JP4232385B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP4232385B2
JP4232385B2 JP2002145827A JP2002145827A JP4232385B2 JP 4232385 B2 JP4232385 B2 JP 4232385B2 JP 2002145827 A JP2002145827 A JP 2002145827A JP 2002145827 A JP2002145827 A JP 2002145827A JP 4232385 B2 JP4232385 B2 JP 4232385B2
Authority
JP
Japan
Prior art keywords
electrode plate
battery
control valve
valve type
plate group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002145827A
Other languages
Japanese (ja)
Other versions
JP2003338309A (en
Inventor
宣行 高見
一宏 杉江
一彦 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002145827A priority Critical patent/JP4232385B2/en
Publication of JP2003338309A publication Critical patent/JP2003338309A/en
Application granted granted Critical
Publication of JP4232385B2 publication Critical patent/JP4232385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電解液を含浸保持するマットセパレータを備え、電解液の殆どすべてが極板群に保持されていて、極板群から遊離した電解液を殆ど保有しない制御弁式鉛蓄電池に関するものである。
【0002】
【従来の技術】
鉛蓄電池は安価であり、比較的広い温度領域でも信頼性が高いことから自動車用電池として広く用いられている。
【0003】
通常、始動用の自動車用電池ではオルタネータにより発電された電力により電池が満充電状態になるようにレギュレータで充電電圧を規制しながら充電し、充電した電力を用いてエンジン始動やライト点灯を行う。
【0004】
近年、自動車の燃費向上の目的に、電池の充電電圧を低下させることによって、オルタネータの回転数を低下させてエネルギーロスを削減したり、エンジンとモータとを組み合わせたハイブリッド車両が実用化されている。
【0005】
このような車両に電池を用いる場合、車速の減速時のエネルギーを積極的に回生エネルギーとして蓄電する必要がある。この回生エネルギーは減速時に発生するため、発電量および発電時間は無作為であり、このエネルギーを蓄電池の充電に適した電圧、電流に変換する必要があり、また、このような回生エネルギーによる充電(以降、回生充電という)を効率よく受け入れるために蓄電池の充電状態(以降、SOCという)を適切に制御する必要があった。
【0006】
この回生充電を効率良く受け入れるために、例えば特開平8−308018号公報に示されているように定格電圧12Vの鉛蓄電池を13Vで充電し、SOCを60%〜90%程度で制御することが記載されている。また、電解液の硫酸濃度を低下させることによって回生充電の充電受け入れ性を改善することが提案されている。
【0007】
これらの電解液の硫酸濃度を低くした鉛蓄電池のSOCを50%〜90%の中間状態で制御することにより回生充電時の受け入れ性は改善する反面、電解液の硫酸濃度が低い状態で蓄電池が使用される頻度が多くなる。硫酸濃度の低下によって電解液の凝固点が上昇することによって、電解液は凍結しやすくなり、電池特性を著しく低下させたり、凍結した電解液の体積変化によって、電槽が変形したり、場合によっては電槽が破損するという課題があった。
【0008】
【発明が解決しようとする課題】
本発明は前記した課題、すなわち回生充電効率の向上を目的として電解液の硫酸濃度を低下させるとともに、SOCを中間状態で使用しても電解液の凍結を抑制し、また、電解液が凍結したとしても、電槽の変形、破損を抑制した制御弁式鉛蓄電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記した課題を解決するために、本発明の請求項1記載に係る発明はガラス繊維もしくは合成樹脂繊維からなるマットセパレータと正極板および負極板とにより構成される極板群が電槽に収納され、前記極板群に保持されていて極板群から遊離した電解液を実質的に保有せず、車速の減速時のエネルギーを回生エネルギーとして蓄電池の充電に適した電圧、電流に変換して受け入れ、かつ、蓄電池の充電状態を50%〜90%の中間状態で制御する制御弁式鉛蓄電池であって、前記極板群が前記電槽に収納された状態において、前記マットセパレータの空孔体積をVとし、前記マットセパレータに含浸保持された電解液の体積をVeとした時に、比率(Ve/V)を0.92以下に設定するとともに、前記電解液の硫酸濃度を26.0質量%〜37.0質量%としたことを特徴とする制御弁式鉛蓄電池を示すものである。
【0010】
また、本発明の請求項2記載に係る発明は、請求項1記載における比率(Ve/V)の下限値を0.80とした請求項1記載の制御弁式鉛蓄電池を示すものである。
【0011】
【発明の実施の形態】
本発明の一実施の形態を以下に説明する。
【0012】
鉛蓄電池用の正極板および負極板をマットセパレータを介して配置して極板群を構成する。マットセパレータは耐酸化性、耐酸性を有しているガラス繊維マット、ポリプロピレン樹脂繊維マットやこれらを混抄したものを用いる。この極板群を電槽に収納後、必要に応じて極板群間の接続を行う。その後、電槽開口部を蓋で封止するとともに、極板群から導出される入出力端子と蓋もしくは電槽間の封止を行う。その後、電解液を注入し、充電を行い、制御弁式鉛蓄電池を構成する。
【0013】
本発明の制御弁式鉛蓄電池においては満充電状態における電解液の硫酸濃度を26.0質量%乃至37.0質量%の範囲にするとともに、極板群が電槽に収納された状態における、マットセパレータの空孔体積をVとし、このマットセパレータの空孔に保持された電解液の体積をVeとした時の比率(Ve/V)を0.92以下とする。
【0014】
このような構成により、制御弁式鉛蓄電池の回生充電効率の向上と、SOCを中間状態で用いた場合における電解液の凍結とこれによる電槽の変形、破損を抑制することができる。
【0015】
なお、比率(Ve/V)の下限値については回生充電における充電受け入れ性および放電容量が急激に低下することから、少なくともこの比率を0.80以上に設定することが好ましい。
【0016】
【実施例】
本発明の実施例による鉛蓄電池と比較例による鉛蓄電池とを対比することによって本発明の効果を明らかにした。
【0017】
鉛−0.07質量%カルシウム−1.25質量%錫合金を鋳造して得たスラブを多段階に圧延して得た圧延鉛シートをエキスパンド加工して集電体を作製した。この集電体にそれぞれ正極活物質ペースト、負極活物質ペーストを充填し、熟成乾燥することにより、それぞれ鉛蓄電池用の正極板および負極板とした。これらの正極板と負極板とをガラス繊維で構成されたマットセパレータを介して積層し、同極性の極板耳部を集合溶接して極板群を作製した。
【0018】
この極板群の6個を6個のセル室を有する電槽に収納後、極板群間を直列接続した後、電槽開口部を蓋で閉塞し、蓋に一体成形された鉛ブッシングに極柱を挿通させ、鉛ブッシングと極柱とを溶接して端子部を形成した。
【0019】
その後、それぞれのセル室に対応して蓋に設けた注液口から電解液である希硫酸を注入し、注液口に電槽内圧に応じて開閉する制御弁を取りつけて化成充電を行うことにより公称電圧12V、5時間率定格容量10Ahの制御弁式鉛蓄電池を構成した。
【0020】
本実施例においては注液する希硫酸の硫酸濃度と注液量を変化させることによって化成充電後、すなわち満充電状態における電解液中の硫酸濃度とセパレータの空孔体積Vとセパレータ空孔に含浸保持された電解液体積Veとの比率を種々に変化させて電池を構成した。なお、極板群圧は19600N/m2に設定した。
【0021】
これらの電池を5時間率電流で放電を行い、SOCを50%の状態とした。これらの電池をそれぞれ満充電状態の電解液の硫酸濃度に対応した電解液の凝固点温度よりもさらに10℃低い温度で24時間放置した時の電槽の変形度合いを確認した。なお、電槽変形度合いの評価としては膨れ等の変形寸法が1mm以下であり、殆ど変形のないものを○、変形寸法は5mm以上で著しい変形のあるものを△、変形によって電槽に割れが発生したものを×とした。これらの結果を表1に示す。
【0022】
【表1】

Figure 0004232385
【0023】
表1に示した結果から比率(Ve/V)が0.92を超えて大きくした場合、電解液の硫酸濃度によっては電槽変形が発生し始めることがわかる。
【0024】
電池の電槽変形度合いの評価後、電槽割れの発生した電池を除いた電池を25℃雰囲気下に48時間放置した後、100Aの定電流放電を行い、放電開始後2秒目の放電電圧Eを測定した。この結果を表2に示す。
【0025】
【表2】
Figure 0004232385
【0026】
表2に示した結果から比率(Ve/V)が0.75で放電電圧4.2Vと急激に出力電圧が低下することがわかる。また、硫酸濃度が25.0質量%で他の硫酸濃度が26.0質量%、30.0質量%、37.0質量%、38.0質量%、40.0質量%の場合に比較して、急激な出力電圧の低下が認められた。
【0027】
次に電解液の硫酸濃度と回生充電時の充電受け入れ性を評価した。
【0028】
ここでは各試験電池のSOCを50%とし、25℃中で17V定電圧充電した場合に、充電開始1秒目の充電電流を測定することによって充電受け入れ性を評価した。
【0029】
これらの結果を図1に示す。
【0030】
図1に示した結果から検討を行ったすべての(Ve/V)範囲において電解液の硫酸濃度を37質量%を超えて増加させると充電電流が急激に低下することがわかる。これは硫酸濃度が高い領域では充電時に正極板および負極板表面近傍で発生した硫酸の拡散が抑制されて充電電流が制限されるものと推測できる。
【0031】
これらの結果から、回生充電時の充電受け入れ性を低下させることなく、電池を低温放置した場合に発生する電解液の凍結による電槽変形、破損を抑制するためには比率(Ve/V)を0.92以下にするとともに、前記電解液の硫酸濃度を26.0質量%〜37.0質量%としたことが必要である。また、出力特性の低下を抑制するためには少なくとも比率(Ve/V)を0.80以上とすることが好ましい。
【0032】
【発明の効果】
以上説明したように、本発明の構成によれば回生充電効率向上を目的として電解液の硫酸濃度を低下させた場合において、SOCを中間状態で使用しても電解液の凍結を抑制できる。また、電解液が凍結したとしても、電槽の変形、破損を抑制した制御弁式鉛蓄電池を提供することができることから、工業上極めて有用である。
【図面の簡単な説明】
【図1】電解液の硫酸濃度と充電電流との関係を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control valve type lead storage battery that includes a mat separator that is impregnated and held with an electrolytic solution, almost all of the electrolytic solution is held in an electrode plate group, and has almost no electrolyte released from the electrode plate group. .
[0002]
[Prior art]
Lead storage batteries are inexpensive and widely used as automobile batteries because of their high reliability even in a relatively wide temperature range.
[0003]
Normally, a starting automobile battery is charged while regulating the charging voltage with a regulator so that the battery is fully charged by the electric power generated by the alternator, and the engine is started and lights are turned on using the charged electric power.
[0004]
In recent years, for the purpose of improving the fuel efficiency of automobiles, by reducing the charging voltage of the battery, the rotational speed of the alternator is reduced to reduce energy loss, or a hybrid vehicle combining an engine and a motor has been put into practical use. .
[0005]
When a battery is used in such a vehicle, it is necessary to positively store energy at the time of deceleration of the vehicle speed as regenerative energy. Since this regenerative energy is generated at the time of deceleration, the power generation amount and power generation time are random, it is necessary to convert this energy into a voltage and current suitable for charging the storage battery, and charging with such regenerative energy ( Hereinafter, in order to efficiently accept regenerative charging), it is necessary to appropriately control the state of charge of the storage battery (hereinafter referred to as SOC).
[0006]
In order to efficiently accept this regenerative charge, for example, as shown in JP-A-8-308018, a lead storage battery having a rated voltage of 12V is charged at 13V, and the SOC is controlled at about 60% to 90%. Are listed. Further, it has been proposed to improve the charge acceptability of regenerative charging by reducing the sulfuric acid concentration of the electrolytic solution.
[0007]
By controlling the SOC of the lead storage battery in which the sulfuric acid concentration of these electrolytes is low in an intermediate state of 50% to 90%, the acceptability at the time of regenerative charging is improved, while the storage battery is in a state where the sulfuric acid concentration of the electrolyte is low. Increased frequency of use. When the freezing point of the electrolyte rises due to a decrease in the sulfuric acid concentration, the electrolyte is more likely to freeze, and the battery characteristics are significantly reduced, the battery case is deformed due to the volume change of the frozen electrolyte, and in some cases There was a problem that the battery case was damaged.
[0008]
[Problems to be solved by the invention]
The present invention reduces the sulfuric acid concentration of the electrolytic solution for the purpose of improving the regenerative charging efficiency as described above, suppresses the freezing of the electrolytic solution even when the SOC is used in an intermediate state, and the electrolytic solution is frozen. However, it aims at providing the control valve type lead acid battery which suppressed the deformation | transformation and breakage of a battery case.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention according to claim 1 of the present invention is configured such that an electrode plate group including a mat separator made of glass fiber or synthetic resin fiber, a positive electrode plate, and a negative electrode plate is housed in a battery case. The electrolyte is held in the electrode plate group and does not substantially hold the electrolyte released from the electrode plate group, and the energy at the time of deceleration of the vehicle speed is converted into regenerative energy and converted into a voltage and current suitable for charging the storage battery. And the control valve type lead acid battery which controls the charge state of a storage battery in the intermediate state of 50%-90%, Comprising: In the state in which the said electrode group was accommodated in the said battery case, the void | hole volume of the said mat separator Is V and the volume of the electrolyte impregnated and retained in the mat separator is Ve, the ratio (Ve / V) is set to 0.92 or less and the sulfuric acid concentration of the electrolyte is 26.0% by mass. It shows a valve-regulated lead-acid battery, characterized in that it has a 37.0% by weight.
[0010]
The invention according to claim 2 of the present invention shows the control valve type lead storage battery according to claim 1, wherein the lower limit value of the ratio (Ve / V) in claim 1 is 0.80.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
[0012]
A positive electrode plate and a negative electrode plate for a lead storage battery are arranged via a mat separator to constitute an electrode plate group. As the mat separator, a glass fiber mat, a polypropylene resin fiber mat having oxidation resistance and acid resistance, or a mixture of these is used. After this electrode plate group is stored in the battery case, the electrode plate groups are connected as necessary. Thereafter, the battery case opening is sealed with a lid, and the input / output terminal derived from the electrode plate group and the lid or the battery case are sealed. Thereafter, an electrolytic solution is injected and charged to form a control valve type lead storage battery.
[0013]
In the control valve type lead storage battery of the present invention, the sulfuric acid concentration of the electrolytic solution in a fully charged state is in the range of 26.0 mass% to 37.0 mass%, and the electrode plate group is housed in the battery case. The ratio (Ve / V) is 0.92 or less when the pore volume of the mat separator is V and the volume of the electrolyte solution retained in the pores of the mat separator is Ve.
[0014]
With such a configuration, it is possible to improve the regenerative charging efficiency of the control valve type lead storage battery, and to prevent the electrolytic solution from being frozen and the battery case to be deformed or damaged when the SOC is used in an intermediate state.
[0015]
In addition, about the lower limit of ratio (Ve / V), since charge acceptance in regenerative charge and discharge capacity fall rapidly, it is preferable to set this ratio to 0.80 or more at least.
[0016]
【Example】
The effect of the present invention was clarified by comparing the lead storage battery according to the embodiment of the present invention with the lead storage battery according to the comparative example.
[0017]
A rolled lead sheet obtained by rolling a slab obtained by casting lead-0.07 mass% calcium-1.25 mass% tin alloy in multiple stages was expanded to produce a current collector. The current collector was filled with a positive electrode active material paste and a negative electrode active material paste, respectively, and aged and dried to obtain a positive electrode plate and a negative electrode plate for a lead storage battery, respectively. The positive electrode plate and the negative electrode plate were laminated through a mat separator made of glass fiber, and electrode plate ears having the same polarity were collectively welded to produce an electrode plate group.
[0018]
After storing six of these electrode plate groups in a battery case having six cell chambers, the electrode plate groups were connected in series, and then the battery case opening was closed with a lid, and a lead bushing formed integrally with the lid. The terminal was formed by inserting the pole column and welding the lead bushing and the pole column.
[0019]
Then, dilute sulfuric acid, which is an electrolyte, is injected from the injection port provided on the lid corresponding to each cell chamber, and a control valve that opens and closes according to the internal pressure of the battery is attached to the injection port for chemical charging. Thus, a control valve type lead-acid battery having a nominal voltage of 12V and a rated capacity of 10Ah for 5 hours was constituted.
[0020]
In this embodiment, the sulfuric acid concentration of the dilute sulfuric acid to be injected and the amount of the injected liquid are changed, and after the chemical charging, that is, the sulfuric acid concentration in the electrolytic solution in the fully charged state, the separator volume V, and the separator holes are impregnated The battery was configured with various ratios to the retained electrolyte volume Ve. The electrode plate group pressure was set to 19600 N / m 2 .
[0021]
These batteries were discharged at a 5 hour rate current to bring the SOC to 50%. When these batteries were left for 24 hours at a temperature 10 ° C. lower than the freezing point temperature of the electrolyte corresponding to the sulfuric acid concentration of the fully charged electrolyte, the degree of deformation of the battery case was confirmed. For the evaluation of the degree of deformation of the battery case, the deformation dimension such as bulging is 1 mm or less, ◯ when there is almost no deformation, △ when the deformation dimension is 5 mm or more and significant deformation, and cracking of the battery case due to deformation. What occurred was marked as x. These results are shown in Table 1.
[0022]
[Table 1]
Figure 0004232385
[0023]
From the results shown in Table 1, it can be seen that when the ratio (Ve / V) is increased beyond 0.92, the battery case starts to deform depending on the sulfuric acid concentration of the electrolytic solution.
[0024]
After the evaluation of the degree of battery case deformation, the battery excluding the battery with the battery case cracked was left in an atmosphere at 25 ° C. for 48 hours, and then a constant current discharge of 100 A was performed. E was measured. The results are shown in Table 2.
[0025]
[Table 2]
Figure 0004232385
[0026]
From the results shown in Table 2, it can be seen that when the ratio (Ve / V) is 0.75, the output voltage is drastically reduced to 4.2V. Compared with the case where the sulfuric acid concentration is 25.0% by mass and the other sulfuric acid concentrations are 26.0% by mass, 30.0% by mass, 37.0% by mass, 38.0% by mass and 40.0% by mass. As a result, a sudden drop in output voltage was observed.
[0027]
Next, the sulfuric acid concentration of the electrolytic solution and the charge acceptability during regenerative charging were evaluated.
[0028]
Here, when the SOC of each test battery was set to 50% and charging was performed at a constant voltage of 17 V at 25 ° C., the charge acceptability was evaluated by measuring the charging current at the first second of charging.
[0029]
These results are shown in FIG.
[0030]
From the results shown in FIG. 1, it can be seen that when the sulfuric acid concentration of the electrolytic solution is increased beyond 37% by mass in all the (Ve / V) ranges examined, the charging current rapidly decreases. It can be presumed that in a region where the sulfuric acid concentration is high, diffusion of sulfuric acid generated near the surfaces of the positive electrode plate and the negative electrode plate during charging is suppressed, and the charging current is limited.
[0031]
From these results, the ratio (Ve / V) is used to suppress battery cell deformation and breakage due to freezing of the electrolyte that occurs when the battery is left at a low temperature without reducing the charge acceptance during regenerative charging. It is necessary to adjust the sulfuric acid concentration of the electrolytic solution to 26.0 mass% to 37.0 mass% while setting it to 0.92 or less. In order to suppress a decrease in output characteristics, at least the ratio (Ve / V) is preferably 0.80 or more.
[0032]
【The invention's effect】
As described above, according to the configuration of the present invention, when the sulfuric acid concentration of the electrolytic solution is lowered for the purpose of improving the regenerative charging efficiency, the freezing of the electrolytic solution can be suppressed even when the SOC is used in an intermediate state. In addition, even if the electrolyte is frozen, it is possible to provide a control valve type lead-acid battery that suppresses deformation and breakage of the battery case, which is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the sulfuric acid concentration of an electrolyte and the charging current

Claims (2)

ガラス繊維もしくは合成樹脂繊維からなるマットセパレータと正極板および負極板とにより構成される極板群が電槽に収納され、前記極板群に保持されていて極板群から遊離した電解液を実質的に保有せず、
車速の減速時のエネルギーを回生エネルギーとして蓄電池の充電に適した電圧、電流に変換して受け入れ、かつ、蓄電池の充電状態を50%〜90%の中間状態で制御する制御弁式鉛蓄電池であって、
前記極板群が前記電槽に収納された状態において、前記マットセパレータの空孔体積をVとし、前記マットセパレータに含浸保持された電解液の体積をVeとした時に、比率(Ve/V)を0.92以下に設定するとともに、前記電解液の硫酸濃度を26.0質量%〜37.0質量%としたことを特徴とする制御弁式鉛蓄電池。
An electrode plate group composed of a mat separator made of glass fiber or synthetic resin fiber, a positive electrode plate and a negative electrode plate is housed in a battery case, and the electrolyte solution held by the electrode plate group and released from the electrode plate group is substantially Do not own,
It is a control valve type lead-acid battery that converts the energy at the time of deceleration of the vehicle speed into regenerative energy and converts it into a voltage and current suitable for charging the storage battery, and controls the charged state of the storage battery in an intermediate state of 50% to 90%. And
In a state where the electrode plate group is housed in the battery case, a ratio (Ve / V) where V is the pore volume of the mat separator and Ve is the volume of the electrolyte solution impregnated and held in the mat separator. Is set to 0.92 or less, and the sulfuric acid concentration of the electrolytic solution is set to 26.0 mass% to 37.0 mass%.
請求項1記載における比率(Ve/V)の下限値を0.80としたことを特徴とする請求項1記載の制御弁式鉛蓄電池。  The control valve type lead-acid battery according to claim 1, wherein the lower limit value of the ratio (Ve / V) in claim 1 is 0.80.
JP2002145827A 2002-05-21 2002-05-21 Control valve type lead acid battery Expired - Fee Related JP4232385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145827A JP4232385B2 (en) 2002-05-21 2002-05-21 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145827A JP4232385B2 (en) 2002-05-21 2002-05-21 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2003338309A JP2003338309A (en) 2003-11-28
JP4232385B2 true JP4232385B2 (en) 2009-03-04

Family

ID=29704988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145827A Expired - Fee Related JP4232385B2 (en) 2002-05-21 2002-05-21 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP4232385B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137518B2 (en) * 2011-12-21 2017-05-31 株式会社Gsユアサ Lead acid battery
CN114256515A (en) * 2021-11-02 2022-03-29 浙江长兴绿色电池科技有限公司 Research method for dynamic charge acceptance of exhaust type start-stop lead-acid storage battery

Also Published As

Publication number Publication date
JP2003338309A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
EP2263276B1 (en) Flooded lead-acid battery
JPWO2014038100A1 (en) Vehicle battery system and vehicle equipped with the same
JP2003174734A (en) Hybrid secondary battery
JP4515902B2 (en) Lead acid battery
JP6525167B2 (en) Lead storage battery
JP2004281197A (en) Lead acid storage battery
JP2002025630A (en) Power supply system of running vehicle
JP2001332264A (en) Lead battery with miniature control valve
JP4232385B2 (en) Control valve type lead acid battery
EP2381524B1 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP2003219575A (en) Power system
JP2003338312A (en) Control valve type lead-acid battery
JP2004273295A (en) Sealed nickel-hydrogen secondary battery and hybrid electric automobile equipped with the same
JP7331856B2 (en) lead acid battery
JP2003086254A (en) Hybrid secondary battery
JP2021111445A (en) Lead-acid battery
JP3707349B2 (en) Power supply system for traveling vehicles
JP4470381B2 (en) Lead acid battery
JPH0869811A (en) Lead-acid battery
JP2001155762A (en) Sealed lead cell for automobile
JP6956698B2 (en) Liquid lead-acid battery
JP2005294142A (en) Lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP2016103489A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees