JP2010020905A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2010020905A
JP2010020905A JP2008177516A JP2008177516A JP2010020905A JP 2010020905 A JP2010020905 A JP 2010020905A JP 2008177516 A JP2008177516 A JP 2008177516A JP 2008177516 A JP2008177516 A JP 2008177516A JP 2010020905 A JP2010020905 A JP 2010020905A
Authority
JP
Japan
Prior art keywords
electrode plate
thickness
lead
negative electrode
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177516A
Other languages
Japanese (ja)
Inventor
Keiichi Wada
圭一 和田
Yoshiharu Horigome
義晴 堀込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008177516A priority Critical patent/JP2010020905A/en
Publication of JP2010020905A publication Critical patent/JP2010020905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of rapid degradation of lifetime of a lead-acid battery by lowering of charge efficiency and arising sulfation coming from a stratification phenomenon in which a specific gravity of electrolyte liquid becomes higher at the lower part of the electrode plate due to usage in insufficient charge condition, by being used under a deep discharge and chronic insufficient charging condition resulting to lower charge efficiency. <P>SOLUTION: A negative electrode plate and a positive electrode plate are set so that a grid area of current collectors is at least 40% for a middle 1/3 part and 20 to 80% for a lower 1/3 part to that of an upper 1/3 part in height direction of the current collector lattice. And thickness of a negative electrode plate and a positive electrode plate becomes thinner from an upper part to a lower part. When an upper part thickness of the electrode plate is T, a height of the electrode plate is H, a lower part thickness of the electrode plate is t, and a thickness of the electrode plate at height Y is X, Y=(H/(T-t))X-HT/(T-t), where H/(T-t) is set as 97 to 290, and HT/(T-t) is set as 155 to 464. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アイドリングストップ用途の自動車用鉛蓄電池に関するものである。   The present invention relates to an automotive lead acid battery for idling stop applications.

自動車用鉛蓄電池は、SLIバッテリーと呼ばれるように、主に、スターター(起動)、照明、イグニッションに使用され、その他、高級車では100個以上搭載されているモーターの電源にも使用されているが、前記スターター以外はエンジンが発電機を駆動して電力を供給するため、鉛蓄電池はさほど深くは放電されず、むしろ、走行中は、発電機により充電されるため満充電状態に置かれることが多かった。
しかし、近年、自動車の燃費改善や排出ガスの削減を目的に、信号待ちなどで停車中はエンジンを停止するアイドリングストップが求められるようになり、エンジン停止中は、電力は、発電機からではなく、鉛蓄電池から供給されるため、鉛蓄電池は従来よりも深く放電されるようになった(特許文献1)。
また、過充電の手前で充電を終了して発電機の負荷を軽減する過充電防止システムが導入されたため、充電効率が低い場合は充電不足状態で使用されることが多くなった。このように鉛蓄電池は、深い放電と慢性的な充電不足状態で使用されるようになり、特に充電不足状態で長期使用したとき、濃厚な硫酸が沈降して電解液の比重が電極板の下部ほど高くなる成層化現象が発生し、その結果、負極に電池反応に寄与しない硫酸鉛の粗大結晶粒が生成(サルフェーション)して充電効率が低下した。この充電効率の低下とサルフェーションの生成という悪循環が繰り返されることで電池寿命は急速に低下した。
この改善策として負極にカーボンを多量に添加して硫酸鉛の間隙に導電パスを形成する方法が提案されたが、本発明者がこの方法をトレース実験した結果では十分な寿命延長は認められなかった。
前記アイドリングストップに対して、自動車側からは、より小電力でエンジンを再始動できる改造がなされた。しかし、この改造でサルフェーションが進行した状態でもエンジンが始動するようになったため、サルフェーションで劣化した負極活物質部分よりも分極の小さい負極耳部や負極格子板の上部が活物質化してやせ細り、破断して鉛蓄電池が突然寿命に至るという最悪の寿命モードを招いた。
また、アイドリングストップによるエンジン始動の回数増加及び充電制御による充電状態の低下に伴い、極板の放電分布が不均一になり、より分極の小さい負極耳部のやせ細りが加速することとなった。このようなことから放電分布の均一化は負極耳部のやせ細り対策として重要な課題となる。
なお、前記耳部などのやせ細りは電解液が少量の制御弁式鉛蓄電池(特許文献1)でも、電解液を多量に含む液式鉛蓄電池でも発生する。
これまでに、充電時に正極側から発生する酸素により耳部が腐食するのを、耳部にマット体などを配し、そこに電解液を保持させて防止する方法が提案されている(特許文献2、3)が、この方法によっても前記耳部のやせ細りは防止できなかった。
Lead-acid batteries for automobiles, as called SLI batteries, are mainly used for starters (start-ups), lighting, and ignition, and in addition, they are used for the power supply of more than 100 motors installed in luxury cars. Other than the starter, since the engine drives the generator to supply power, the lead-acid battery is not discharged so deeply. Instead, it is charged by the generator during driving and may be left in a fully charged state. There were many.
However, in recent years, for the purpose of improving the fuel efficiency of automobiles and reducing exhaust emissions, an idling stop has been required to stop the engine while it is stopped due to a signal, etc. When the engine is stopped, power is not supplied from the generator. Since it is supplied from a lead storage battery, the lead storage battery has come to be discharged deeper than before (Patent Document 1).
In addition, since an overcharge prevention system that reduces the load on the generator by terminating charging before overcharging is introduced, it is often used in an insufficiently charged state when the charging efficiency is low. In this way, lead-acid batteries are used in deep discharge and chronic undercharged conditions, especially when used for long periods in undercharged conditions, when concentrated sulfuric acid settles and the specific gravity of the electrolyte is below the electrode plate. As a result, a stratification phenomenon that became so high occurred that, as a result, coarse crystals of lead sulfate that did not contribute to the battery reaction were formed (sulfation) on the negative electrode, resulting in a decrease in charging efficiency. The battery life decreased rapidly due to the repeated vicious circle of the reduction in charging efficiency and the generation of sulfation.
As a measure for improving this, a method was proposed in which a large amount of carbon was added to the negative electrode to form a conductive path in the lead sulfate gap. It was.
In response to the idling stop, the automobile side has been modified to restart the engine with less power. However, because the engine started even in the state where sulfation progressed due to this modification, the negative electrode ear part and the upper part of the negative electrode grid plate whose polarization was smaller than the negative electrode active material part deteriorated by sulfation became active material, thinned, and fractured This led to the worst life mode in which lead-acid batteries suddenly reached the end of their lives.
In addition, with the increase in the number of engine starts due to idling stop and the decrease in the state of charge due to the charge control, the discharge distribution of the electrode plate becomes non-uniform, and the thinning of the negative electrode ear portion with smaller polarization is accelerated. For this reason, uniform discharge distribution is an important issue as a measure against thinning of the negative electrode ear.
The thinning of the ears or the like occurs even in a control valve type lead acid battery (Patent Document 1) with a small amount of electrolyte or a liquid type lead acid battery containing a large amount of electrolyte.
So far, a method has been proposed in which the ear is corroded by oxygen generated from the positive electrode side during charging by arranging a mat body or the like on the ear and holding the electrolyte there (Patent Document). 2 and 3), however, the thinning of the ears could not be prevented by this method.

特開2003−338312号公報Japanese Patent Laid-Open No. 2003-338312 特開平4−249064号公報Japanese Patent Laid-Open No. 4-249064 特開平8−162149号公報JP-A-8-162149

このようなことから、本発明者等は前記負極耳部のやせ細りの状況を調査した。その結果、次のことを知見した。即ち、電池の寿命が残り20%程度になると、負極活物質中の硫酸鉛量が50%前後に増加し、負極耳部が細り始める。その後、硫酸鉛が急速に増加し、硫酸鉛量が80〜90%に達すると耳部の厚みは元の10%程度になって破断し易い状態になる。また、その頃になると負極劣化も寿命寸前にまで進行する。
ところで、電池の寿命モードは、負極が徐々に劣化して寿命に至るのが望ましく、前記耳部破断による突然寿命に至ることは自動車用鉛蓄電池としては回避すべきであり、そのためには、耳部破断を、負極劣化による寿命より遅らせる必要がある。
本発明は、負極劣化を遅延させるとともに、耳部破断をそれよりさらに遅延させた、突然寿命にならない長寿命の鉛蓄電池の提供を目的とする。
For these reasons, the present inventors investigated the thinness of the negative electrode ear. As a result, the following was found. That is, when the remaining battery life is about 20%, the amount of lead sulfate in the negative electrode active material increases to around 50%, and the negative electrode ear begins to thin. Thereafter, lead sulfate increases rapidly, and when the amount of lead sulfate reaches 80 to 90%, the thickness of the ear portion becomes about 10% of the original thickness, and is easily broken. At that time, the deterioration of the negative electrode also progresses to the end of its lifetime.
By the way, it is desirable for the battery life mode that the negative electrode gradually deteriorates to reach the life, and sudden life due to the breaking of the ear should be avoided as a lead acid battery for automobiles. It is necessary to delay the partial breakage from the life due to the deterioration of the negative electrode.
An object of the present invention is to provide a long-life lead-acid battery in which the deterioration of the negative electrode is delayed and the ear part breakage is further delayed and the life is not suddenly shortened.

請求項1記載の発明は、エキスパンド製法によって形成される負極板及び正極板用の集電体のマス目の面積が、集電体格子高さ方向の上部1/3に対し、中央部1/3は40%以上、下部1/3は20〜80%であることを特徴とする鉛蓄電池である。
請求項2記載の発明は極板の厚みが上部から下部に向けて薄くなっている負極板及び正極板であり、その極板の上部厚みをT、極板高さをH、極板の下部厚みをt、極板のある高さYにおける極板厚みをXとした場合、数式1のとおりであり、傾きH/(T−t)は97〜290、Y切片HT/(T−t)は155〜464であることを特徴とする鉛蓄電池である。
Y=(H/(T−t))X−HT/(T−t)・・・(数式1)
According to the first aspect of the present invention, the area of the grids of the current collector for the negative electrode plate and the positive electrode plate formed by the expanding manufacturing method is smaller than the upper part 1/3 in the current collector grid height direction. 3 is 40% or more, and the lower 1/3 is 20 to 80%.
The invention according to claim 2 is a negative electrode plate and a positive electrode plate whose thickness decreases from the upper part toward the lower part, the upper thickness of the electrode plate is T, the height of the electrode plate is H, and the lower part of the electrode plate Assuming that the thickness is t and the thickness of the electrode plate at a height Y where the electrode plate is X is X, the equation is as shown in Equation 1, the slope H / (Tt) is 97 to 290, and the Y intercept HT / (Tt). Is a lead acid battery characterized by being 155-464.
Y = (H / (T−t)) X−HT / (T−t) (Equation 1)

請求項1記載の発明は、集電体のマス目の面積を上部から下部に向けて小さくすることで極板下部の集電効率を上げ、極板全体の放電分布及び充電効率を均一にすることが出来る。請求項2記載の発明も同様に、極板の厚みを上部から下部に向け薄くすることで極板全体の放電分布及び充電効率を均一にすることが出来る。このことにより負極活物質と負極耳部付近の分極の差を抑制し、耳部放電による活物質化を防止することが出来る。極板全体の放電分布を均一にすることが重要であり、極板上下の集電効率のバランスが取れた場合でのみ発明の効果を発揮する。
本発明は、21世紀において益々重要になる地球環境問題から、不可避的に要求される省エネルギー、自然エネルギーなどの新エネルギー利用、特に化石燃料消費の多くを占める自動車などの輸送機器の燃費改善に応え得る、経済的で長期間安定的して作動する鉛蓄電池を提供するものであり、その工業的価値は極めて大きい
The invention according to claim 1 increases the current collection efficiency of the lower part of the electrode plate by reducing the area of the grid of the current collector from the upper part to the lower part, and makes the discharge distribution and the charge efficiency of the entire electrode plate uniform. I can do it. Similarly, in the invention according to claim 2, the discharge distribution and the charging efficiency of the entire electrode plate can be made uniform by decreasing the thickness of the electrode plate from the upper part to the lower part. Thereby, the difference in polarization between the negative electrode active material and the negative electrode ear can be suppressed, and the active material can be prevented from being formed by the ear discharge. It is important to make the discharge distribution uniform throughout the electrode plate, and the effect of the invention is exhibited only when the current collection efficiency above and below the electrode plate is balanced.
The present invention responds to the improvement in fuel efficiency of transportation equipment such as automobiles, which occupy a large amount of fossil fuel consumption, due to the inevitably required energy saving and natural energy use due to global environmental problems becoming increasingly important in the 21st century. To provide a lead storage battery that is economical and stable for a long period of time, and its industrial value is extremely high

以下、本発明を実施例に基づいて詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができる。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the following Example at all, In the range which does not change the summary, it can change suitably and can implement.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(比較例)
比較例の鉛蓄電池は、次のようにして作製した。
鉛丹15kgと希硫酸(比重1.26:20℃換算以下同じ)110Lを混練ミキサー中に投入し鉛丹スラリーを作った。前記鉛丹スラリーと鉛粉850kgをペースト練合機に投入し、100Lの水と混練して正極活物質ペーストを作った。次に、この正極活物質ペースト85gをカルシウム合金からなるエキスパンド集電体に充填してから、温度40℃、湿度95%中に18時間放置して熟成した後に、温度60℃中に12時間放置して乾燥して未化成正極板を作った。エキスパンド集電体のマス目は幅17mm、高さ12mmの菱形形状で、開口面積(以下面積と略す)が102mmとした。
(Comparative example)
The lead acid battery of the comparative example was produced as follows.
15 kg of red lead and 110 L of dilute sulfuric acid (specific gravity 1.26: same as below 20 ° C.) were put into a kneading mixer to make red lead slurry. The red lead slurry and 850 kg of lead powder were put into a paste kneader and kneaded with 100 L of water to make a positive electrode active material paste. Next, 85 g of this positive electrode active material paste was filled in an expanded current collector made of a calcium alloy, left to mature for 18 hours at a temperature of 40 ° C. and a humidity of 95%, and then left at a temperature of 60 ° C. for 12 hours. And dried to produce an unformed positive electrode plate. The grid of the expanded current collector has a rhombus shape with a width of 17 mm and a height of 12 mm, and an opening area (hereinafter referred to as area) of 102 mm 2 .

次に負極板は、鉛粉と、該鉛粉に対して15wt%の希硫酸(比重1.26)と、該鉛粉に対して12wt%の水とを混練して負極活物質ペーストを作った。次に、負極活物質ペースト80gをカルシウム合金のエキスパンド集電体に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に温度110℃中に2時間放置して乾燥して未化成負極板を作った。
作製した未化成負極板8枚と未化成正極板7枚とをセパレータを介して交互に積層して各極板群を作った。
化成は25℃の雰囲気で22.5A、12時間の定電流で充電を行った。充電に用いた硫酸の比重は1.240とし、各セル700ml注入した。
以上の手順により、定格電圧12V、定格容量(5時間率容量)55Ahである、比較例の80D26形自動車用鉛蓄電池(JIS D5301記載)を作製した。
Next, the negative electrode plate is prepared by kneading lead powder, 15 wt% diluted sulfuric acid (specific gravity 1.26) with respect to the lead powder, and 12 wt% water with respect to the lead powder. It was. Next, 80 g of negative electrode active material paste was filled in an expanded current collector of calcium alloy, left to mature at a temperature of 50 ° C. and a humidity of 95% for 18 hours, and then left to stand at a temperature of 110 ° C. for 2 hours to dry. Thus, an unformed negative electrode plate was produced.
Eight unformed negative electrode plates and seven unformed positive electrode plates were alternately laminated via separators to form each electrode plate group.
In the chemical conversion, charging was performed in an atmosphere of 25 ° C. with a constant current of 22.5 A for 12 hours. The specific gravity of sulfuric acid used for charging was 1.240, and 700 ml of each cell was injected.
By the above procedure, a comparative example 80D26 type lead-acid battery for automobile (described in JIS D5301) having a rated voltage of 12 V and a rated capacity (5 hour rate capacity) of 55 Ah was produced.

(実施の形態1)
実施の形態1の鉛蓄電池は、次のようにして作製した。
正極活物質ペースト及び負極活物質ペーストは比較例と同様の方法で作製した。カルシウム合金のエキスパンド集電体は、鉛―カルシウム合金のシートを階段状の上刃で切り込みをいれ、シートの幅方向に展開することによって、ダイヤモンド形状のマス目を形成させる。この上刃の形状を変えることで集電体の上下方向のマス目の形状を変えることができる。
本実施形態の集電体では、高さ方向上部1/3は、幅17mm、高さ12mmの菱形形状で面積が102mmのマス目とし、中央部1/3は幅17mm、高さ9mmの菱形形状で面積が76.5mmのマス目とし、下部1/3は幅17mm、高さ6mmの菱形形状で面積が51mmとした。この集電体にペーストを充填し、熟成以降は比較例と同様の方法で実施の形態1の80D26形自動車用鉛蓄電池(JIS D5301記載)を作製した。
(Embodiment 1)
The lead storage battery of Embodiment 1 was produced as follows.
The positive electrode active material paste and the negative electrode active material paste were produced in the same manner as in the comparative example. An expanded current collector of calcium alloy forms a diamond-shaped cell by cutting a lead-calcium alloy sheet with a stepped upper blade and developing the sheet in the width direction of the sheet. By changing the shape of the upper blade, the shape of the grid in the vertical direction of the current collector can be changed.
In the current collector of the present embodiment, the upper part 1/3 in the height direction has a rhombus shape with a width of 17 mm and a height of 12 mm and a square with an area of 102 mm 2 , and the central part 1/3 has a width of 17 mm and a height of 9 mm. The grid has a rhombus shape and an area of 76.5 mm 2 , and the lower third is a rhombus shape having a width of 17 mm and a height of 6 mm and an area of 51 mm 2 . The current collector was filled with paste, and after aging, an 80D26 type automotive lead-acid battery (described in JIS D5301) of Embodiment 1 was produced in the same manner as in the comparative example.

(実施の形態2)
実施の形態2の鉛蓄電池は、次のようにして作製した。
正極活物質ペースト及び負極活物質ペーストは比較例と同様の方法で作製した。カルシウム合金の正極エキスパンド集電体は、実施の形態1と同様のエキスパンド展開後、集電体の交点部分を高さ方向上部1/3は1.6mmの厚みでプレスし、中央部1/3は1.2mmの厚みでプレスし、下部1/3は0.8mmの厚みでプレスした後、ペーストを充填した。極板は極板最上部が厚み1.6mm、極板最下部が0.9mmになるように極板下部に向かって一定の割合で薄くなるように充填厚みを調整した。このとき極板の上部厚みをT、極板高さをH、極板の下部厚みをt、極板のある高さYにおける極板厚みをXとした場合、H/(T−t)の値は極板高さHが116mmであるので166となり、HT/(T−t)は265となる。
負極エキスパンド集電体は実施の形態1と同様のエキスパンド展開後、集電体の交点部分を高さ方向上部1/3は1.2mmの厚みでプレスし、中央部1/3は0.9mmの厚みでプレスし、下部1/3は0.6mmの厚みでプレスした後、ペーストを充填した。極板は極板最上部が厚み1.3mm、極板最下部が0.8mmになるように極板下部に向かって一定の割合で薄くなるように充填厚みを調整した。このときのH/(T−t)の値は極板高さHが116mmであるので232となり、HT/(T−t)は302となる。熟成以降は比較例と同様の方法で、実施の形態2の80D26形自動車用鉛蓄電池(JIS D5301記載)を作製した。
(Embodiment 2)
The lead storage battery of Embodiment 2 was produced as follows.
The positive electrode active material paste and the negative electrode active material paste were produced in the same manner as in the comparative example. The positive expanded current collector of the calcium alloy was expanded in the same manner as in the first embodiment, and the intersection portion of the current collector was pressed with a thickness of 1.6 mm at the upper part 1/3 in the height direction, and the central part 1/3. Was pressed with a thickness of 1.2 mm, and the lower 1/3 was pressed with a thickness of 0.8 mm and then filled with paste. The filling thickness of the electrode plate was adjusted so that the electrode plate became thinner at a constant rate toward the lower part of the electrode plate so that the uppermost electrode plate had a thickness of 1.6 mm and the lowermost electrode plate had a thickness of 0.9 mm. At this time, when the upper thickness of the electrode plate is T, the electrode plate height is H, the electrode plate lower thickness is t, and the electrode plate thickness at the height Y with the electrode plate is X, H / (T−t) The value is 166 because the electrode plate height H is 116 mm, and HT / (T−t) is 265.
The negative electrode current collector is expanded in the same manner as in the first embodiment, and then the intersection part of the current collector is pressed with a thickness of 1.2 mm at the upper part 1/3 in the height direction and the central part 1/3 is 0.9 mm. The lower 1/3 was pressed with a thickness of 0.6 mm, and then the paste was filled. The filling thickness of the electrode plate was adjusted so that the uppermost electrode plate was 1.3 mm thick and the lowermost electrode plate was 0.8 mm so that the electrode plate became thinner at a constant rate toward the lower electrode plate. The value of H / (T−t) at this time is 232 because the electrode plate height H is 116 mm, and HT / (T−t) is 302. After aging, the 80D26 type automotive lead-acid battery (described in JIS D5301) of Embodiment 2 was produced in the same manner as in the comparative example.

図1にはSBA規定(SBA S 0101)のアイドリングストップ寿命試験の寿命サイクル数について、比較例を100%として実施の形態1、2の寿命サイクル数を示した。試験条件は25℃の周囲温度で45A、59秒放電した後300A、1秒放電、その後14Vで60秒充電する充放電を1サイクルとして充放電を繰り返し、3600サイクル毎に40〜48時間の放置を入れる。寿命サイクルは放電時の電圧が7.2V未満になったサイクルとする。   FIG. 1 shows the number of life cycles of Embodiments 1 and 2 with the comparative example being 100% for the life cycle number of the idling stop life test of SBA regulations (SBA S 0101). The test conditions were 45A at an ambient temperature of 25 ° C., 59 seconds of discharge, 300A, 1 second of discharge, and then charge / discharge repeated for 14 seconds at 14V for 60 seconds. The charge was repeated for 40 to 48 hours every 3600 cycles. Insert. The life cycle is a cycle in which the voltage during discharge becomes less than 7.2V.

図1の縦軸には、比較例の寿命サイクル数を100としたときの実施の形態1及び実施の形態2のサイクル数比を示した。実施の形態1は極板上部から下部に向けて集電体のマス目形状を小さくしていることから、極板上部に比べ極板下部の集電性を向上させている。実際の充放電時には集電部に近いところほど集電性が良く、すなわち集電部である極板上部ほど集電性が良くなっていることから、下部の集電性を改善した実施の形態1の極板は極板全面で均一な集電性を確保できるため、極板全体の活物質が均一に充放電に利用され、寿命サイクルが向上した。特に比較例1は不均一な充放電サイクルを繰り返すことで極板下部のサルフェーションに伴う負極耳部の折損で短寿命という結果となった。実施の形態2は実施の形態1と効果の原理は同じで、極板下部に向かって厚みを薄くすることにより極板下部放電分布を改善することで、通常では不均一であった充放電分布を均一にすることで寿命サイクルが向上した。   The vertical axis of FIG. 1 shows the cycle number ratio of the first embodiment and the second embodiment when the life cycle number of the comparative example is 100. In Embodiment 1, since the grid shape of the current collector is made smaller from the upper part of the electrode plate toward the lower part, the current collecting property at the lower part of the electrode plate is improved as compared with the upper part of the electrode plate. In the actual charging / discharging, the closer to the current collecting portion, the better the current collecting property, that is, the current collecting property is improved toward the upper part of the electrode plate which is the current collecting portion. Since the electrode plate No. 1 can secure a uniform current collecting property on the entire surface of the electrode plate, the active material of the entire electrode plate is uniformly used for charging and discharging, and the life cycle is improved. In particular, Comparative Example 1 resulted in a short life due to breakage of the negative electrode ear portion due to sulfation at the bottom of the electrode plate by repeating non-uniform charge / discharge cycles. In the second embodiment, the principle of the effect is the same as that in the first embodiment. By reducing the thickness of the electrode plate by reducing the thickness toward the lower part of the electrode plate, the charge / discharge distribution which is usually non-uniform is improved. The life cycle was improved by making the pressure uniform.

図2は充電受入性試験の比較例を100としたときの実施の形態1及び実施の形態2の5秒目の電流値を示した。これは、電池容量をSOC(State of Charge)90%に調整し、6時間、25℃放置した後に14.0V定電圧充電を行う試験である。5秒目電流の値が大きいほど受電受入性が良好であることを意味し、実施の形態1、2は比較例に対して大幅に充電性が改善されている。これは集電性を均一にしたことで放電分布が極板の活物質全体に均一になり、充電受入性が良くなった結果である。この充電受入性の改善は充電前の放電状態が極板全体に均一に放電しているほど充電時の副反応である水素、酸素発生反応を抑制できことによると考えられる。この充電受入性向上も図1に示すサイクル特性向上の効果と言える。   FIG. 2 shows the current value at 5 seconds of the first embodiment and the second embodiment when the comparative example of the charge acceptance test is 100. This is a test in which the battery capacity is adjusted to SOC (State of Charge) 90% and left at 25 ° C. for 6 hours and then charged at a constant voltage of 14.0 V. The larger the value of the current at the 5th second, the better the power receiving ability, and in Embodiments 1 and 2, the chargeability is greatly improved compared to the comparative example. This is a result of the fact that the current distribution is made uniform, the discharge distribution is uniform over the entire active material of the electrode plate, and the charge acceptance is improved. This improvement in charge acceptance is considered to be due to the fact that the hydrogen and oxygen generation reactions, which are side reactions during charging, can be suppressed as the discharge state before charging is uniformly discharged over the entire electrode plate. This improvement in charge acceptability can also be said to be an effect of improving the cycle characteristics shown in FIG.

図3は極板の厚みが上部から下部に向けて薄くなっている負極板及び正極板であり、その極板の上部厚みをT、極板高さをH、極板の下部厚みをtとしたときのt/Tと充電受入性試験の5秒目電流との関係である。上部厚みに対して下部厚みの割合が0.25から0.75の場合において発明の効果が大きいことから、極板のある高さYにおける極板厚みをXとした場合、XとYの関係はY=(H/(T−t))X−HT/(T−t)となり、この式の傾きH/(T−t)は97〜290、Y切片HT/(T−t)は155〜464となる場合に充電受入性により効果をもたらす。   FIG. 3 shows a negative electrode plate and a positive electrode plate whose thickness is reduced from the upper part toward the lower part. The upper thickness of the electrode plate is T, the height of the electrode plate is H, and the lower thickness of the electrode plate is t. The relationship between the t / T and the current at the 5th second of the charge acceptance test. Since the effect of the invention is great when the ratio of the lower thickness to the upper thickness is 0.25 to 0.75, when the electrode plate thickness at the height Y where the electrode plate is X is X, the relationship between X and Y Y = (H / (T−t)) X−HT / (T−t), the slope H / (T−t) of this equation is 97 to 290, and the Y intercept HT / (T−t) is 155. In the case of ˜464, an effect is brought about by charge acceptance.

図4は集電体の高さ方向上部1/3のマス目面積に対するマス目面積の割合と、充電受入性試験の5秒目電流の関係を示した物である。上部マス目面積に対する下部面積率が20〜80%において、5秒目電流が大きいことが分かる。また上部マス目面積に対する中央部面積率は40%以上で5秒目電流が大きく、これらマス目面積の割合がより効果的であることが判る。   FIG. 4 shows the relationship between the ratio of the grid area to the grid area of the upper third of the current collector in the height direction and the current at the fifth second in the charge acceptance test. It can be seen that the current at the 5th second is large when the lower area ratio relative to the upper grid area is 20 to 80%. Further, the central area ratio with respect to the upper grid area is 40% or more, and the current at the 5th second is large, and it can be seen that the ratio of these square areas is more effective.

アイドリングストップ寿命試験における寿命サイクル数の比較例比を示す図である。It is a figure which shows the comparative example ratio of the life cycle number in an idling stop life test. 25℃、充電受入性試験における14V定電圧充電5秒目電流値の比較例比を示す図である。It is a figure which shows the comparative example ratio of 14V constant voltage charge 5 second current value in 25 degreeC and a charge acceptance test. 上部極板厚みTと下部極板厚みtの比、t/Tの関係と充電受入性試験における14V定電圧充電5秒目電流値との関係を示した図である。It is the figure which showed the relationship between the ratio of upper electrode board thickness T and lower electrode board thickness t, the relationship of t / T, and the 14-V constant voltage charge 5 second current value in a charge acceptance test. 集電体の上部マス目面積に対する中央部及び下部のマス目面積率と、充電受入性試験における14V定電圧充電5秒目電流値との関係を示した図である。It is the figure which showed the relationship between the center area | region and lower cell area ratio with respect to the upper cell area of an electrical power collector, and the 14V constant voltage charge 5 second current value in a charge acceptance test.

Claims (2)

エキスパンド製法によって形成される負極板及び正極板用の集電体であって、集電体のマス目の面積が、集電体高さ方向の上部1/3に対し、中央部1/3は40%以上、下部1/3は20〜80%であることを特徴とする鉛蓄電池。 A current collector for a negative electrode plate and a positive electrode plate formed by an expanding manufacturing method, wherein the area of the grid of the current collector is 40 in the central portion 1/3 with respect to the upper third in the current collector height direction. % Or more, and the lower 1/3 is 20 to 80%. 極板の厚みが上部から下部に向けて薄くなっている負極板及び正極板であり、その極板の上部厚みをT、極板高さをH、極板の下部厚みをt、極板のある高さYにおける極板厚みをXとした場合、数式1の関係があり、傾きH/(T−t)は97〜290、Y切片HT/(T−t)は155〜464であることを特徴とする請求項1記載の鉛蓄電池。
Y=(H/(T−t))X−HT/(T−t)・・・(数式1)
A negative electrode plate and a positive electrode plate whose thickness decreases from the upper part toward the lower part. The upper thickness of the electrode plate is T, the height of the electrode plate is H, the lower thickness of the electrode plate is t, Assuming that the electrode plate thickness at a certain height Y is X, there is a relationship of Formula 1, the slope H / (Tt) is 97 to 290, and the Y intercept HT / (Tt) is 155 to 464. The lead acid battery according to claim 1.
Y = (H / (T−t)) X−HT / (T−t) (Equation 1)
JP2008177516A 2008-07-08 2008-07-08 Lead-acid battery Pending JP2010020905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177516A JP2010020905A (en) 2008-07-08 2008-07-08 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177516A JP2010020905A (en) 2008-07-08 2008-07-08 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2010020905A true JP2010020905A (en) 2010-01-28

Family

ID=41705605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177516A Pending JP2010020905A (en) 2008-07-08 2008-07-08 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2010020905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203678A (en) * 2013-04-05 2014-10-27 パナソニック株式会社 Lead storage battery
JP5866702B2 (en) * 2014-01-15 2016-02-17 パナソニックIpマネジメント株式会社 Lead acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203678A (en) * 2013-04-05 2014-10-27 パナソニック株式会社 Lead storage battery
JP5866702B2 (en) * 2014-01-15 2016-02-17 パナソニックIpマネジメント株式会社 Lead acid battery
JPWO2015107587A1 (en) * 2014-01-15 2017-03-23 パナソニックIpマネジメント株式会社 Lead acid battery

Similar Documents

Publication Publication Date Title
JP4953600B2 (en) Lead acid battery
JP2008243487A (en) Lead acid battery
WO2013073091A1 (en) Lead storage cell
JP2011181436A (en) Lead acid battery
JP2014123510A (en) Lead storage battery
JP2008243489A (en) Lead acid storage battery
JP2008243493A (en) Lead acid storage battery
JP4515902B2 (en) Lead acid battery
JP5228601B2 (en) Lead acid battery
JP2004281197A (en) Lead acid storage battery
JP2005302395A (en) Lead storage battery
JP5531746B2 (en) Lead acid battery
JP6575536B2 (en) Lead acid battery
EP2381524B1 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP2010020905A (en) Lead-acid battery
JP5573785B2 (en) Lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP4812386B2 (en) Method for producing lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP4529707B2 (en) Lead acid battery
JP6956698B2 (en) Liquid lead-acid battery
JP4069743B2 (en) Lead acid battery
Furukawa et al. Development of UltraBattery
JP2003346911A (en) Method for charging lead storage battery