JP2020047555A - Liquid lead storage battery - Google Patents

Liquid lead storage battery Download PDF

Info

Publication number
JP2020047555A
JP2020047555A JP2018177384A JP2018177384A JP2020047555A JP 2020047555 A JP2020047555 A JP 2020047555A JP 2018177384 A JP2018177384 A JP 2018177384A JP 2018177384 A JP2018177384 A JP 2018177384A JP 2020047555 A JP2020047555 A JP 2020047555A
Authority
JP
Japan
Prior art keywords
kpa
active material
test
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018177384A
Other languages
Japanese (ja)
Other versions
JP6956698B2 (en
Inventor
大哉 海藤
Hiroya KAIDO
大哉 海藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2018177384A priority Critical patent/JP6956698B2/en
Publication of JP2020047555A publication Critical patent/JP2020047555A/en
Application granted granted Critical
Publication of JP6956698B2 publication Critical patent/JP6956698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a liquid lead storage battery that is used in PSOC and has improved life performance while maintaining battery capacity.SOLUTION: A liquid lead storage battery includes an electrode plate group in which a positive electrode plate and a negative electrode plate are alternately stacked via a separator, a battery case in which the electrode plate group is housed, and an electrolyte injected into the battery case, and the density of a positive electrode active material filled in the positive electrode plate ranges from 4.40 g/cc to 4.60 g/cc, the group pressure applied to the electrode plate group ranges from 10.0 kPa to 20.0 kPa, and the ratio of the amount of a cathode active material to the amount of a negative active material is in the range of 1.30 to 1.45.SELECTED DRAWING: None

Description

本発明は、部分充電状態(以下、PSOCという)で充放電を繰り返す、例えば、アイドリングストップ機能(以下、ISSという)を搭載した自動車(以下、ISS車という)などに用いられる液式鉛蓄電池の改良に関する。   The present invention relates to a liquid lead-acid battery used in a vehicle (hereinafter, referred to as an ISS vehicle) equipped with an idling stop function (hereinafter, referred to as an ISS) that repeats charging and discharging in a partially charged state (hereinafter, referred to as a PSOC). Regarding improvement.

近年、内燃機関を搭載した自動車における二酸化炭素の排出量抑制及び燃費の向上が急務となっており、自動車メーカーは電気自動車やハイブリッド自動車など、環境対応車の開発を進めている。環境対応車の中でも、ISSと制動エネルギー回生による充電機能とを備えたマイクロ型ハイブリッド車は、駆動までもモーターがアシストするストロング型ハイブリッド車やマイルド型ハイブリッド車と比べ、複雑な制御システムを必要とせず、搭載する電池も鉛蓄電池であることなど、既存の内燃機関を搭載した自動車のプラットフォームに、低コストで追加することができるメリットがある。   In recent years, there has been an urgent need to reduce carbon dioxide emissions and improve fuel efficiency in vehicles equipped with an internal combustion engine, and automobile manufacturers are developing environmentally friendly vehicles such as electric vehicles and hybrid vehicles. Among environmentally friendly vehicles, micro hybrid vehicles equipped with an ISS and a recharging function by braking energy regeneration require a more complex control system than strong hybrid vehicles and mild hybrid vehicles whose motors assist in driving. In addition, there is an advantage that it can be added at a low cost to an existing vehicle platform equipped with an internal combustion engine, for example, a battery to be mounted is a lead storage battery.

しかし上記マイクロ型ハイブリッド車のようなISS車に搭載される鉛蓄電池は、従来のSLI(始動・照明・点火)用の鉛蓄電池に比べ、短寿命となることが知られている。これは、停車中のエンジン停止に伴いオルタネータによる発電が止まる一方で、その間もエアコンやカーナビ、カーステレオ等の機器を駆動する電力を、すべて鉛蓄電池から供給するため、鉛蓄電池は充電が不足したPSOCで使用され続け、大きな負荷がかかることによる。加えて、ISS車はエンジン始動回数が従来車に比べ多くなるため、大電流の放電が繰り返され、鉛蓄電池の充電不足が助長される。以上のように前記ISS車に搭載される鉛蓄電池は、十分な充電がされずPSOCとなる。前記PSOCのような高負荷環境下で鉛蓄電池を使用し続けた場合は、優先的に反応が進む極板上部で、正極活物質の軟化、及び脱落が生じ易く、早期寿命の一因となる。ゆえに、ISS車用の鉛蓄電池には高負荷に耐え得る高い耐久性が求められる。   However, it is known that a lead storage battery mounted on an ISS vehicle such as the above-mentioned micro hybrid vehicle has a shorter life than a conventional lead storage battery for SLI (starting, lighting, and ignition). This is because while the engine stopped while the vehicle was stopped, the alternator stopped generating power, and in the meantime, all the power for driving equipment such as air conditioners, car navigation systems, car stereos, etc. was supplied from the lead storage battery, so the lead storage battery was insufficiently charged. Due to continued use in PSOC and heavy load. In addition, since the ISS vehicle has a larger number of engine starts than the conventional vehicle, a large current is repeatedly discharged, which promotes insufficient charging of the lead storage battery. As described above, the lead storage battery mounted on the ISS vehicle is not sufficiently charged and becomes a PSOC. If the lead storage battery is continuously used under a high load environment such as the PSOC, the positive electrode active material is likely to soften and fall off at the upper part of the electrode plate where the reaction proceeds preferentially, which contributes to an early life. . Therefore, lead storage batteries for ISS vehicles are required to have high durability that can withstand high loads.

鉛蓄電池の耐久性を向上する手段として、例えば特許文献1では、正極活物質密度を4.4g/ccから4.9g/ccまでの範囲で高密度化することで、正極活物質の軟化及び脱落を抑制した鉛蓄電池が開示されている。また特許文献2では、極板群の加圧力(以下、群圧という)を20kPa以上に高圧迫化し、長寿命化した鉛蓄電池が開示されている。さらに特許文献3では、セル室当たりの正極活物質の質量をM、負極活物質の質量をMとしたとき、質量比M/Mは、0.70から1.10までの範囲とすることで、ISS車に適用しうる耐久性(寿命特性)を持った鉛蓄電池が開示されている。 As means for improving the durability of a lead storage battery, for example, in Patent Document 1, by increasing the density of the positive electrode active material in the range of 4.4 g / cc to 4.9 g / cc, the softening of the positive electrode active material and A lead storage battery in which falling off is suppressed is disclosed. Patent Literature 2 discloses a lead-acid battery having a long life, in which a pressing force (hereinafter, referred to as a group pressure) of an electrode group is increased to 20 kPa or more. Furthermore, in Patent Document 3, when the mass of the positive electrode active material per cell chamber and M P, the mass of the negative electrode active material and M N, by mass ratio M N / M P in the range from 0.70 to 1.10 Accordingly, a lead storage battery having durability (life characteristics) applicable to an ISS vehicle is disclosed.

上記の通り、鉛蓄電池は、正極活物質密度や群圧が高いほど長寿命化する。   As described above, the life of a lead storage battery is prolonged as the positive electrode active material density or the group pressure increases.

特許第4646572号公報Japanese Patent No. 4646572 特許第4433593号公報Japanese Patent No. 4433593 特開2014−123510号公報JP 2014-123510 A

しかしながら発明者等による研究の結果、PSOCで使用される液式鉛蓄電池は、正極活物質を高密度化すると共に極板群を高圧迫化した際、極板間の電解液の拡散が阻害され成層化が生じ、かえって短寿命化する場合があることが分かった。加えて正極活物質が極板に高密度に充填されるため、活物質粒子間へ電解液が浸透し難くなり、正極利用率が低下し、電池容量が低下することも分かった。   However, as a result of research conducted by the inventors, the liquid lead-acid storage battery used in the PSOC has a problem in that when the positive electrode active material is densified and the electrode group is pressurized, the diffusion of the electrolyte between the electrodes is inhibited. It has been found that stratification occurs and the life may be shortened. In addition, it was also found that since the positive electrode active material was densely packed in the electrode plate, it was difficult for the electrolyte solution to penetrate between the active material particles, the positive electrode utilization rate was reduced, and the battery capacity was reduced.

上記成層化とは、充電時に極板から生じる濃度の高い硫酸が電槽セル内底部に向かって沈降し及び滞留し、電解液の硫酸濃度が電槽セル内の下方では高く、上方では低い状態が続く現象のことである。前記成層化が起こると、極板下部では不動態化した硫酸鉛が蓄積するサルフェーションが進行し、充電効率が低下する。また濃淡電池が形成されて自己放電が急速に進行し、鉛蓄電池は短寿命となる。   The above-mentioned stratification means that a high concentration of sulfuric acid generated from the electrode plate at the time of charging settles and stays toward the bottom of the battery cell, and the sulfuric acid concentration of the electrolytic solution is high in the lower part of the battery cell and low in the upper part. Is a phenomenon that continues. When the stratification occurs, sulfation in which the passivated lead sulfate accumulates proceeds at the lower part of the electrode plate, and the charging efficiency decreases. In addition, a self-discharge proceeds rapidly due to the formation of a density battery, and the lead storage battery has a short life.

そこで本発明は上記事情を鑑み、PSOCで使用される液式鉛蓄電池において、電池容量を維持しつつ、寿命性能が向上された液式鉛蓄電池を提供することを目的とする。   In view of the above circumstances, it is an object of the present invention to provide a liquid lead storage battery used in a PSOC, which has an improved life performance while maintaining the battery capacity.

本発明の請求項1に係る液式鉛蓄電池は、正極板と負極板とがセパレータを介して交互に積層された極板群と、前記極板群が収容された電槽と、前記電槽内に注入された電解液とを具備し、4.40g/ccから4.60g/ccまでの範囲であり、前記極板群に掛かる群圧が10.0kPaから20.0kPaまでの範囲であり、負極活物質量に対する正極活物質量の比率(以下、活物質プラマイ比という)が1.30から1.45までの範囲であることを特徴とする。   The liquid lead storage battery according to claim 1, wherein the electrode group includes a positive electrode plate and a negative electrode plate alternately stacked with a separator interposed therebetween, a battery case in which the electrode plate group is housed, and the battery case. And an electrolyte injected into the electrode plate, wherein the group pressure is in the range of 4.40 g / cc to 4.60 g / cc, and the group pressure applied to the electrode plate group is in the range of 10.0 kPa to 20.0 kPa. The ratio of the amount of the positive electrode active material to the amount of the negative electrode active material (hereinafter, referred to as the active material Plumy ratio) is in the range of 1.30 to 1.45.

上記構成において、鋭意検討の結果、前記正極活物質密度を4.40g/ccから4.60g/ccまで高密度化した正極板を用い、前記極板群に掛かる群圧を10.0kPaから20.0kPaまで適度に低圧迫化し、さらに活物質プラマイ比を1.30から1.45までの範囲とすることで、正極活物質の軟化及び脱落を抑制し、加えて電解液の成層化も抑制することにより、電池容量を維持しつつ、寿命性能が向上した液式鉛蓄電池を提供することができる。   In the above-described configuration, as a result of intensive studies, a positive electrode plate in which the density of the positive electrode active material was increased from 4.40 g / cc to 4.60 g / cc was used, and the group pressure applied to the electrode group was from 10.0 kPa to 20 kPa. By appropriately lowering the pressure to 0.0 kPa and setting the active material prama ratio in the range of 1.30 to 1.45, softening and falling off of the positive electrode active material are suppressed, and in addition, stratification of the electrolytic solution is also suppressed. By doing so, it is possible to provide a liquid-type lead storage battery with improved life performance while maintaining the battery capacity.

以上の通り本発明の液式鉛蓄電池によれば、正極活物質密度、群圧及び活物質プラマイ比をそれぞれ適切な範囲で規定した設計とすることで、電池容量を維持しつつ、寿命性能が向上した液式鉛蓄電池を提供することができる。   As described above, according to the liquid-type lead storage battery of the present invention, the positive electrode active material density, the group pressure and the active material Plumay ratio are designed to be specified in appropriate ranges, respectively. An improved liquid lead storage battery can be provided.

以下に、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described.

本発明の実施形態における鉛蓄電池は、従来公知の方法によって製造した。正極板及び負極板は、主として鉛合金から成る格子基板に鉛粉や水、硫酸、各種添加剤等を混錬したペースト状の活物質を充填した後、熟成及び乾燥を経て作製した。このとき、正極活物質密度は使用するペーストの水分量や純硫酸量、充填時のロール加圧力などを変化させることで調整することができる。また、活物質プラマイ比は前記正極板、又は前記負極板に充填する活物質量を変化させることで調整することができる。次いで、作製した未化成の前記正極板と前記負極板とを、セパレータを介して交互に積層して極板群とし、電槽内へ所定の群圧で組み込んだ。このとき、群圧はセパレータのベース厚みや電槽幅、リブ付きセパレータを用いた場合はリブの高さ、を変化させることで調整することができる。そして、電槽内へ前記極板群を組み込んだ後、電槽に蓋を施し、前記蓋に設けた注液口から電槽内へ電解液を注入して常法に従って電槽化成し、液式鉛蓄電池を得た。   The lead storage battery in the embodiment of the present invention was manufactured by a conventionally known method. The positive electrode plate and the negative electrode plate were prepared by filling a grid substrate mainly composed of a lead alloy with a paste-like active material obtained by kneading lead powder, water, sulfuric acid, various additives, and the like, followed by aging and drying. At this time, the density of the positive electrode active material can be adjusted by changing the amount of water and the amount of pure sulfuric acid of the paste to be used, the pressure of the roll at the time of filling, and the like. Further, the active material Plumy ratio can be adjusted by changing the amount of the active material to be filled in the positive electrode plate or the negative electrode plate. Next, the produced unformed positive electrode plate and the negative electrode plate were alternately laminated with a separator interposed therebetween to form an electrode plate group, which was incorporated into a battery case at a predetermined group pressure. At this time, the group pressure can be adjusted by changing the thickness of the base of the separator, the width of the battery case, and the height of the rib when a separator with ribs is used. Then, after incorporating the electrode plate group into the battery case, the battery case is covered, and an electrolytic solution is injected into the battery case through a liquid inlet provided in the cover to form a battery case according to a conventional method. A lead-acid battery was obtained.

以下に、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be described specifically with reference to Examples.

本発明の実施形態における鉛蓄電池は、トラック用として用いられているD26サイズの液式鉛蓄電池であり、以下の方法によって製造した。   The lead storage battery in the embodiment of the present invention is a D26 size liquid lead storage battery used for trucks, and manufactured by the following method.

(実施例1から33)
正極板及び負極板は、主として鉛合金から成る格子基板に鉛粉や水、硫酸、添加剤等を混錬したペースト状の活物質を充填した後、熟成及び乾燥を経て作製した。このとき、正極活物質密度は4.40g/ccから4.60g/ccまでの範囲となるように、使用するペーストの水分量で調整した。また、活物質プラマイ比は1.30から1.45までの範囲となるように負極活物質量を一定とし、正極活物質量を変化させることで調整した。本実施例では負極活物質量を一定とし活物質プラマイ比を調整する方法を例示したが、正極活物質量が負極活物質量より多くなる該範囲内であれば、負極活物質量は適宜変更して構わない。
(Examples 1 to 33)
The positive electrode plate and the negative electrode plate were prepared by filling a grid substrate mainly composed of a lead alloy with a paste-like active material obtained by kneading lead powder, water, sulfuric acid, additives, and the like, followed by aging and drying. At this time, the water content of the paste used was adjusted so that the positive electrode active material density was in the range from 4.40 g / cc to 4.60 g / cc. In addition, the amount of the negative electrode active material was kept constant so that the active material Plumy ratio was in the range of 1.30 to 1.45, and the amount was adjusted by changing the amount of the positive electrode active material. In the present embodiment, the method of adjusting the active material Pluma ratio while keeping the amount of the negative electrode active material constant has been exemplified. You can do it.

次いで、作製した未化成の前記正極板と前記負極板とを、リブ付きセパレータを介して交互に積層して極板群とし、電槽内へ所定の群圧で組み込み、電解液を注入して常法に従って電槽化成し、種々の実施例の液式鉛蓄電池を得た。このとき、前記極板群に掛かる群圧は10kPaから20kPaまでの範囲となるように、前記リブ付きセパレータのリブの高さを変化させることで調整した。また、引張圧縮試験機(ミネベア製)を使用し、前記極板群に掛かる群圧を測定した。   Next, the produced unformed positive electrode plate and the negative electrode plate were alternately laminated via a ribbed separator to form an electrode group, incorporated at a predetermined group pressure into a battery case, and injected with an electrolytic solution. A battery case was formed according to a conventional method, and liquid lead-acid batteries of various examples were obtained. At this time, the group pressure applied to the electrode plate group was adjusted by changing the height of the ribs of the ribbed separator so that the group pressure was in the range of 10 kPa to 20 kPa. In addition, a group pressure applied to the electrode plate group was measured using a tensile compression tester (Minebea).

尚、上記種々の実施例の液式鉛蓄電池において、使用する格子基板、未化成前の極板の多孔度及びリブ付きセパレータの材質は同一である。   In the liquid lead-acid batteries of the above-described various embodiments, the lattice substrate used, the porosity of the electrode plate before unformation, and the material of the ribbed separator are the same.

(比較例1から114)
正極活物質密度を4.30g/ccまたは4.70g/cc、活物質プラマイ比を1.25または1.50及び群圧を0kPaまたは30kPaとしたこと以外は、上記実施例と同じ方法により種々の比較例の液式鉛蓄電池を得た。
(Comparative Examples 1 to 114)
Various methods were performed in the same manner as in the above example except that the positive electrode active material density was 4.30 g / cc or 4.70 g / cc, the active material pramamy ratio was 1.25 or 1.50, and the group pressure was 0 kPa or 30 kPa. The liquid lead-acid storage battery of Comparative Example was obtained.

(従来例)
正極活物質密度を4.40g/cc、活物質プラマイ比を1.30及び群圧を5.0kPaとしたこと以外は、上記実施例及び上記比較例と同じ方法により従来例の液式鉛蓄電池を得た。
(Conventional example)
A liquid lead storage battery of a conventional example according to the same method as in the above Examples and Comparative Examples except that the positive electrode active material density was 4.40 g / cc, the active material Plumy ratio was 1.30, and the group pressure was 5.0 kPa. I got

従来例、実施例及び比較例について、以下の手順に従って5時間率容量試験、重負荷寿命試験及びPSOCにおける寿命試験で、電池を所定の電流値で放電深度17.5%まで放電する寿命試験(以下、DOD17.5%試験という)を実施し、従来例の液式鉛蓄電池の夫々の試験結果を基準(100%)とし、以下、実施例及び比較例を比較し、評価した。   For a conventional example, an example, and a comparative example, in a 5-hour rate capacity test, a heavy load life test, and a life test in a PSOC according to the following procedures, a life test for discharging a battery to a discharge depth of 17.5% at a predetermined current value ( Hereinafter, a DOD 17.5% test) was performed, and each test result of the conventional liquid lead-acid battery was set as a reference (100%). Hereinafter, an example and a comparative example were compared and evaluated.

以下に、従来例、実施例及び比較例の液式鉛蓄電池について、夫々実施した試験条件を記す。   Hereinafter, test conditions performed on the liquid lead storage batteries of the conventional example, the example, and the comparative example will be described.

5時間率容量試験は、25℃の水槽内に作製した液式鉛蓄電池を設置し、JIS D 5301規格に規定される5時間率電流にて、終止電圧が10.5Vに到達するまで定電流放電した。   In the 5-hour rate capacity test, a liquid lead storage battery prepared in a water tank at 25 ° C. was installed, and a constant current was applied at a 5-hour rate current specified in JIS D 5301 standard until the final voltage reached 10.5 V. Discharged.

重負荷寿命試験は、JIS D 5301規格に則り、40℃の水槽内に作製した液式鉛蓄電池を設置し、定電流放電を20Aで1時間実施し、次いで定電流充電を5Aで5時間実施するサイクルを1サイクルとし、25サイクル毎に20Aで10.2Vまで定電流放電し、その後5Aで定電流充電を充電容量125%までし、25サイクル毎の放電容量が該鉛蓄電池の5時間率容量に対して50%以下になるまでサイクルを繰り返した。   The heavy load life test was conducted in accordance with JIS D 5301 standard with a liquid lead-acid battery prepared in a 40 ° C water tank, constant current discharging at 20A for 1 hour, and constant current charging at 5A for 5 hours. A constant current discharge is performed at 20 A to 10.2 V every 25 cycles, and a constant current charge is performed at 5 A to a charge capacity of 125% every 25 cycles. The cycle was repeated until 50% or less of the capacity.

DOD17.5%試験は、PSOCにおける寿命試験であり、25℃の恒温水槽に作製した液式鉛蓄電池を設置して1時間後に、14.4Aで2.5時間定電流放電し、残容量(SOC)を調整した後、14.4Vの定電圧充電を突入電流25.2Aで0.67時間、定電流放電を25.2Aで0.5時間実施するサイクルを1サイクルとし、85サイクル毎に、16.0Vの定電圧充電を突入電流7.2Aで18時間、その後3.6Aで10.5Vまで定電流放電し、再び16.0Vの定電圧充電を突入電流7.2Aで23時間実施し、各放電時の放電末期電圧が10.0Vを下回るまで充放電サイクルを繰り返した。尚、前記DOD17.5%試験の条件は、実施形態として製造したD26サイズの液式鉛蓄電池における定格20時間率容量を72Ahとしたときの条件である。   The DOD 17.5% test is a life test in the PSOC. One hour after the liquid lead storage battery prepared in a constant temperature water bath at 25 ° C. is installed, a constant current discharge is performed at 14.4 A for 2.5 hours, and the remaining capacity ( After adjusting the SOC), a cycle of performing constant voltage charging of 14.4 V at an inrush current of 25.2 A for 0.67 hours and performing constant current discharging at 25.2 A for 0.5 hours is defined as one cycle. , 16.0V constant voltage charging with an inrush current of 7.2A for 18 hours, followed by constant current discharging at 3.6A to 10.5V, and again performing 16.0V constant voltage charging with an inrush current of 7.2A for 23 hours The charge / discharge cycle was repeated until the terminal voltage at the time of each discharge was lower than 10.0 V. The DOD 17.5% test condition is a condition when the rated 20-hour rate capacity of the D26 size liquid lead storage battery manufactured as the embodiment is 72 Ah.

以下の通り、実施例及び比較例の液式鉛蓄電池について、夫々実施した試験結果を従来例と比較及び評価した。   As described below, with respect to the liquid lead storage batteries of the example and the comparative example, the test results respectively performed were compared with the conventional example and evaluated.

(実施例1から3)
正極活物質密度を4.40g/ccと高密度化し、活物質プラマイ比を1.30、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験の結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例4から6)
正極活物質密度を4.40g/ccと高密度化し、活物質プラマイ比を1.35、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例7から9)
正極活物質密度を4.40g/ccと高密度化し、活物質プラマイ比を1.40、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例10から12)
正極活物質密度を4.40g/ccと高密度化し、活物質プラマイ比を1.45、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例13から15)
正極活物質密度を4.50g/ccと高密度化し、活物質プラマイ比を1.30、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例16から18)
正極活物質密度を4.50g/ccと高密度化し、活物質プラマイ比を1.35、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例19から21)
正極活物質密度を4.50g/ccと高密度化し、活物質プラマイ比を1.40、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例22から24)
正極活物質密度を4.50g/ccと高密度化し、活物質プラマイ比を1.45、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例25から27)
正極活物質密度を4.60g/ccと高密度化し、プラマイを比1.30、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例28から30)
正極活物質密度を4.60g/ccと高密度化し、活物質プラマイ比を1.35、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例31から33)
正極活物質密度を4.60g/ccと高密度化し、活物質プラマイ比を1.40、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(実施例34から36)
正極活物質密度を4.60g/ccと高密度化し、活物質プラマイ比を1.45、群圧を10.0kPa、15.0kPa及び20.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量を維持しつつ、寿命性能が向上している。
(Examples 1 to 3)
This is a liquid lead-acid battery in which the density of the positive electrode active material is increased to 4.40 g / cc, the active material Plumy ratio is 1.30, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, the life performance is improved while maintaining the battery capacity.
(Examples 4 to 6)
This is a liquid lead-acid battery in which the density of the positive electrode active material is increased to 4.40 g / cc, the active material Plumy ratio is 1.35, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 7 to 9)
This is a liquid lead-acid battery in which the density of the positive electrode active material is increased to 4.40 g / cc, the active material Plumy ratio is 1.40, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 10 to 12)
This is a liquid lead-acid battery in which the density of the positive electrode active material is increased to 4.40 g / cc, the active material Plumy ratio is 1.45, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 13 to 15)
This is a liquid-type lead-acid battery in which the density of the positive electrode active material is increased to 4.50 g / cc, the active material Plumy ratio is 1.30, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 16 to 18)
This is a liquid lead storage battery in which the density of the positive electrode active material is increased to 4.50 g / cc, the active material Plumy ratio is 1.35, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 19 to 21)
This is a liquid lead-acid battery in which the density of the positive electrode active material is increased to 4.50 g / cc, the active material Plumy ratio is 1.40, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 22 to 24)
This is a liquid-type lead-acid battery in which the density of the positive electrode active material is increased to 4.50 g / cc, the active material Plumy ratio is 1.45, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 25 to 27)
This is a liquid lead storage battery in which the density of the positive electrode active material is increased to 4.60 g / cc, the ratio of plamai is 1.30, and the group pressure is 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 28 to 30)
This is a liquid lead-acid battery in which the density of the positive electrode active material is increased to 4.60 g / cc, the active material Plumy ratio is 1.35, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 31 to 33)
This is a liquid lead-acid battery in which the density of the positive electrode active material is increased to 4.60 g / cc, the active material Plumy ratio is 1.40, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.
(Examples 34 to 36)
This is a liquid lead-acid battery in which the density of the positive electrode active material is increased to 4.60 g / cc, the active material Plumy ratio is 1.45, and the group pressures are 10.0 kPa, 15.0 kPa, and 20.0 kPa. Compared with the conventional example, in the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test result, the life performance is improved while maintaining the battery capacity.

(比較例1から5)
正極活物質密度を4.30g/cc、活物質プラマイ比を1.25、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例6から10)
正極活物質密度を4.30g/cc、活物質プラマイ比を1.30、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例11から15)
正極活物質密度を4.30g/cc、活物質プラマイ比を1.35、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例16から20)
正極活物質密度を4.30g/cc、活物質プラマイ比を1.40、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例21から25)
正極活物質密度を4.30g/cc、活物質プラマイ比を1.45、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例26から30)
正極活物質密度を4.30g/cc、活物質プラマイ比を1.50、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例31から35)
正極活物質密度を4.40g/cc、活物質プラマイ比を1.25、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例36から37)
正極活物質密度を4.40g/cc、活物質プラマイ比を1.30、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例38から39)
正極活物質密度を4.40g/cc、活物質プラマイ比を1.35、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例40から41)
正極活物質密度を4.40g/cc、活物質プラマイ比を1.40、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例42から43)
正極活物質密度を4.40g/cc、活物質プラマイ比を1.45、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例44から48)
正極活物質密度を4.40g/cc、活物質プラマイ比を1.50、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例49から53)
正極活物質密度を4.50g/cc、活物質プラマイ比を1.25、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例54から55)
正極活物質密度を4.50g/cc、活物質プラマイ比を1.30、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例56から57)
正極活物質密度を4.50g/cc、活物質プラマイ比を1.35、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例58から59)
正極活物質密度を4.50g/cc、活物質プラマイ比を1.40、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例60から61)
正極活物質密度を4.50g/cc、活物質プラマイ比を1.45、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例62から66)
正極活物質密度を4.50g/cc、活物質プラマイ比を1.50、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例67から71)
正極活物質密度を4.60g/cc、活物質プラマイ比を1.25、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例72から73)
正極活物質密度を4.60g/cc、活物質プラマイ比を1.30、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例74から75)
正極活物質密度を4.60g/cc、活物質プラマイ比を1.35、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例76から77)
正極活物質密度を4.60g/cc、活物質プラマイ比を1.40、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例78から79)
正極活物質密度を4.60g/cc、活物質プラマイ比を1.45、群圧を0.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例80から84)
正極活物質密度を4.60g/cc、活物質プラマイ比を1.50、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例85から89)
正極活物質密度を4.70g/cc、活物質プラマイ比を1.25、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例90から94)
正極活物質密度を4.70g/cc、活物質プラマイ比を1.30、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例95から99)
正極活物質密度を4.70g/cc、活物質プラマイ比を1.35、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例100から104)
正極活物質密度を4.70g/cc、活物質プラマイ比を1.40、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例105から109)
正極活物質密度を4.70g/cc、活物質プラマイ比を1.45、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(比較例110から114)
正極活物質密度を4.70g/cc、活物質プラマイ比を1.50、群圧を0.0kPa、10.0kPa、15.0kPa、20.0kPa及び30.0kPaとした液式鉛蓄電池である。従来例と比較して5時間率容量試験、重負荷寿命試験及びDOD17.5%試験結果において、電池容量の維持と寿命性能の向上とが両立できていない。
(Comparative Examples 1 to 5)
A liquid lead-acid battery having a positive electrode active material density of 4.30 g / cc, an active material Plumy ratio of 1.25, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 6 to 10)
A liquid lead-acid battery having a positive electrode active material density of 4.30 g / cc, an active material Plumy ratio of 1.30, and group pressures of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 11 to 15)
This is a liquid lead storage battery having a positive electrode active material density of 4.30 g / cc, an active material Plumy ratio of 1.35, and group pressures of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 16 to 20)
This is a liquid lead storage battery having a positive electrode active material density of 4.30 g / cc, an active material Plumy ratio of 1.40, and group pressures of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 21 to 25)
This is a liquid lead storage battery having a positive electrode active material density of 4.30 g / cc, an active material Plumy ratio of 1.45, and group pressures of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 26 to 30)
A liquid lead-acid battery having a positive electrode active material density of 4.30 g / cc, an active material Plumy ratio of 1.50, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 31 to 35)
A liquid lead-acid battery having a positive electrode active material density of 4.40 g / cc, an active material Plumy ratio of 1.25, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 36 to 37)
This is a liquid lead storage battery having a positive electrode active material density of 4.40 g / cc, an active material Plumy ratio of 1.30, and group pressures of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 38 to 39)
This is a liquid lead storage battery having a positive electrode active material density of 4.40 g / cc, an active material Plumy ratio of 1.35, and a group pressure of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 40 to 41)
This is a liquid lead storage battery having a positive electrode active material density of 4.40 g / cc, an active material Plumy ratio of 1.40, and group pressures of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 42 to 43)
This is a liquid lead storage battery in which the positive electrode active material density is 4.40 g / cc, the active material Plumy ratio is 1.45, and the group pressures are 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 44 to 48)
This is a liquid lead-acid battery having a positive electrode active material density of 4.40 g / cc, an active material Plumy ratio of 1.50, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 49 to 53)
This is a liquid lead-acid battery having a positive electrode active material density of 4.50 g / cc, an active material Plumy ratio of 1.25, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 54 to 55)
This is a liquid lead storage battery having a positive electrode active material density of 4.50 g / cc, an active material Plumy ratio of 1.30, and group pressures of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 56 to 57)
This is a liquid lead storage battery having a positive electrode active material density of 4.50 g / cc, an active material Plumy ratio of 1.35, and a group pressure of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 58 to 59)
This is a liquid lead storage battery having a positive electrode active material density of 4.50 g / cc, an active material Plumy ratio of 1.40, and a group pressure of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 60 to 61)
This is a liquid lead storage battery having a positive electrode active material density of 4.50 g / cc, an active material Plumy ratio of 1.45, and group pressures of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 62 to 66)
This is a liquid lead-acid battery having a positive electrode active material density of 4.50 g / cc, an active material Plumy ratio of 1.50, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 67 to 71)
A liquid lead-acid battery having a positive electrode active material density of 4.60 g / cc, an active material Plumy ratio of 1.25, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 72 to 73)
This is a liquid lead storage battery having a positive electrode active material density of 4.60 g / cc, an active material Plumy ratio of 1.30, and group pressures of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 74 to 75)
This is a liquid lead storage battery having a positive electrode active material density of 4.60 g / cc, an active material Plumy ratio of 1.35, and a group pressure of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 76 to 77)
This is a liquid lead storage battery in which the positive electrode active material density is 4.60 g / cc, the active material Plumy ratio is 1.40, and the group pressures are 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 78 to 79)
This is a liquid lead storage battery having a positive electrode active material density of 4.60 g / cc, an active material Plumy ratio of 1.45, and group pressures of 0.0 kPa and 30.0 kPa. As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 80 to 84)
A liquid lead-acid battery having a positive electrode active material density of 4.60 g / cc, an active material Plumy ratio of 1.50, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 85 to 89)
This is a liquid lead storage battery having a positive electrode active material density of 4.70 g / cc, an active material Plumy ratio of 1.25, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 90 to 94)
This is a liquid lead storage battery having a positive electrode active material density of 4.70 g / cc, an active material Plumy ratio of 1.30, and group pressures of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 95 to 99)
This is a liquid lead storage battery having a positive electrode active material density of 4.70 g / cc, an active material Plumy ratio of 1.35, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 100 to 104)
This is a liquid lead storage battery having a positive electrode active material density of 4.70 g / cc, an active material Plumy ratio of 1.40, and a group pressure of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 105 to 109)
This is a liquid lead storage battery having a positive electrode active material density of 4.70 g / cc, an active material Plumy ratio of 1.45, and group pressures of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.
(Comparative Examples 110 to 114)
A liquid lead-acid battery having a positive electrode active material density of 4.70 g / cc, an active material Plumy ratio of 1.50, and group pressures of 0.0 kPa, 10.0 kPa, 15.0 kPa, 20.0 kPa, and 30.0 kPa. . As compared with the conventional example, in the results of the 5-hour rate capacity test, the heavy load life test, and the DOD 17.5% test, maintenance of the battery capacity and improvement of the life performance were not compatible.

以下の表1から表3に従来例、実施例及び比較例の結果についてまとめる。   Tables 1 to 3 below summarize the results of the conventional examples, examples, and comparative examples.



表1、表2及び表3から明らかなように、正極活物質密度を4.40g/ccから4.60g/ccまでの範囲、極板群に掛かる群圧を10.0kPaから20.0kPaまでの範囲及び活物質プラマイ比を1.30から1.45までの範囲とした夫々の実施例の液式鉛蓄電池は、電池容量を維持しつつ、寿命性能が向上した。これは、前記正極活物質密度を4.40g/ccから4.60g/ccまでの範囲とする高密度化した正極板を用い、前記極板群に掛かる群圧を10.0kPaから20.0kPaまでの範囲とする低圧迫化し、さらに活物質プラマイ比を1.30から1.45までの範囲とすることで、正極活物質の軟化及び脱落が抑制され、加えて電解液の成層化も抑制されたことにより、電池容量を維持しつつ、寿命性能を向上できたと考えられる。   As is clear from Tables 1, 2 and 3, the positive electrode active material density ranges from 4.40 g / cc to 4.60 g / cc, and the group pressure applied to the electrode plate group ranges from 10.0 kPa to 20.0 kPa. The liquid lead-acid batteries of Examples in which the range of (1) and the active material plumy ratio were in the range of 1.30 to 1.45 improved the life performance while maintaining the battery capacity. In this method, a positive electrode plate having a density of the positive electrode active material in the range of 4.40 g / cc to 4.60 g / cc is used, and a group pressure applied to the electrode plate group is set to 10.0 kPa to 20.0 kPa. By lowering the pressure in the range above, and by setting the active material Plumy ratio in the range from 1.30 to 1.45, softening and falling off of the positive electrode active material are suppressed, and in addition, stratification of the electrolytic solution is also suppressed. It is considered that this has improved the life performance while maintaining the battery capacity.

一方従来例及び夫々の比較例の液式鉛蓄電池は、上記数値範囲を外れるため、電池容量の維持と寿命性能の向上とが両立できていない。この要因として第一に、前記正極活物質密度が4.40g/cc未満では前記活物質の軟化及び脱落が生じ易く、4.60g/ccを超えると活物質粒子間へ電解液が浸透し難く、正極利用率が低下するため、電池容量の維持と寿命性能の向上とが両立できなかったと推定される。第二に、前記極板群に掛かる群圧が10kPa未満では、前記極板群に掛かる圧力が弱すぎて前記活物質の軟化及び脱落が生じ易く、20kPaを超えると圧力が強すぎて極板間の電解液の拡散が阻害され、成層化による充電効率の低下から、電池容量の維持と寿命性能の向上とが両立できなかったと推定される。第三に、活物質プラマイ比が1.30未満では前記活物質の軟化及び脱落が生じ易く、1.45を超えると活物質粒子間へ電解液が浸透し難く、正極利用率が低下するため、電池容量の維持と寿命性能の向上とが両立できなかったと推定される。   On the other hand, the liquid lead-acid batteries of the conventional example and the respective comparative examples are out of the above-mentioned numerical ranges, so that it is not possible to maintain both the battery capacity and the life performance. Firstly, if the positive electrode active material density is less than 4.40 g / cc, the active material is likely to soften and fall off, and if it exceeds 4.60 g / cc, the electrolyte does not easily permeate between the active material particles. It is presumed that maintenance of the battery capacity and improvement of the life performance could not be achieved at the same time because the utilization rate of the positive electrode decreased. Secondly, if the group pressure applied to the electrode group is less than 10 kPa, the pressure applied to the electrode group is too weak, so that the active material is likely to soften and fall off. It is estimated that the maintenance of the battery capacity and the improvement of the life performance could not be achieved at the same time because the diffusion of the electrolytic solution during the diffusion was hindered and the charging efficiency decreased due to stratification. Third, if the active material plumy ratio is less than 1.30, the active material is likely to soften and fall off, and if it exceeds 1.45, the electrolyte does not easily penetrate between the active material particles, and the utilization rate of the positive electrode decreases. It is estimated that the maintenance of the battery capacity and the improvement of the life performance were not compatible.

鋭意検討の結果、前記正極活物質密度を4.40g/ccから4.60g/ccまでの範囲とする高密度化した正極板を用い、前記極板群に掛かる群圧を10.0kPaから20.0kPaまでの範囲とする低圧迫化し、さらに活物質プラマイ比を1.30から1.45までの範囲とすることで、電池容量を維持しつつ、寿命性能が向上した液式鉛蓄電池を提供することができた。   As a result of intensive studies, a group of positive electrode plates having a density of 4.40 g / cc to 4.60 g / cc was used, and the group pressure applied to the electrode plate group was increased from 10.0 kPa to 20 kPa. A liquid lead-acid battery with improved life performance while maintaining the battery capacity by reducing the pressure to a range of up to 0.0 kPa and maintaining the active material Plumy ratio in the range of 1.30 to 1.45. We were able to.

以上の通り本発明の液式鉛蓄電池によれば、正極活物質密度、群圧及び活物質プラマイ比を適切な範囲とすることで、電池容量を維持しつつ、寿命性能が向上した液式鉛蓄電池を提供することができる。   As described above, according to the liquid lead storage battery of the present invention, by setting the positive electrode active material density, the group pressure and the active material Plumay ratio in appropriate ranges, the liquid lead with improved life performance while maintaining battery capacity. A storage battery can be provided.

Claims (1)

部分充電状態で使用される液式鉛蓄電池において、正極板と負極板とがセパレータを介して交互に積層された極板群と、前記極板群が収容された電槽と、前記電槽内に注入された電解液とを具備し、前記正極板に充填された正極活物質の密度が4.40g/ccから4.60g/ccまでの範囲であり、前記極板群に掛かる群圧が10.0kPaから20.0kPaまでの範囲であり、負極活物質量に対する正極活物質量の比率が1.30から1.45までの範囲であることを特徴とする液式鉛蓄電池。   In a liquid lead storage battery used in a partially charged state, an electrode plate group in which positive and negative electrode plates are alternately stacked with a separator interposed therebetween, a battery case in which the electrode plate group is housed, and Wherein the density of the positive electrode active material filled in the positive electrode plate ranges from 4.40 g / cc to 4.60 g / cc, and the group pressure applied to the electrode plate group is A liquid lead storage battery characterized by being in a range from 10.0 kPa to 20.0 kPa, and a ratio of the amount of the positive electrode active material to the amount of the negative electrode active material is in the range of 1.30 to 1.45.
JP2018177384A 2018-09-21 2018-09-21 Liquid lead-acid battery Active JP6956698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018177384A JP6956698B2 (en) 2018-09-21 2018-09-21 Liquid lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018177384A JP6956698B2 (en) 2018-09-21 2018-09-21 Liquid lead-acid battery

Publications (2)

Publication Number Publication Date
JP2020047555A true JP2020047555A (en) 2020-03-26
JP6956698B2 JP6956698B2 (en) 2021-11-02

Family

ID=69899849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018177384A Active JP6956698B2 (en) 2018-09-21 2018-09-21 Liquid lead-acid battery

Country Status (1)

Country Link
JP (1) JP6956698B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197145A (en) * 2004-01-09 2005-07-21 Furukawa Battery Co Ltd:The Separator with rib for lead acid storage battery, and lead acid storage battery using that separator
JP2006086039A (en) * 2004-09-16 2006-03-30 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006100082A (en) * 2004-09-29 2006-04-13 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006318659A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2007157612A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008130516A (en) * 2006-11-24 2008-06-05 Furukawa Battery Co Ltd:The Liquid lead-acid storage battery
JP2008186654A (en) * 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd Lead-acid battery
WO2014097522A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead-acid battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197145A (en) * 2004-01-09 2005-07-21 Furukawa Battery Co Ltd:The Separator with rib for lead acid storage battery, and lead acid storage battery using that separator
JP2006086039A (en) * 2004-09-16 2006-03-30 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006100082A (en) * 2004-09-29 2006-04-13 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006318659A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2007157612A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008130516A (en) * 2006-11-24 2008-06-05 Furukawa Battery Co Ltd:The Liquid lead-acid storage battery
JP2008186654A (en) * 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd Lead-acid battery
WO2014097522A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead-acid battery

Also Published As

Publication number Publication date
JP6956698B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6597842B2 (en) Lead acid battery
JP4953600B2 (en) Lead acid battery
JP5598532B2 (en) Lead acid battery
JP5223039B1 (en) Lead acid battery
JP6727965B2 (en) Lead acid battery
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
JP2003151617A (en) Lead-acid battery
JP2013065443A (en) Lead storage battery
JP2008243493A (en) Lead acid storage battery
JP2005302395A (en) Lead storage battery
JP2006185678A (en) Lead-acid storage battery
JP6546062B2 (en) Lead storage battery
JP5573785B2 (en) Lead acid battery
JP6956698B2 (en) Liquid lead-acid battery
JP4857894B2 (en) Lead acid battery
JP4470381B2 (en) Lead acid battery
JP2007305370A (en) Lead storage cell
JP2006156060A (en) Lead battery
JP2015022923A (en) Method for charging lead-acid storage battery
JP2010020905A (en) Lead-acid battery
JP4984786B2 (en) Lead acid battery
JP4232385B2 (en) Control valve type lead acid battery
JP6766811B2 (en) Lead-acid battery
JP5754607B2 (en) Lead acid battery
JP2005268061A (en) Lead storage cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150