B2 (en) Lead storage battery
JP2006318659A (en) Lead-acid battery
JP4635325B2 (en) Control valve type lead acid battery
JP2006004688A (en) Lead-acid battery
JP2011070904A (en) Separator for lead-acid battery and lead-acid battery using it
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
TWI285972B (en) Valve regulated lead acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JP5569164B2 (en) Lead acid battery
JP2001102027A (en) Enclosed lead battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2019207786A (en) Lead acid battery
JP2019003838A (en) Liquid-type lead storage battery
JP2007213896A (en) Lead-acid storage battery
JP2017069023A (en) Lead storage battery
JP2005268061A (en) Lead storage cell
JP6070126B2 (en) Negative electrode for lead acid battery
JP2002343359A (en) Sealed type lead storage battery
JP2006066254A (en) Lead-acid storage battery
JPS58158874A (en) Lead storage battery
JPH10172542A (en) Sealed lead acid storage battery