JP6137518B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP6137518B2
JP6137518B2 JP2011280090A JP2011280090A JP6137518B2 JP 6137518 B2 JP6137518 B2 JP 6137518B2 JP 2011280090 A JP2011280090 A JP 2011280090A JP 2011280090 A JP2011280090 A JP 2011280090A JP 6137518 B2 JP6137518 B2 JP 6137518B2
Authority
JP
Japan
Prior art keywords
ions
charge acceptance
cesium
sulfate
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011280090A
Other languages
Japanese (ja)
Other versions
JP2013131389A (en
Inventor
勇貴 新井
勇貴 新井
祐一 岡田
祐一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2011280090A priority Critical patent/JP6137518B2/en
Publication of JP2013131389A publication Critical patent/JP2013131389A/en
Application granted granted Critical
Publication of JP6137518B2 publication Critical patent/JP6137518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

この発明は、回生充電受入性能と耐浸透短絡性能とに共に優れた鉛蓄電池に関するものである。   The present invention relates to a lead storage battery excellent in both regenerative charge acceptance performance and permeation resistance short circuit performance.

近時、地球温暖化防止への取り組みの一つとして、自動車業界ではCO排出量を抑制する環境対応車を開発することが急務となっており、既存のエンジン車についても様々な燃費改善技術の開発が進められている。 Recently, as one of the efforts to prevent global warming, the automobile industry has urgently required the development of environmentally friendly vehicles that reduce CO 2 emissions. Development is underway.

既存エンジン車の燃費改善策の一つに、ブレーキ制動の際に、運動エネルギーを電気エネルギーに変換し、これを電池に蓄えて利用するという方法、すなわち回生エネルギーの利用が挙げられる。アイドリングストップ車(IS車)では、このような回生エネルギーを利用し、燃費の向上を図っている。   One of the measures for improving the fuel efficiency of existing engine vehicles is a method of converting kinetic energy into electric energy and storing it in a battery when braking, that is, using regenerative energy. An idling stop vehicle (IS vehicle) uses such regenerative energy to improve fuel efficiency.

回生時に発生する電流は、通常の走行中に発電している電流に比べて格段に大きいが、発生する時間は数秒間と短い。このように瞬間的に発生する回生電流をできるだけ多く回収すること、すなわち回生充電受入性能(Regenerative Charge Acceptance:以下、RCAともいう。)を改善することは、鉛蓄電池にとって重要な技術課題となりつつある。   The current generated at the time of regeneration is much larger than the current generated during normal driving, but the generated time is as short as several seconds. Thus, collecting as much regenerative current that is generated instantaneously as possible, that is, improving regenerative charge acceptance (hereinafter also referred to as RCA), is becoming an important technical issue for lead-acid batteries. .

一方、従来から鉛蓄電池では、負極活物質上に鉛が溶解析出(デンドライト析出)することに起因する浸透短絡を抑制するために、電解液にナトリウムイオンやカリウムイオンが含有されている(特許文献1)。   On the other hand, in a conventional lead-acid battery, sodium ions and potassium ions are contained in the electrolytic solution in order to suppress a penetration short circuit due to dissolution and precipitation of lead (dendritic precipitation) on the negative electrode active material (Patent Document). 1).

特開平8−64226号公報JP-A-8-64226

しかしながら、本発明者らが検討したところ、電解液にナトリウムイオンやカリウムイオンが含有されていると、回生充電受入性能に悪影響が及ぶことが判明した。このため、回生充電受入性能と耐浸透短絡性能とを両立させることは困難であった。   However, when the present inventors examined, when sodium ion and potassium ion were contained in electrolyte solution, it became clear that it had a bad influence on regenerative charge acceptance performance. For this reason, it has been difficult to achieve both regenerative charge acceptance performance and permeation resistance short circuit performance.

そこで本発明は、上記現状に鑑み、回生充電受入性能と耐浸透短絡性能とに共に優れた鉛蓄電池を提供すべく図ったものである。   Therefore, in view of the above situation, the present invention is intended to provide a lead storage battery that is excellent in both regenerative charge acceptance performance and permeation short-circuit resistance.

本発明者は、鋭意検討の結果、電解液中のナトリウムイオンの濃度を低く抑えつつ、セシウムイオンを電解液中に含有させることにより、回生充電受入性能と耐浸透短絡性能とをいずれも良好な状態にできることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the inventor has achieved good regenerative charge acceptance performance and permeation short-circuit performance by containing cesium ions in the electrolyte while keeping the concentration of sodium ions in the electrolyte low. The present inventors have found that the state can be achieved and have completed the present invention.

すなわち本発明に係る鉛蓄電池は、50〜200mmol/Lのセシウムイオンと2〜30mmol/Lのナトリウムイオンとを含有する電解液を備えていることを特徴とする。   That is, the lead acid battery according to the present invention is characterized by including an electrolytic solution containing 50 to 200 mmol / L cesium ions and 2 to 30 mmol / L sodium ions.

前記電解液としては、20時間率電流で1.75Vまで放電させたときの硫酸濃度が3.3〜14.7質量%であるもの、又は、満充電状態の硫酸濃度が35.1〜43.1質量%であるものの方が本発明の効果が顕著にみられる。より好適な満充電状態の硫酸濃度は35.1〜38.6質量%である。   The electrolyte solution has a sulfuric acid concentration of 3.3 to 14.7% by mass when discharged to 1.75 V at a current of 20 hours, or a fully charged sulfuric acid concentration of 35.1 to 43. The effect of the present invention is more remarkable when the content is 1% by mass. A more preferable concentration of sulfuric acid in a fully charged state is 35.1 to 38.6% by mass.

前記セシウムイオンは、硫酸セシウムに由来するものであることが好ましい。   The cesium ion is preferably derived from cesium sulfate.

本発明は、上述した構成よりなるので、回生充電受入性能に悪影響を及ぼさずに耐浸透短絡性能に優れた鉛蓄電池を提供することができる。   Since this invention consists of the structure mentioned above, it can provide the lead storage battery excellent in permeation | short_circuit resistance short-circuit performance, without exerting a bad influence on regenerative charge acceptance performance.

実施例<試験1>において使用した試験セルの構成を示す表である。It is a table | surface which shows the structure of the test cell used in Example <Test 1>. 実施例<試験1>における各試験セルの回生充電電流の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the regenerative charging current of each test cell in an example <Test 1>. 実施例<試験1>における各試験セルの回生充電受入性能を示す表である。It is a table | surface which shows the regenerative charge acceptance performance of each test cell in an Example <Test 1>. 金属イオン種ごとに回生充電受入性能と溶解度とを比較したグラフである。It is the graph which compared regenerative charge acceptance performance and solubility for every metal ion species. 回生充電受入性能と溶解のギブスエネルギーとの関係を示すグラフである。It is a graph which shows the relationship between regenerative charge acceptance performance and the Gibbs energy of melt | dissolution.

以下に、本発明に係る鉛蓄電池の実施形態について説明する。   Below, the embodiment of the lead acid battery concerning the present invention is described.

本発明に係る鉛蓄電池は、例えば、二酸化鉛を活物質の主成分とする正極板と、鉛を活物質の主成分とする負極板と、これら極板の間に介在する多孔性又は不織布状のセパレータとからなる極板群を備えた液式又は制御弁式のものであり、当該極板群が希硫酸を主成分とする電解液に浸漬されてなるものである。   The lead storage battery according to the present invention includes, for example, a positive electrode plate containing lead dioxide as a main component of an active material, a negative electrode plate containing lead as a main component of an active material, and a porous or non-woven separator interposed between these electrode plates A liquid type or control valve type equipped with an electrode plate group consisting of the following: The electrode plate group is immersed in an electrolyte containing dilute sulfuric acid as a main component.

前記負極板は、Pb−Sb系合金やPb−Ca系合金等からなる格子体を備えたものであり、当該格子体にペースト状の活物質を充填することにより形成される。一方、前記正極板は、ペースト式である場合は、負極板と同様にして形成されるが、クラッド式である場合は、ガラス繊維等からなるチューブと、鉛合金の芯金との間に活物質を充填することにより形成される。これらの各構成部材は、目的・用途に応じて適宜公知のものから選択して用いることができる。   The negative electrode plate includes a lattice body made of a Pb—Sb alloy, a Pb—Ca alloy, or the like, and is formed by filling the lattice body with a paste-like active material. On the other hand, when the positive electrode plate is a paste type, it is formed in the same manner as the negative electrode plate. However, when it is a clad type, the positive electrode plate is formed between a tube made of glass fiber or the like and a lead alloy core metal. Formed by filling material. Each of these constituent members can be appropriately selected from known ones according to the purpose and use.

本発明で用いられる電解液は、50〜200mmol/Lのセシウムイオンと2〜30mmol/Lのナトリウムイオンとを含有するものである。セシウムイオン濃度が50mmol/L未満であると、充分な耐浸透短絡性能が得られず、セシウムイオン濃度が200mmol/Lを超えると、回生充電受入性能が低下する。また、セシウムイオンを高モル濃度、すなわち多量に含有させるのはコストの面でも好ましくない。   The electrolytic solution used in the present invention contains 50 to 200 mmol / L cesium ions and 2 to 30 mmol / L sodium ions. When the cesium ion concentration is less than 50 mmol / L, sufficient permeation resistance short circuit performance cannot be obtained, and when the cesium ion concentration exceeds 200 mmol / L, the regenerative charge acceptance performance decreases. Moreover, it is not preferable in terms of cost to contain cesium ions at a high molar concentration, that is, in a large amount.

また、ナトリウムイオン濃度が30mmol/Lを超えると、回生充電受入性能が低下する一方、ペースト添加材であるリグニンには通常ナトリウムが含まれているので、ナトリウムイオン濃度を2mmol/L未満とすることは、リグニン量を減らすことにつながり、鉛蓄電池の性能が著しく低下することになるので実質的に困難である。   In addition, when the sodium ion concentration exceeds 30 mmol / L, the regenerative charge acceptance performance deteriorates. On the other hand, since lignin, which is a paste additive, normally contains sodium, the sodium ion concentration should be less than 2 mmol / L. Leads to a decrease in the amount of lignin, and the performance of the lead-acid battery is significantly reduced, which is substantially difficult.

本発明で用いられる電解液中のアルカリ金属イオンの含有量が最小となる組み合わせは、ナトリウムイオンの含有量が2mmol/Lであり、セシウムイオンの含有量が50mmol/Lである。すなわち、合計のアルカリ金属イオンの含有量の最小は52mmol/Lである。これに対して、ナトリウムイオンの含有量が30mmol/Lであり、セシウムイオンの含有量が30mmol/Lであるという組み合わせについては、アルカリ金属イオンの合計の含有量が52mmol/Lを越えているにもかかわらず、耐浸透短絡性能が得られなかった。この理由は必ずしも確かではないが、ナトリウムイオンとセシウムイオンとが互いに活量を下げる働きをしているためであると考えられる。   The combination that minimizes the content of alkali metal ions in the electrolytic solution used in the present invention has a sodium ion content of 2 mmol / L and a cesium ion content of 50 mmol / L. That is, the minimum content of total alkali metal ions is 52 mmol / L. On the other hand, for the combination that the sodium ion content is 30 mmol / L and the cesium ion content is 30 mmol / L, the total content of alkali metal ions exceeds 52 mmol / L. Nevertheless, the permeation-resistant short-circuit performance was not obtained. Although this reason is not necessarily certain, it is considered that sodium ions and cesium ions have a function of lowering the activity of each other.

また、ナトリウムイオンとセシウムイオンとはいずれもアルカリ金属イオンであるが、回生充電受入性能に及ぼす影響については全く異なっている。このナトリウムイオン及びセシウムイオンの回生充電受入性能に及ぼす影響の相違は、各金属イオンの塩の溶解のギブスエネルギーに相関するものであることが、本発明者らの検討結果より明らかとなった。以下に硫酸塩を例に挙げて説明する。   Moreover, although sodium ion and cesium ion are both alkali metal ions, the influence on the regenerative charge acceptance performance is completely different. It became clear from the examination results of the present inventors that the difference in the influence of sodium ions and cesium ions on the regenerative charge acceptance performance correlates with the Gibbs energy of dissolution of the salt of each metal ion. In the following, description will be made by taking sulfate as an example.

回生充電受入性能に及ぼす影響の大きさは、同じアルカリ金属イオンであっても金属イオン種によって大きく変化し、その依存性は、後述する図2及び図3に示すように、Li>Na>K<Rb<Csであり、しかも広い濃度範囲で成立することが判明した。この依存性は、普遍的な硫酸塩の溶解度の値と同じである(図4参照)。この硫酸塩の溶解反応は次の一般式(1)で表すことができる。 The magnitude of the effect on the regenerative charge acceptance performance varies greatly depending on the metal ion species even for the same alkali metal ion, and the dependence thereof is Li + > Na + as shown in FIGS. It was found that> K + <Rb + <Cs + , and it was established in a wide concentration range. This dependence is the same as the universal sulfate solubility value (see FIG. 4). This sulfate dissolution reaction can be represented by the following general formula (1).

式(1)において、Mは任意の金属を示す。溶解度は、溶質が溶媒にそれ以上溶解することのできないときにおける溶質の濃度であり、式(1)の正反応(溶解反応)と式(1)の逆反応(生成反応)の平衡が成り立っている状態である。アルカリ金属の硫酸塩の種類によって溶解度に差があるということは、アルカリ金属イオンの種類によって平衡が異なるということを示している。溶解・生成に関する平衡は、溶解度積Kspとして示される。そして、溶解度積は、溶解のギブスエネルギーΔGと式(2)及び(3)で表される関係がある。 In the formula (1), M represents an arbitrary metal. The solubility is the concentration of the solute when the solute cannot be further dissolved in the solvent, and the equilibrium between the forward reaction (dissolution reaction) of formula (1) and the reverse reaction (formation reaction) of formula (1) is established. It is in a state. The difference in solubility depending on the type of alkali metal sulfate indicates that the equilibrium differs depending on the type of alkali metal ion. The equilibrium for dissolution / generation is shown as the solubility product Ksp . The solubility product has a relationship represented by equations (2) and (3) with the Gibbs energy ΔG d of dissolution.

式(2)及び(3)において、[]は溶液中のイオン濃度、Rは気体の状態定数、Tは温度を示す。硫酸塩の溶解のギブスエネルギーは、金属イオンと硫酸イオンとの間の親和性の強さを示す指標であり、より正に大きいほど、その親和性が高いことを意味する。アルカリ金属の硫酸塩の中では、硫酸カリウムが最も溶解度が低いため溶解のギブスエネルギーが最も正に大きい。つまり、Kが最も硫酸イオンとの親和性が高く、次いでNaが硫酸イオンとの親和性が高い。反対に、アルカリ金属の硫酸塩の中では、硫酸セシウムが最も溶解度が高いため溶解のギブスエネルギーが最も負に大きい。つまり、Csが最も硫酸イオンとの親和性が低い。 In formulas (2) and (3), [] is the ion concentration in the solution, R is the gas state constant, and T is the temperature. The Gibbs energy of dissolution of sulfate is an index indicating the strength of affinity between metal ions and sulfate ions, and the more positive the value, the higher the affinity. Among alkali metal sulfates, potassium sulfate has the lowest solubility, so the Gibbs energy for dissolution is the most positive. That is, K + has the highest affinity with sulfate ions, and Na + has the highest affinity with sulfate ions. On the other hand, among alkali metal sulfates, cesium sulfate has the highest solubility, so the Gibbs energy for dissolution is the most negative. That is, Cs + has the lowest affinity for sulfate ions.

実験により求めた回生充電受入性能と溶解のギブスエネルギーとの関係を図5に示す。この関係から、負に大きい溶解のギブスエネルギーを持つものは回生充電受入性能が低下せず、正に大きい溶解のギブスエネルギーを持つものは回生充電受入性能が低下する傾向があると分類することができる。すなわち、硫酸イオンとの親和性が高い金属イオンは回生充電受入性能が低下し、親和性が低い金属イオンは、回生充電受入性能が低下しないと分類することができる。   FIG. 5 shows the relationship between the regenerative charge acceptance performance obtained by the experiment and the Gibbs energy of dissolution. From this relationship, those with negatively large melting Gibbs energy do not decrease the regenerative charge acceptance performance, and those with positive large melting Gibbs energy may be classified as having a tendency to decrease regenerative charge acceptance performance. it can. That is, it is possible to classify that metal ions having high affinity with sulfate ions have low regenerative charge acceptance performance, and metal ions having low affinity have no reduction in regenerative charge acceptance performance.

希硫酸中において多くの金属電極には硫酸イオンが特異吸着することが知られており(Y. Shingaya and M. Ito,
J. Electroanal. Chem., 467, 299 (1999); M. Nakamura, N. Ikemiya, A. Iwasaki, Y. Suzuki,
and M. Ito, J. Electroanal. Chem., 566, 385 (2004))、鉛電極についても同様に、硫酸イオンが特異吸着しているものと考えられる。この硫酸イオンは周囲のカチオン(鉛イオン、プロトン)及び水と相互作用しているものと考えられ、金属硫酸塩を添加したときには、その金属イオンとも相互作用するものと考えられる。そして、その相互作用の強さは、金属イオンと硫酸イオンとの間の親和性の違いによって異なると推察される。金属イオンの種類により回生充電受入性能が異なるのは、このことが関係しているものと考えられる。
It is known that sulfate ions are specifically adsorbed on many metal electrodes in dilute sulfuric acid (Y. Shingaya and M. Ito,
J. Electroanal. Chem., 467, 299 (1999); M. Nakamura, N. Ikemiya, A. Iwasaki, Y. Suzuki,
and M. Ito, J. Electroanal. Chem., 566, 385 (2004)), and the lead electrode is also considered to have specifically adsorbed sulfate ions. This sulfate ion is considered to interact with surrounding cations (lead ions, protons) and water, and when a metal sulfate is added, it is also considered to interact with the metal ion. The strength of the interaction is presumed to vary depending on the difference in affinity between metal ions and sulfate ions. This is considered to be related to the fact that the regenerative charge acceptance performance differs depending on the type of metal ion.

従って、金属イオンと硫酸イオンとの間の親和性の強さが回生充電受入性能に影響を及ぼしているものと考えられる。   Therefore, it is considered that the strength of affinity between metal ions and sulfate ions affects the regenerative charge acceptance performance.

本発明で用いられる電解液中のセシウムイオンは、硫酸セシウムとして添加されることが好ましい。セシウムイオンを硫酸セシウムとして電解液中に添加することにより、深放電により電解液中の希硫酸に由来する硫酸イオンが枯渇しかけても、硫酸セシウムに由来する硫酸イオンが電解液に導電性を付与するので、電解液の抵抗を低く抑えて充電回復性能の低下を抑制することができる。また、硫酸イオン濃度を高くすることより電解液中への硫酸鉛の溶解を抑制することができるので、浸透短絡を防ぐことができる。   The cesium ion in the electrolytic solution used in the present invention is preferably added as cesium sulfate. By adding cesium ions as cesium sulfate to the electrolyte, the sulfate ions derived from the dilute sulfuric acid in the electrolyte solution are depleted by the deep discharge, and the sulfate ions derived from the cesium sulfate impart conductivity to the electrolyte solution. As a result, the resistance of the electrolytic solution can be kept low, and the deterioration of the charge recovery performance can be suppressed. Moreover, since the dissolution of lead sulfate in the electrolytic solution can be suppressed by increasing the sulfate ion concentration, an osmotic short circuit can be prevented.

鉛蓄電池の電解液の硫酸濃度は放電に伴い低下するが、浸透短絡は、硫酸濃度が極端に低下したときに生じる現象である。硫酸濃度が低下すると、鉛イオンの飽和濃度が高くなり、金属鉛がデンドライト析出しやすくなるためである。このため、放電後の硫酸濃度が高い場合には、鉛イオンの飽和濃度が低く、浸透短絡が発生しにくい。これに対して、20時間率電流で1.75Vまで放電させたときの電解液の硫酸濃度が14.7質量%を下回るような場合には浸透短絡が起こりやすく、特に電解液量の少ない制御弁式鉛蓄電池ではこのような深い放電になりやすい。本発明はこのような場合に効果的に浸透短絡を防止することができる。一方、本発明者が調べたところ、20時間率電流で1.75Vまで放電させた場合、硫酸濃度は3.3質量%未満にはならなかった。   Although the sulfuric acid concentration of the electrolyte solution of the lead storage battery decreases with discharge, the osmotic short circuit is a phenomenon that occurs when the sulfuric acid concentration decreases extremely. This is because, when the sulfuric acid concentration is lowered, the saturation concentration of lead ions is increased, and metal lead is liable to precipitate dendrites. For this reason, when the sulfuric acid density | concentration after discharge is high, the saturation density | concentration of lead ion is low and an osmosis | permeation short circuit does not generate | occur | produce easily. On the other hand, when the sulfuric acid concentration of the electrolytic solution when discharged to 1.75 V at a 20 hour rate current is less than 14.7% by mass, an osmotic short circuit is likely to occur, and in particular, a control with a small amount of electrolytic solution. Such a deep discharge is likely to occur in valve-type lead-acid batteries. The present invention can effectively prevent the penetration short circuit in such a case. On the other hand, as a result of investigation by the present inventors, the sulfuric acid concentration did not become less than 3.3% by mass when discharged to 1.75 V at a 20 hour rate current.

また、回生充電受入性能は満充電時の硫酸濃度が高い方が低く、満充電時の硫酸濃度が43.1質量%よりも高いと充分な回生充電受入性能が得られず、35.1〜38.6質量%の硫酸濃度において特に良好に回生充電受入性能を発現することができる。一方、硫酸濃度が35.1質量%未満であると、セシウムイオンを含有させなくとも充分な回生充電受入性能を得ることが可能である。   The regenerative charge acceptance performance is lower when the sulfuric acid concentration at full charge is higher, and if the sulfuric acid concentration at full charge is higher than 43.1% by mass, sufficient regenerative charge acceptance performance cannot be obtained, and 35.1 Regenerative charge acceptance performance can be exhibited particularly well at a sulfuric acid concentration of 38.6% by mass. On the other hand, when the sulfuric acid concentration is less than 35.1% by mass, it is possible to obtain sufficient regenerative charge acceptance performance without containing cesium ions.

このような回生充電受入性能に優れた本発明に係る鉛蓄電池は、アイドリングストップ車に好適に用いることができる。   Such a lead-acid battery according to the present invention having excellent regenerative charge acceptance performance can be suitably used for an idling stop vehicle.

ここで、アイドリングストップ車とは、短時間のエンジン停止と再始動という一連の制御を、特別な操作を必要とすることなく自動的に行う機構を備えた自動車であり、より具体的には、走行時においては、通常の自動車と同様に、自動車のエンジンの回転に伴って発電するオルタネータの交流電流を整流して、電子機器等の負荷や鉛蓄電池に直流電流を供給する一方で、赤信号等で自動車が停止するとエンジンを自動的に停止(オルタネータも発電を停止)させ、青信号等で再走行するときには、イグニションキーを動かさなくても、鉛蓄電池からの放電によって自動的にエンジンを再始動させるように構成されたものである。   Here, the idling stop vehicle is an automobile equipped with a mechanism that automatically performs a series of controls such as engine stop and restart for a short time without requiring a special operation, and more specifically, When driving, like an ordinary automobile, the alternating current of an alternator that generates electricity as the automobile engine rotates is rectified to supply a direct current to a load such as an electronic device or a lead storage battery. When the car stops, etc., the engine is automatically stopped (the alternator also stops power generation), and when driving again with a green light, etc., the engine is automatically restarted by discharging from the lead-acid battery without moving the ignition key. It is comprised so that it may make it.

このようなアイドリングストップ車では、上述のとおり回生充電が実施される。鉛蓄電池の回生充電受入性能が優れていればエンジンを駆動力とした発電を減らすことができるため、エンジンの負荷が減り、燃費の向上を図ることができる。このため、アイドリングストップ車用の鉛蓄電池として、本発明に係る鉛蓄電池を用いることによって、燃費の向上を図ることができる。   In such an idling stop vehicle, regenerative charging is performed as described above. If the regenerative charge acceptance performance of the lead storage battery is excellent, power generation using the engine as a driving force can be reduced, so that the load on the engine is reduced and fuel efficiency can be improved. For this reason, fuel efficiency can be improved by using the lead storage battery according to the present invention as a lead storage battery for an idling stop vehicle.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<試験1>金属イオン種の相違による回生充電受入性能(RCA)への影響
1.試験セル
RCAの評価には、正極2枚、負極1枚構成の試験セルを用いた。試験セルの詳細を図1に示す。常法に従って化成を行い、試験セルの電解液(希硫酸)に各アルカリ金属イオンの硫酸塩を添加し、電解液中のアルカリ金属イオン濃度が所定の値となるようにした。なお、参照極には、Pb/PbSO/5.27M HSOを用いた。
<Test 1> Effect on regenerative charge acceptance performance (RCA) due to difference in metal ion species Test cell For the evaluation of RCA, a test cell comprising two positive electrodes and one negative electrode was used. Details of the test cell are shown in FIG. Chemical conversion was performed according to a conventional method, and sulfates of each alkali metal ion were added to the electrolyte solution (dilute sulfuric acid) of the test cell so that the alkali metal ion concentration in the electrolyte solution became a predetermined value. In addition, Pb / PbSO 4 /5.27MH 2 SO 4 was used for the reference electrode.

2.回生充電受入性能
実車における回生充電制御を模擬して、次の条件で試験を行った。RCAは以下の条件下で定電流−定電圧充電により評価したときの10秒間に充電される電気量の大小で判断した。
2. Regenerative charge acceptance performance A test was performed under the following conditions, simulating regenerative charge control in a real vehicle. RCA was judged by the magnitude of the amount of electricity charged in 10 seconds when evaluated by constant current-constant voltage charging under the following conditions.

(a)DODの調整:完全充電の状態から120mA(0.2CA)で0.5h放電(DOD10%の状態)
(b)休止:12h
(c)回生充電
最大電流:1.8A(3CA)
充電電圧:2.40V
充電時間:10sec
温度:25℃
(A) DOD adjustment: from fully charged state to 120 mA (0.2 CA) for 0.5 h discharge (DOD 10% state)
(B) Pause: 12h
(C) Regenerative charging maximum current: 1.8A (3CA)
Charging voltage: 2.40V
Charging time: 10 sec
Temperature: 25 ° C

3.金属イオンの種類及び濃度
アルカリ金属(Li、Na、K、Rb、Cs)の各イオンを電解液中に含有する試験セルの評価を行った。なお、以下では、例えばリチウムイオンを電解液中に含む試験セルをLi添加品等と表記する。各添加品のRCAを評価するために、電解液に添加する金属硫酸塩の濃度を50mmol/Lに揃えて、評価を行った。回生充電電流の経時変化を図2に示し、また、RCAの相対値を図3に示す。
3. Types and concentrations of metal ions Test cells containing alkali metal (Li, Na, K, Rb, Cs) ions in the electrolyte were evaluated. In the following, for example, a test cell containing lithium ions in an electrolyte is referred to as a Li-added product. In order to evaluate the RCA of each additive product, the concentration of the metal sulfate added to the electrolytic solution was adjusted to 50 mmol / L, and the evaluation was performed. The time-dependent change of the regenerative charging current is shown in FIG. 2, and the relative value of RCA is shown in FIG.

Na、K、Rb添加品のRCAは低く、その中でも、K添加品の値が特に低かった。一方、Li、Cs添加品は無添加品の値と同程度であった。アルカリ金属イオンに関してRCAの傾向をまとめると、Li添加品>Na添加品>K添加品<Rb添加品<Cs添加品となる。   The RCA of Na, K, and Rb-added products was low, and among them, the value of K-added products was particularly low. On the other hand, Li and Cs-added products were almost the same as the value of the additive-free product. To summarize the trend of RCA with respect to alkali metal ions, Li-added product> Na-added product> K-added product <Rb-added product <Cs-added product.

Na、K、Rb添加品と無添加品との回生充電電流の差は、充電を開始した直後が最も大きく、時間が経過するにつれて、その差は小さくなっている。つまり、この充電受入性能の差異は、数秒間で評価するRCAだからこそ顕在化する現象であり、例えばJIS充電受入性試験のように数10分間単位で評価する充電受入性能にはこのような差異が現れないと考えられる。   The difference in the regenerative charging current between the Na, K, Rb-added product and the non-added product is greatest immediately after the start of charging, and the difference decreases with time. In other words, this difference in charge acceptance performance is a phenomenon that becomes apparent because of RCA that is evaluated in a few seconds. For example, such a difference in charge acceptance performance that is evaluated in units of several tens of minutes as in the JIS charge acceptance test. It is thought that it does not appear.

<試験2>セシウムイオン濃度及びナトリウムイオン濃度の回生充電受入性能及び耐浸透短絡性能への影響
常法で作製された正極板2枚、負極板1枚を使用し、また、試験電池は、一般に使用されているPEセパレータ(厚み:0.65mm)で負極板をU字巻きで包装し、正極板と負極板とを交互に重ねて、圧迫力をかけずに組み立てた構成とした。その後、常法に従って化成を行い、試験セルの電解液(希硫酸)に各アルカリ金属イオンの硫酸塩を添加し、電解液中のアルカリ金属イオン濃度が所定の値となるようにした。
<Test 2> Effects of cesium ion concentration and sodium ion concentration on regenerative charge acceptance performance and permeation resistance short circuit performance Two positive plates and one negative plate prepared in a conventional manner were used. The negative electrode plate was wrapped in a U-shape with the PE separator (thickness: 0.65 mm) used, and the positive electrode plate and the negative electrode plate were alternately stacked to assemble them without applying pressure. Then, it formed in accordance with the conventional method, and added the sulfate of each alkali metal ion to the electrolyte solution (dilute sulfuric acid) of a test cell so that the alkali metal ion concentration in electrolyte solution might become a predetermined value.

浸透短絡試験は次の条件で行った。
・放電1:0.1CA×5h(温度25℃)
・放電2:2Wランプ(30日間放置)
・充電:最大電流1CA、充電電圧2.4V、充電時間10分間
・温度:25℃
・耐浸透短絡性能の評価:セパレータ内に短絡痕があるかどうか
The penetration short circuit test was conducted under the following conditions.
-Discharge 1: 0.1 CA x 5 h (temperature 25 ° C)
・ Discharge 2: 2W lamp (left for 30 days)
・ Charging: Maximum current 1CA, charging voltage 2.4V, charging time 10 minutes ・ Temperature: 25 ℃
・ Evaluation of permeation-resistant short-circuit performance: Whether there are short-circuit marks in the separator

回生充電受入性試験は次の条件で行った。
・放電:0.2CA×30min
・放置:12時間
・充電:最大電流:3CA
・制限電圧:2.40V
・温度:25℃
・回生充電受入性能の評価:10秒間の充電電気量
The regenerative charge acceptance test was conducted under the following conditions.
・ Discharge: 0.2CA × 30min
・ Left: 12 hours ・ Charging: Maximum current: 3CA
・ Limited voltage: 2.40V
・ Temperature: 25 ℃
・ Evaluation of regenerative charge acceptance performance: 10 seconds of charge electricity

得られた結果を表1に示した。なお、表1中において、回生充電受入性能は、サンプルNo.1(ナトリウムイオン濃度2mmol/L、セシウムイオン濃度0mmol/L)の10秒間の充電電気量を100とする相対値で表し、回生充電受入性能が100以上であるサンプルを合格とした。   The obtained results are shown in Table 1. In Table 1, the regenerative charge acceptance performance is shown in Sample No. A sample having a regenerative charge acceptance performance of 100 or more was expressed as a pass value, expressed as a relative value of 1 (sodium ion concentration 2 mmol / L, cesium ion concentration 0 mmol / L) for 10 seconds.

表1に示すように、電解液中の各金属イオン種の濃度が、セシウムイオンが50〜200mmol/Lでナトリウムイオンが2〜30mmol/Lである場合においてのみ、回生充電受入性能と耐浸透短絡性能との両方が良好であることが明らかになった。   As shown in Table 1, regenerative charge acceptance performance and permeation-resistant short circuit only when the concentration of each metal ion species in the electrolytic solution is 50 to 200 mmol / L for cesium ions and 2 to 30 mmol / L for sodium ions. It was found that both performance and performance were good.

Claims (3)

回生充電受入性能を向上させるために、50〜200mmol/Lのセシウムイオンと2〜30mmol/Lのナトリウムイオンとを含有する電解液を備え
前記セシウムイオンは、化学式CsM(SO ・12H Oで表されて元素MがAl、Cr、又はMnである物質を除く物質に由来するものであり、
前記電解液は、20時間率電流で1.75Vまで放電させたときの硫酸濃度が3.3〜14.7質量%であるものであることを特徴とする鉛蓄電池。
In order to improve the regenerative charge acceptance performance, it comprises an electrolytic solution containing 50 to 200 mmol / L cesium ions and 2 to 30 mmol / L sodium ions ,
The cesium ion is derived from a substance excluding a substance represented by the chemical formula CsM (SO 4 ) 2 · 12H 2 O and the element M being Al, Cr, or Mn,
The lead acid battery according to claim 1, wherein the electrolytic solution has a sulfuric acid concentration of 3.3 to 14.7% by mass when discharged to 1.75 V at a current of 20 hours .
前記電解液は、満充電状態の硫酸濃度が35.1〜43.1質量%であるものである請求項1記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the electrolytic solution has a fully charged sulfuric acid concentration of 35.1 to 43.1% by mass. 前記セシウムイオンは、硫酸セシウムに由来するものである請求項1又は2記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the cesium ion is derived from cesium sulfate.
JP2011280090A 2011-12-21 2011-12-21 Lead acid battery Expired - Fee Related JP6137518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280090A JP6137518B2 (en) 2011-12-21 2011-12-21 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280090A JP6137518B2 (en) 2011-12-21 2011-12-21 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2013131389A JP2013131389A (en) 2013-07-04
JP6137518B2 true JP6137518B2 (en) 2017-05-31

Family

ID=48908785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280090A Expired - Fee Related JP6137518B2 (en) 2011-12-21 2011-12-21 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6137518B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121510A1 (en) * 2015-01-28 2016-08-04 日立化成株式会社 Lead storage cell and automobile provided with same
SG11202102408TA (en) * 2018-09-25 2021-04-29 Gs Yuasa Int Ltd Lead-acid battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179063A (en) * 1990-11-08 1992-06-25 Japan Storage Battery Co Ltd Sealed type lead-acid battery
JPH0864226A (en) * 1994-08-18 1996-03-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP4232385B2 (en) * 2002-05-21 2009-03-04 パナソニック株式会社 Control valve type lead acid battery
US20100047697A1 (en) * 2004-01-13 2010-02-25 Stauffer John E Lead-zinc battery
CN101091282B (en) * 2005-09-27 2014-09-03 古河电池株式会社 Lead storage battery and process for producing the same

Also Published As

Publication number Publication date
JP2013131389A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP6004506B2 (en) Alkali metal-sulfur secondary battery
JP2008243487A (en) Lead acid battery
JP6331161B2 (en) Control valve type lead acid battery
JP6168138B2 (en) Liquid lead-acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6004275B2 (en) Alkali metal-sulfur secondary battery
JP6045329B2 (en) Lead acid battery
JP2008130516A (en) Liquid lead-acid storage battery
JP6004276B2 (en) Alkali metal-sulfur secondary battery
JP2010170939A (en) Lead storage battery
JP2008243493A (en) Lead acid storage battery
JP6137518B2 (en) Lead acid battery
JP5839229B2 (en) Lead acid battery
JPWO2014087565A1 (en) Lead-acid battery grid and lead-acid battery
JP5573785B2 (en) Lead acid battery
WO2014097516A1 (en) Lead storage battery
JPWO2011027383A1 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP2013073716A (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP2013120680A (en) Water electrolysis hybrid storage battery
JP2005063876A (en) Storage battery regenerant, and regeneration method of deteriorated storage battery using it
JP5504383B1 (en) Lead acid battery
JP2005268061A (en) Lead storage cell
JP2022187783A (en) Valve-regulated lead-acid battery, manufacturing method thereof, and power storage system including valve-regulated lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170419

R150 Certificate of patent or registration of utility model

Ref document number: 6137518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees