JP2013120680A - Water electrolysis hybrid storage battery - Google Patents

Water electrolysis hybrid storage battery Download PDF

Info

Publication number
JP2013120680A
JP2013120680A JP2011267886A JP2011267886A JP2013120680A JP 2013120680 A JP2013120680 A JP 2013120680A JP 2011267886 A JP2011267886 A JP 2011267886A JP 2011267886 A JP2011267886 A JP 2011267886A JP 2013120680 A JP2013120680 A JP 2013120680A
Authority
JP
Japan
Prior art keywords
water electrolysis
storage battery
voltage
battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011267886A
Other languages
Japanese (ja)
Inventor
Naoyoshi Kachi
直芳 可知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011267886A priority Critical patent/JP2013120680A/en
Publication of JP2013120680A publication Critical patent/JP2013120680A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water electrolysis hybrid storage battery capable of preventing overcharge without providing an expensive protective switch, or the like, corresponding to a high current and a large voltage and preventing burst, firing, and the like, of an enclosed storage battery such as a lithium ion storage battery due to overcharge of the emergency.SOLUTION: In a water electrolysis hybrid storage battery consisting of a virtual battery 32 constituted of parallel connection of enclosed storage batteries and water electrolytic device 26A, i.e., electrochemical cells using an aqueous solution as an electrolyte, or of a series connection of a plurality of virtual batteries, when overcharge energy leading to overcharge of the enclosed storage batteries is applied to the virtual battery, the water electrolytic device absorbs energy by performing electrolysis reaction of water, and prevents the charging voltage of the virtual battery from reaching the overvoltage dangerous voltage of the enclosed storage batteries.

Description

本発明は、リチウムイオン蓄電池等の密閉型蓄電池と耐過充電機能を有する電気化学セルとを並列接続してなる仮想電池が単数個又は複数個直列接続された水電解型ハイブリッド蓄電池に関する。   The present invention relates to a water electrolysis hybrid storage battery in which a single or a plurality of virtual batteries formed by connecting in parallel a sealed storage battery such as a lithium ion storage battery and an electrochemical cell having an anti-overcharge function are connected in series.

従来の化石燃料を駆動エネルギの主体とする自動車は、その排気ガスによって地球環境に悪影響を与えている。これに対して、排気ガスを出さない電気自動車や、若しくは著しくその排出量を軽減したハイブリッド自動車を広く使用することが、環境改善の点から非常に期待され、また、夜間の余剰電力の有効利用の点からも推奨されている。また、電力の安定化のために分散型の電力貯蔵システムを配することが望まれている。   Conventional automobiles mainly using fossil fuel as driving energy have an adverse effect on the global environment due to the exhaust gas. On the other hand, widespread use of electric vehicles that do not emit exhaust gas or hybrid vehicles that significantly reduce their emissions is highly expected from the viewpoint of environmental improvement, and effective use of surplus power at night This is also recommended. In addition, it is desired to provide a distributed power storage system for power stabilization.

しかしながら、蓄電池が非常に重い、高価である、又は安全性が低いなどの課題があった。例えば、エネルギあたりの単価が安い鉛蓄電池等の水溶液系蓄電池は非常に重く、エネルギ密度が高く軽いリチウムイオン蓄電池等の有機溶液系蓄電池は非常に高価でかつ安全性に課題があった。   However, there are problems such that the storage battery is very heavy, expensive, or low in safety. For example, an aqueous solution storage battery such as a lead storage battery having a low unit price per energy is very heavy, and an organic solution storage battery such as a lithium ion storage battery having a high energy density and a light weight is very expensive and has a problem in safety.

リチウムイオン蓄電池等の有機溶液型蓄電池は、鉛蓄電池等の水溶液系蓄電池と異なり過充電耐性がなく、電解質(電解液)が可燃物であるため過充電による発熱により電池爆発などの危険性がある。このような安全性の課題を解決するために、従来、過充電からリチウムイオン蓄電池等の有機溶液系蓄電池を保護するための保護回路や保護スイッチが用いられてきた。   Organic solution storage batteries such as lithium-ion storage batteries are not overcharged and are not flammable unlike aqueous storage batteries such as lead storage batteries. Because the electrolyte (electrolyte) is a combustible material, there is a risk of battery explosion due to overheating. . In order to solve such safety problems, a protection circuit and a protection switch for protecting an organic solution storage battery such as a lithium ion storage battery from overcharging have been conventionally used.

このため、リチウムイオン蓄電池では、高価な電池材料に由来する電池単体コストが高いだけでなく、保護回路や保護スイッチを構成する電子回路、部品のコストも高く、非常に高価な電池となっている。ここでいう保護回路、保護スイッチとは、特許文献1に開示されているように、電池の電圧や温度及び電池に流れる電流を計測し、これらの数値が一定以上となって電池が過電圧、過温度、過電流に曝された場合に、電池を充放電回路から切り離して電池を保護する保護回路、保護スイッチをいう。   For this reason, in the lithium ion storage battery, not only the cost of a single battery derived from an expensive battery material is high, but also the cost of electronic circuits and parts constituting the protection circuit and the protection switch is high, and the battery is very expensive. . As disclosed in Patent Document 1, the protection circuit and the protection switch referred to here measure the voltage and temperature of the battery and the current flowing through the battery. A protection circuit or protection switch that protects a battery by disconnecting the battery from a charge / discharge circuit when exposed to temperature or overcurrent.

このような保護回路や保護スイッチは、従来、鉛蓄電池には不要であったが、上述したように、過電圧、過温度、過電流による危険性のため、リチウムイオン蓄電池には必須である。特に安全性に深刻な影響を与える過充電を防止することが、保護回路や保護スイッチにとって最も重要な役割であった。携帯電話やラップトップコンンピュータや電動工具等の携帯機器とは異なり、電気自動車や電力貯蔵システムにリチウムイオン蓄電池を用いた場合には、その仕様(定格)電圧や仕様(定格)電流が携帯機器の10倍以上に大きくなり、それに伴って保護回路、保護スイッチの仕様も大電流、大電圧対応となる必要があり、そのために熱や抵抗、アークなどの対策が必要になり、保護回路や保護スイッチのコストが非常に高価になるという課題があった。   Conventionally, such a protection circuit and a protection switch are not necessary for a lead storage battery. However, as described above, the protection circuit and the protection switch are indispensable for a lithium ion storage battery because of dangers due to overvoltage, overtemperature, and overcurrent. In particular, preventing overcharging that has a serious impact on safety was the most important role for protection circuits and protection switches. Unlike portable devices such as mobile phones, laptop computers, and power tools, when a lithium-ion battery is used in an electric vehicle or power storage system, the specifications (rated) voltage and specifications (rated) current may be As a result, the specifications of the protection circuit and protection switch need to be compatible with large currents and voltages, and measures such as heat, resistance, and arc are required. There is a problem that the cost of the switch becomes very expensive.

また、保護回路や保護スイッチは、数ミリ秒程度の過充電においても直ちに起動し、リチウムイオン蓄電池を電力負荷回路から切断する。いったん回路から切断されたリチウムイオン蓄電池を再び回路に接続するには、例えば回路の安全性を複数の手順を経て確認した後に保護スイッチを切り替えるといった操作が必要となる。このようなリチウムイオン蓄電池の電力負荷回路からの切断、安全性の確認及び保護スイッチの切り替えは基本的に自動操作であり、特に労力を必要としない。しかし、複雑なアルゴリズムからなる保護回路ソフトウエアを必要とし、その信頼性を検証するための開発は大変難度が高く時間もかかるという課題があった。   Further, the protection circuit and the protection switch are activated immediately even in the case of overcharge of about several milliseconds, and the lithium ion storage battery is disconnected from the power load circuit. In order to connect the lithium ion storage battery once disconnected from the circuit to the circuit again, for example, an operation of switching the protection switch after confirming the safety of the circuit through a plurality of procedures is required. Such disconnection of the lithium ion storage battery from the power load circuit, confirmation of safety, and switching of the protection switch are basically automatic operations, and no effort is required. However, there is a problem that a protection circuit software composed of a complicated algorithm is required, and development for verifying the reliability is very difficult and takes time.

また、電力負荷回路に接続されているリチウムイオン蓄電池は負荷回路の電圧変動を吸収する役割を担っているが、リチウムイオン蓄電池が保護回路、保護スイッチにより回路から切り離されると、リチウムイオン蓄電池と同じ電力負荷回路に接続されている他の電子機器に電圧変動負荷が直接印可されるという課題があった。さらに、リチウムイオン蓄電池がその保護回路により電力負荷回路から切断されるタイミングは予測できないため、例えばリチウムイオン蓄電池が電気自動車の動力源として用いられている場合等には、回生ブレーキから通常ブレーキへ切り替えるタイミングを予測し設定することが困難であるなど、他のシステムと連動させる際に様々な課題があった。このような蓄電池の予期せぬタイミングでの電力負荷からの切断によりシステムへ及ぼされ得る影響は、負荷回路の電力容量や蓄電池の電気容量が大きくなるほど深刻になる。例えば据え置き型の電力貯蔵装置の場合は、電力回線からの切断や再投入の影響は計り知れないものがある。そのため、リチウムイオン蓄電池等の有機溶液系蓄電池の過充電耐性を向上させ、保護回路や保護スイッチによる回路からの電池切断を不要にすることが望まれていた。   In addition, the lithium ion storage battery connected to the power load circuit is responsible for absorbing voltage fluctuations in the load circuit, but when the lithium ion storage battery is disconnected from the circuit by the protection circuit and the protection switch, it is the same as the lithium ion storage battery. There has been a problem that a voltage fluctuation load is directly applied to another electronic device connected to the power load circuit. Furthermore, since the timing at which the lithium ion storage battery is disconnected from the power load circuit by the protection circuit cannot be predicted, for example, when the lithium ion storage battery is used as a power source for an electric vehicle, the regenerative brake is switched to the normal brake. There were various problems in linking with other systems, such as difficulty in predicting and setting timing. The influence that can be exerted on the system by disconnecting the storage battery from the power load at an unexpected timing becomes more serious as the power capacity of the load circuit or the electrical capacity of the storage battery increases. For example, in the case of a stationary power storage device, the effects of disconnection and re-input from the power line are immeasurable. Therefore, it has been desired to improve the overcharge resistance of an organic solution storage battery such as a lithium ion storage battery and eliminate the need for disconnecting the battery from the circuit by a protection circuit or a protection switch.

発明者は過去に、リチウムイオン蓄電池などの有機溶液系蓄電池の過充電耐性を向上させることを目的として、有機溶液系蓄電池と水溶液系蓄電池とを並列接続してなる仮想電池を複数個直列接続してなるハイブリッド蓄電池を提案した(特許文献1)。この発明によると、有機溶液系蓄電池と水溶液系蓄電池とは、近接した平均放電電圧を有し、有機溶液系蓄電池の過充電危険電圧が、水溶液系蓄電池の充電終止電圧よりも高く、有機溶液系蓄電池の充電終止電圧が、水溶液系蓄電池の充電終止電圧よりも低くなるように構成されている。この構成により、仮想電池に有機溶液系蓄電池が過充電に至る過充電エネルギが与えられた場合、水溶液系蓄電池が水素発生反応を行うことでエネルギを吸収し、仮想電池の充電電圧を水溶液系蓄電池の充電終止電圧に抑え、有機溶液系蓄電池が過充電危険電圧に至るのを防止することができる。   In the past, the inventor has connected in series a plurality of virtual batteries in which an organic solution storage battery and an aqueous solution storage battery are connected in parallel for the purpose of improving the overcharge resistance of an organic solution storage battery such as a lithium ion storage battery. A hybrid storage battery was proposed (Patent Document 1). According to this invention, the organic solution storage battery and the aqueous solution storage battery have close average discharge voltages, the overcharge danger voltage of the organic solution storage battery is higher than the end-of-charge voltage of the aqueous solution storage battery, and the organic solution storage battery It is comprised so that the charge end voltage of a storage battery may become lower than the charge end voltage of an aqueous solution type storage battery. With this configuration, when the virtual battery is given overcharge energy that leads to overcharging of the organic solution storage battery, the aqueous solution storage battery absorbs energy by performing a hydrogen generation reaction, and the virtual battery charge voltage is reduced to the aqueous solution storage battery. Therefore, it is possible to prevent the organic solution storage battery from reaching the overcharge danger voltage.

特願2011−224070号Japanese Patent Application No. 2011-2224070

特許文献1に開示のハイブリッド蓄電池は、過充電時にリチウムイオン蓄電池と並列に接続された鉛蓄電池が水素発生反応を起こすことにより、リチウムイオン蓄電池の過充電危険電圧までの電圧上昇を抑制することで、リチウムイオン蓄電池の耐過充電性能を向上させるものである。この発明は、リチウムイオン蓄電池と並列に接続された鉛蓄電池のエネルギ密度が低いため、スペースや重量の制約が少ない据え置き型の蓄電システム、またはバス、トラック等の大型車両に用いる場合には適切である一方、鉛蓄電池が大変重いため小型自動車、スポーツカー、飛行機など高い重量エネルギ密度を必要とする走行体の動力源としての利用が困難であるという課題があった。   The hybrid storage battery disclosed in Patent Document 1 suppresses the voltage increase up to the overcharge danger voltage of the lithium ion storage battery by causing a hydrogen generation reaction of a lead storage battery connected in parallel with the lithium ion storage battery at the time of overcharging. It improves the overcharge resistance performance of the lithium ion storage battery. The present invention is suitable for use in a stationary power storage system or a large vehicle such as a bus or a truck with less space and weight restrictions because the energy density of the lead storage battery connected in parallel with the lithium ion storage battery is low. On the other hand, since the lead storage battery is very heavy, there is a problem that it is difficult to use it as a power source for a traveling body that requires a high weight energy density such as a small car, a sports car, and an airplane.

なお、リチウムイオン蓄電池等の有機溶液系蓄電池は、電解液中に水が混合しないように密閉容器に封入されており、密閉型蓄電池と言うことができる。密閉型蓄電池の具体的な例としては、リチウムイオン蓄電池の他にも、特開平6−163080号公報や特開8−321305号公報等に開示されるカルシウムイオン蓄電池や、P.Novak;J.Electrochem.Soc.,Vol.140 No.1,Jan(1993)140やM.E.Spahr;J.Power Sources 54(1995)346等に開示されるマグネシウムイオン蓄電池等がある。一般に、電解質内に水が混入すると正極又は負極における電極反応、又は電解質中のイオン伝導及び電解質の組成等に悪影響が及ぼされるような構成の蓄電池は全て密閉型蓄電池と言うことができる。   Note that an organic solution storage battery such as a lithium ion storage battery is sealed in a sealed container so that water is not mixed in the electrolytic solution, and can be said to be a sealed storage battery. As specific examples of the sealed storage battery, in addition to the lithium ion storage battery, a calcium ion storage battery disclosed in JP-A-6-163080, JP-A-8-321305, and the like; Novak; Electrochem. Soc. , Vol. 140 No. 1, Jan (1993) 140 and M.I. E. Spahr; Examples include a magnesium ion storage battery disclosed in Power Sources 54 (1995) 346 and the like. In general, it can be said that all storage batteries having a configuration that adversely affects the electrode reaction in the positive electrode or the negative electrode or the ionic conduction in the electrolyte and the composition of the electrolyte when water is mixed in the electrolyte can be said to be a sealed storage battery.

前記を踏まえ、本発明の目的は、リチウムイオン蓄電池等の密閉型蓄電池を含む蓄電池でありながら良好な耐過充電性を有し、比較的高いエネルギ密度を有する、水電解型ハイブリッド蓄電池を提供することにある。   In light of the above, an object of the present invention is to provide a water-electrolytic hybrid storage battery that has good overcharge resistance and a relatively high energy density while being a storage battery including a sealed storage battery such as a lithium ion storage battery. There is.

前記目的を達成するために、本発明の水電解型ハイブリッド蓄電池は、密閉型蓄電池と、水電解装置とを並列に接続してなる仮想電池からなる、又は前記仮想電池を複数直列接続してなる、水電解型ハイブリッド蓄電池であって、前記密閉型蓄電池は、充電終止電圧を超えて充電されると過充電に至り、前記密閉型蓄電池の過充電危険電圧を超えて充電されると危険な状態に至るものであり、前記水電解装置は、単数もしくは直列に接続された複数の水電解セル、又は並列に接続された複数の水電解セルよりなる第1水電解セル群、又は直列に接続された複数の前記第1水電解セル群からなり、前記水電解セルは、2つの電極と、水溶液である電解質とを有し、前記水電解装置は、前記水電解装置の電圧が水電解反応開始電圧を超えると少なくとも1つの前記水電解セルにおいて水の電気分解反応が起こり、それの結果電力消費をなすものであって、前記水電解装置の水電解反応開始電圧が、前記密閉型蓄電池の過充電危険電圧よりも低くなるように構成され、前記仮想電池に対して、前記密閉型蓄電池が過充電に至る過充電エネルギが与えられた場合に、前記水電解装置において電力消費がなされることで前記過充電エネルギを吸収し、前記密閉型蓄電池がその過充電危険電圧に至るのを防止するようにしたことを特徴とする。   In order to achieve the above object, the water electrolysis hybrid storage battery of the present invention comprises a virtual battery formed by connecting a sealed storage battery and a water electrolysis device in parallel, or a plurality of the virtual batteries connected in series. A water electrolysis type hybrid storage battery, wherein the sealed storage battery is overcharged when charged exceeding a charge end voltage, and is in a dangerous state when charged beyond the overcharge danger voltage of the sealed battery The water electrolysis apparatus is a first water electrolysis cell group consisting of a plurality of water electrolysis cells connected in series or in series, or a plurality of water electrolysis cells connected in parallel, or connected in series. A plurality of the first water electrolysis cell groups, the water electrolysis cell having two electrodes and an electrolyte that is an aqueous solution, and the water electrolysis device starts the water electrolysis reaction when the voltage of the water electrolysis device is Less than voltage Both water electrolysis reactions occur in one of the water electrolysis cells, resulting in power consumption. The water electrolysis reaction start voltage of the water electrolysis device is higher than the overcharge danger voltage of the sealed storage battery. When the overcharged energy that leads to overcharging of the sealed storage battery is given to the virtual battery, power is consumed in the water electrolysis device, so that the overcharged energy is reduced. The sealed storage battery is prevented from reaching its overcharge dangerous voltage.

ここで、前記水電解装置の水電解反応開始電圧は、前記密閉型蓄電池の充電終止電圧よりも高くなるように構成されていることが好ましい。   Here, it is preferable that the water electrolysis reaction start voltage of the water electrolysis device is configured to be higher than the charge end voltage of the sealed storage battery.

また、前記水電解装置が、酸素及び水素から水が生成される反応を促進する触媒を有することが好ましい。   Moreover, it is preferable that the said water electrolysis apparatus has a catalyst which accelerates | stimulates the reaction in which water is produced | generated from oxygen and hydrogen.

また、前記水電解セルの電極が、材料粒子としての比表面積が10m/g以上の導電性物質である高表面積導電物質を含むことが好ましい。
また、前記高表面積導電物質は活性炭であることが好ましい。
Moreover, it is preferable that the electrode of the said water electrolysis cell contains the high surface area conductive material which is a conductive material whose specific surface area as a material particle is 10 m < 2 > / g or more.
The high surface area conductive material is preferably activated carbon.

また、前記水電解装置がニッケル水素蓄電池であってもよい。
また、前記水電解装置がニッケルカドミウム蓄電池であってもよい。
The water electrolysis device may be a nickel metal hydride storage battery.
Further, the water electrolysis device may be a nickel cadmium storage battery.

また、本発明の水電解型ハイブリッド蓄電池は温度制御装置を有することが好ましい。   Moreover, it is preferable that the water electrolysis type hybrid storage battery of this invention has a temperature control apparatus.

また、前記密閉型蓄電池は、カセットモジュールとして着脱交換可能にモジュール化されてなることが好ましい。   Moreover, it is preferable that the said sealed storage battery is modularized so that attachment or detachment is possible as a cassette module.

本発明によれば、過充電を受けても水電解装置において電力消費が起こり、蓄電池全体の電圧はリチウムイオン蓄電池等に代表される密閉型蓄電池の過充電危険電圧以下に保たれる。従って、本発明によれば、リチウムイオン蓄電池等の密閉型蓄電池を含む蓄電池でありながら良好な耐過充電性を有する、水電解型ハイブリッド蓄電池を提供することができる。また、リチウムイオン蓄電池等の密閉型蓄電池に並列接続される耐過充電水電解装置は鉛蓄電池と比較して活物質を含まない等、構造が簡便である為に、従来のハイブリッド蓄電池よりもエネルギ密度の高い構成とすることができる。   According to the present invention, power consumption occurs in the water electrolysis device even when overcharged, and the voltage of the entire storage battery is kept below the overcharge danger voltage of a sealed storage battery represented by a lithium ion storage battery or the like. Therefore, according to the present invention, it is possible to provide a water electrolysis type hybrid storage battery having good overcharge resistance while being a storage battery including a sealed storage battery such as a lithium ion storage battery. In addition, the overcharged water electrolysis device connected in parallel to a sealed storage battery such as a lithium ion storage battery does not contain an active material compared to a lead storage battery, and thus has a simple structure. A high-density configuration can be obtained.

本発明に係る水電解型ハイブリッド蓄電池の一実施形態の概略構成を示す模式図。The schematic diagram which shows schematic structure of one Embodiment of the water electrolysis type hybrid storage battery which concerns on this invention. 図1に示す水電解型ハイブリッド蓄電池のリチウムイオン蓄電池の一実施形態の概略構成を示す模式図。The schematic diagram which shows schematic structure of one Embodiment of the lithium ion storage battery of the water electrolysis type hybrid storage battery shown in FIG. 図1に示す水電解型ハイブリッド蓄電池の水電解装置の一実施形態の概略構成を示す模式図。The schematic diagram which shows schematic structure of one Embodiment of the water electrolysis apparatus of the water electrolysis type hybrid storage battery shown in FIG. 図3に示す水電解装置の一実施形態である水電解セルの概略構成を示す模式図。The schematic diagram which shows schematic structure of the water electrolysis cell which is one Embodiment of the water electrolysis apparatus shown in FIG. 図4の一部の概略構成をより詳細に示す模式図。The schematic diagram which shows the one part schematic structure of FIG. 4 in detail. 図4及び図5に示す水電解セルの電圧スイープ結果。The voltage sweep result of the water electrolysis cell shown in FIG.4 and FIG.5. 水電解型ハイブリッド蓄電池の実施例1における過充電試験結果。The overcharge test result in Example 1 of a water electrolysis type hybrid storage battery. (A)は、本発明の実施例2である12V系水電解型ハイブリッド蓄電池の主要部の模式図、(B)は、従来発明である12V系従来型ハイブリッド蓄電池の構成を示す模式図、(C) は、従来の12V系リチウムイオン蓄電池の構成を示す模式図。(A) is a schematic diagram of the principal part of the 12V type | system | group water electrolysis type hybrid storage battery which is Example 2 of this invention, (B) is a schematic diagram which shows the structure of the 12V type conventional hybrid storage battery which is a prior invention, ( C) is a schematic diagram showing the configuration of a conventional 12V lithium ion storage battery.

本発明に係る水電解型ハイブリッド蓄電池(バッテリ)を添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。以下では、本発明の水電解型ハイブリッド蓄電池を構成する密閉型蓄電池の代表例として、リチウムイオン蓄電池を挙げて説明するが、本発明はこれらに限定されないことはいうまでもない。   A water electrolysis type hybrid storage battery (battery) according to the present invention will be described below in detail based on a preferred embodiment shown in the accompanying drawings. Hereinafter, a lithium ion storage battery will be described as a representative example of the sealed storage battery constituting the water electrolysis hybrid storage battery of the present invention, but it goes without saying that the present invention is not limited to these.

本発明に係るバッテリ10は、図1に示すように、複数(図示例では4個)のリチウムイオン蓄電池24Aからなるリチウムイオン蓄電池部24と、複数(図示例では4個)の水電解装置26Aからなる水電解装置部26とを有する。バッテリ10は仮想電池32が直列接続された構造を有する。仮想電池32はリチウムイオン蓄電池24Aと水電解装置26Aが並列接続されたものである。バッテリ10は、例えば電気自動車に代表される移動体の各構成要素等の外部負荷に対して放電によって電気エネルギを供給する。またバッテリ10は、例えば電気自動車に代表される移動体の回生ブレーキによる回生電力により充電される。またバッテリ10は、充電器を外部電源(図示せず)等に接続することにより充電される。またバッテリ10は、図示しない電源に接続された図示しない外部充電器、例えば外部の急速充電器等により急速に充電されても良い。   As shown in FIG. 1, the battery 10 according to the present invention includes a lithium ion storage battery unit 24 including a plurality (four in the illustrated example) of lithium ion storage batteries 24 </ b> A and a plurality (four in the illustrated example) of water electrolyzer 26 </ b> A. And a water electrolysis unit 26 made of The battery 10 has a structure in which virtual batteries 32 are connected in series. The virtual battery 32 is a battery in which a lithium ion storage battery 24A and a water electrolysis device 26A are connected in parallel. The battery 10 supplies electric energy by discharging to an external load such as each component of a moving body represented by an electric vehicle, for example. The battery 10 is charged by regenerative electric power generated by a regenerative brake of a moving body represented by an electric vehicle, for example. The battery 10 is charged by connecting a charger to an external power source (not shown) or the like. The battery 10 may be rapidly charged by an external charger (not shown) connected to a power source (not shown), for example, an external quick charger.

バッテリマネジメントシステム19はバッテリ10を制御するものであり、各仮想電池32間の充電レベルを揃えたり又はそのバランスを保ったりする、仮想電池バランス回路部30を備える。仮想電池バランス回路部30は、1または複数の仮想電池バランス回路30Aから構成される。各仮想電池バランス回路30Aは各仮想電池32と並列接続されており、各仮想電池32の充電レベルを揃えたり又はそのバランスを保つ。バッテリマネジメントシステム19は、外部負荷に対して電気エネルギを供給するために、また、過放電等による電池の異常、例えば、蓄電池としての性能の劣化や寿命の短縮、及び、過充電による破損、例えば破裂や発火等の危険を発生させないように、バッテリ10の放電を制御すると共に、回生電力等や充電器等によるバッテリ10の充電を制御する。   The battery management system 19 controls the battery 10 and includes a virtual battery balance circuit unit 30 that aligns the charge levels between the virtual batteries 32 or maintains the balance thereof. The virtual battery balance circuit unit 30 includes one or a plurality of virtual battery balance circuits 30A. Each virtual battery balance circuit 30A is connected in parallel with each virtual battery 32, and the charge level of each virtual battery 32 is equalized or the balance is maintained. The battery management system 19 supplies electric energy to an external load, and abnormalities of the battery due to overdischarge, for example, deterioration of performance as a storage battery, shortening of life, and damage due to overcharge, for example, The discharge of the battery 10 is controlled so as not to cause danger such as rupture or ignition, and the charging of the battery 10 by regenerative power or a charger or the like is controlled.

例えば、バッテリマネジメントシステム19は、バッテリ10が所定の充電方法で充電されるように充電方法や充電条件や充電状態を制御したり、各リチウムイオン蓄電池24A、各水電解装置26A、各仮想電池32の状態を観測できるように、電池電圧や温度、電流などを測定するための温度センサや、電圧・電流センサ等が備えていてもよいし、測定データを出力する機能を備えていても良い。なお、従来技術においては、リチウムイオン蓄電池24Aを用いる場合には、各リチウムイオン蓄電池24A毎にその過充電や過放電等、特に過充電による異常を防止するための保護回路や保護スイッチが必要であったが、本発明においては、後述する理由により、リチウムイオン蓄電池24Aには、過充電による異常の防止のための保護回路や保護スイッチは不要であるので、バッテリマネジメントシステム19には保護回路や保護スイッチが含まれていない。   For example, the battery management system 19 controls a charging method, a charging condition, and a charging state so that the battery 10 is charged by a predetermined charging method, or each lithium ion storage battery 24A, each water electrolysis device 26A, each virtual battery 32. In order to observe the above state, a temperature sensor for measuring battery voltage, temperature, current, etc., a voltage / current sensor, or the like may be provided, or a function for outputting measurement data may be provided. In the prior art, when the lithium ion storage battery 24A is used, each lithium ion storage battery 24A requires a protection circuit and a protection switch for preventing abnormalities due to overcharge, such as overcharge and overdischarge. However, in the present invention, for the reason described later, the lithium ion storage battery 24A does not require a protection circuit or a protection switch for preventing abnormalities due to overcharging. Protection switch is not included.

本発明のバッテリ10では、各リチウムイオン蓄電池24Aと各水電解装置26Aとは並列接続されて各仮想電池32を構成している必要があるが、複数(図示例では4個)の仮想電池32は直列接続されているので、複数(図示例では4個)の直列接続されたリチウムイオン蓄電池24Aからなるリチウムイオン蓄電池部24と、複数(図示例では4個)の直列接続された水電解装置26Aからなる水電解装置部26とをユニットとして構成し、各リチウムイオン蓄電池24Aと各水電解装置26Aとが並列接続されるように構成しても良い。このようにユニット化することで、同種の蓄電池を一体として取り扱うことができ、特に、リチウムイオン蓄電池部24のカセットモジュール化を容易にすることができる。   In the battery 10 of the present invention, each lithium ion storage battery 24A and each water electrolysis device 26A need to be connected in parallel to form each virtual battery 32, but a plurality (four in the illustrated example) of virtual batteries 32 are required. Are connected in series, so that a plurality (four in the illustrated example) of lithium ion storage battery units 24 consisting of lithium ion storage batteries 24A and a plurality (four in the illustrated example) of water electrolyzers connected in series are connected. The water electrolyzer unit 26 composed of 26A may be configured as a unit so that each lithium ion storage battery 24A and each water electrolyzer 26A are connected in parallel. By unitizing in this way, the same type of storage battery can be handled as a unit, and in particular, the cassette module of the lithium ion storage battery unit 24 can be easily made.

リチウムイオン蓄電池部24をカセットモジュール化した場合、バッテリ10の過充電耐性が低下した際、水電解装置部26のみを交換することでバッテリ10の過充電耐性を再度向上できる利点がある。即ち、例えばバッテリ10が何度も過充電状態に陥った場合、水電解装置部26の水電解反応によりリチウムイオン蓄電池部24は過充電状態から保護されるから、水電解装置部26の性能がリチウムイオン蓄電池部24よりも性能劣化が著しいと考えられる。このような場合に、リチウムイオン蓄電池部24がカセットモジュール化していれば、水電解装置部26のみを交換するだけでバッテリ10の性能を再び向上させることができる。このような水電解装置部26の交換は、リチウムイオン蓄電池部24がカセットモジュール化されていない場合でも実施できることはいうまでもないが、リチウムイオン蓄電池部24がカセットモジュール化していることで水電解装置部26をさらに容易に交換することができる。また、リチウムイオン蓄電池部24のカセットモジュール化は、過充電保護性能を犠牲にしてでも一時的にバッテリ10を軽量化して使用したいときがある場合にも有効である。例えば、バッテリ10が、電力平準化機能を有するバッテリ充電ステーションにおいて充電され、充電後、回生ブレーキを有さない又は回生ブレーキの為の蓄電池を別に有する電気自動車の駆動源として用いられる場合等がこの場合に該当する。   When the lithium ion storage battery unit 24 is formed into a cassette module, when the overcharge resistance of the battery 10 is lowered, there is an advantage that the overcharge resistance of the battery 10 can be improved again by replacing only the water electrolysis device unit 26. That is, for example, when the battery 10 is repeatedly overcharged, the lithium ion storage battery unit 24 is protected from the overcharged state by the water electrolysis reaction of the water electrolyzer unit 26. It is considered that the performance deterioration is more significant than that of the lithium ion storage battery unit 24. In such a case, if the lithium ion storage battery unit 24 is formed as a cassette module, the performance of the battery 10 can be improved again only by replacing only the water electrolysis device unit 26. It goes without saying that such replacement of the water electrolyzer unit 26 can be performed even when the lithium ion storage battery unit 24 is not made into a cassette module, but water electrolysis is possible because the lithium ion storage battery unit 24 is made into a cassette module. The device unit 26 can be replaced more easily. Further, the cassette module of the lithium ion storage battery unit 24 is effective even when there is a case where it is desired to temporarily reduce the weight of the battery 10 even when sacrificing overcharge protection performance. For example, when the battery 10 is charged at a battery charging station having a power leveling function and is used as a drive source of an electric vehicle that does not have a regenerative brake or has a separate storage battery for the regenerative brake after charging, etc. This is the case.

また、本発明のバッテリ10の各仮想電池32には、仮想電池バランス回路30Aが並列接続されるので、バッテリマネジメントシステム19の仮想電池バランス回路30A、リチウムイオン蓄電池24A及び水電解装置26Aは、並列接続される。ここでも、複数(図示例では4個)の直列接続された仮想電池バランス回路30Aを仮想電池バランス回路部30としてユニット化して用いても良い。仮想電池バランス回路部30をユニット化して用いることにより、仮想電池バランス回路30Aの取り扱いを一体として容易にすることができる。   In addition, since the virtual battery balance circuit 30A is connected in parallel to each virtual battery 32 of the battery 10 of the present invention, the virtual battery balance circuit 30A, the lithium ion storage battery 24A, and the water electrolysis device 26A of the battery management system 19 are connected in parallel. Connected. Again, a plurality (four in the illustrated example) of virtual battery balance circuits 30A connected in series may be used as a unit as the virtual battery balance circuit unit 30. By using the virtual battery balance circuit unit 30 as a unit, handling of the virtual battery balance circuit 30A can be facilitated as a unit.

本発明においては、仮想電池32を構成する並列接続されたリチウムイオン蓄電池24Aと水電解装置26Aとは、リチウムイオン蓄電池24Aの過充電危険電圧が水電解装置26Aの水電解反応開始電圧よりも高くなるように構成されている必要がある。また、リチウムイオン蓄電池24Aの充電終止電圧が水電解装置26Aの水電解反応開始電圧よりも低くなるように構成されていることが好ましい。ここで、本発明において、リチウムイオン蓄電池24Aの過充電危険電圧とは、この電圧を超えて充電すると、過充電による破損、例えば破裂や発火等の危険性等の異常が発生する恐れがある充電電圧であり、リチウムイオン蓄電池24Aの充電終止電圧とは、この電圧を超えて充電すると、リチウムイオン蓄電池24Aが過充電となる恐れがある充電電圧であり、完全充電電圧や満充電電圧ということもできる。また、本発明において、水電解装置26Aの水電解反応開始電圧とは、水電解装置26Aにかかる電圧がこの電圧を超えると、水電解装置26Aにおいて水電解反応が起こり、その結果水電解装置26Aにおける電力消費が開始する電圧である。   In the present invention, in the lithium ion storage battery 24A and the water electrolysis device 26A connected in parallel constituting the virtual battery 32, the overcharge danger voltage of the lithium ion storage battery 24A is higher than the water electrolysis reaction start voltage of the water electrolysis device 26A. Need to be configured. Moreover, it is preferable that the charge termination voltage of the lithium ion storage battery 24A is configured to be lower than the water electrolysis reaction start voltage of the water electrolysis device 26A. Here, in the present invention, the overcharge dangerous voltage of the lithium ion storage battery 24A is a charge that may cause damage due to overcharge, such as danger such as rupture or ignition, if charged exceeding this voltage. The charge termination voltage of the lithium ion storage battery 24A is a charge voltage that may cause the lithium ion storage battery 24A to be overcharged when charged beyond this voltage, and may be a fully charged voltage or a fully charged voltage. it can. Further, in the present invention, the water electrolysis reaction start voltage of the water electrolysis device 26A means that when the voltage applied to the water electrolysis device 26A exceeds this voltage, a water electrolysis reaction occurs in the water electrolysis device 26A, and as a result, the water electrolysis device 26A. Is the voltage at which power consumption begins at.

本発明において、リチウムイオン蓄電池24Aの過充電危険電圧が水電解装置26Aの水電解反応開始電圧よりも高くなるように構成するのは、本発明のバッテリ10が充電、例えば充電器や回生電力等で充電されている場合、リチウムイオン蓄電池24Aが充電されることになるが、充電異常等が発生し、充電電圧が高くなって、水電解装置26Aの水電解反応開始電圧に達しても、水電解装置26A内において電気化学反応が起こり、これによって電力消費が起こり、従って充電電圧の上昇を抑え、バッテリ10の電圧を過充電危険電圧以下に保つことができるからである。   In the present invention, the overcharge risk voltage of the lithium ion storage battery 24A is configured to be higher than the water electrolysis reaction start voltage of the water electrolysis device 26A. The battery 10 of the present invention is charged, for example, a charger, regenerative power, etc. 24A, the lithium ion storage battery 24A is charged. However, even if a charging abnormality or the like occurs and the charging voltage increases and reaches the water electrolysis reaction start voltage of the water electrolysis device 26A, This is because an electrochemical reaction takes place in the electrolyzer 26A, thereby causing power consumption, and therefore, an increase in the charging voltage can be suppressed and the voltage of the battery 10 can be kept below the overcharge dangerous voltage.

即ち、リチウムイオン蓄電池24Aが、リチウムイオン蓄電池24A自体を使用できなくなるほどの著しい性能劣化をもたらし、安全上問題となりうるような過充電状態に陥った場合に、蓄電池としての性能の劣化や寿命の短縮、特に、過充電による破損、例えば破裂や発火等の危険性等の異常が、水電解装置26Aにおける水電解による電力消費によって未然に防止される。即ち、従来、安全上の問題から、リチウムイオン蓄電池24Aに必須であった、高価な保護回路や保護スイッチを設けなくても、リチウムイオン蓄電池24Aの万が一の過充電による異常を防止することができる。もちろん、水電解装置26Aにおける激しい水電解反応は、水電解装置26Aの性能を低下させるし、場合によっては危険でもあるので、バッテリマネジメントシステム19による充電状態の管理で、充電を停止させるように構成されていることはいうまでもない。一方、本発明において、リチウムイオン蓄電池24Aの充電終止電圧が水電解装置26Aの水電解反応開始電圧よりも低くなるように構成するのが好ましいのは、通常使用においては水電解装置26Aで水電解反応を起こすことなく、リチウムイオン蓄電池24Aを完全に充電することが好ましいからである。   That is, when the lithium ion storage battery 24A falls into an overcharged state that may cause a significant performance deterioration that the lithium ion storage battery 24A itself cannot be used, and may cause a safety problem, Abnormalities such as shortening, in particular, damage due to overcharging, such as danger of explosion or ignition, are prevented beforehand by power consumption by water electrolysis in the water electrolysis device 26A. That is, it is possible to prevent an abnormality caused by an overcharge of the lithium ion storage battery 24A without providing an expensive protection circuit or protection switch, which has been indispensable for the lithium ion storage battery 24A due to safety problems. . Of course, the violent water electrolysis reaction in the water electrolysis device 26A degrades the performance of the water electrolysis device 26A and is dangerous in some cases. Therefore, the battery management system 19 is configured to stop the charge by managing the charge state. Needless to say, it has been done. On the other hand, in the present invention, it is preferable that the charge termination voltage of the lithium ion storage battery 24A be lower than the water electrolysis reaction start voltage of the water electrolysis device 26A. This is because it is preferable to completely charge the lithium ion storage battery 24A without causing a reaction.

本発明のバッテリ10において、リチウムイオン蓄電池24Aは、リチウムイオン単電池である1個のリチウムイオンセルからなるものであっても良いし、複数個のリチウムイオンセルを直列に接続して所定の電圧となるように構成されたものであっても良いし、図2に示すように、複数個のリチウムイオンセル24Bを並列に接続したリチウムイオンセル群24Cを複数個(図示例では4個)直列に接続して所定の電圧となるように構成されたものであっても良い。   In the battery 10 of the present invention, the lithium ion storage battery 24A may be composed of one lithium ion cell that is a lithium ion single battery, or a plurality of lithium ion cells connected in series to form a predetermined voltage. As shown in FIG. 2, a plurality (four in the illustrated example) of lithium ion cell groups 24C in which a plurality of lithium ion cells 24B are connected in parallel are connected in series. It may be configured so as to be connected to a voltage of a predetermined voltage.

なお、複数個のリチウムイオンセルを直列に接続して所定の電圧となるように構成する場合には、直列に接続された複数個のリチウムイオンセル24B間の充電バランスを揃えるためのセルバランス回路部34を、セルバランス回路部34に含まれるセルバランス回路34が各リチウムイオンセル24B毎に並列に接続するように設けておくことが好ましい。また、図2に示すように、複数個(図示例では4個)のリチウムイオンセル群24Cを直列に接続して所定の電圧となるように構成する場合には、直列に接続された複数個のリチウムイオンセル群24Cの間の充電バランスを揃えるためのセルバランス回路34Aを、各リチウムイオンセル群24C毎に並列に接続するように設けておくことが好ましい。ここでセルバランス回路34は、各リチウムイオンセル24Bの充電レベルを揃えたり又はそのバランスを保つものである。   In the case where a plurality of lithium ion cells are connected in series to have a predetermined voltage, a cell balance circuit for aligning the charge balance between the plurality of lithium ion cells 24B connected in series. The unit 34 is preferably provided so that the cell balance circuit 34 included in the cell balance circuit unit 34 is connected in parallel for each lithium ion cell 24B. In addition, as shown in FIG. 2, when a plurality of (four in the illustrated example) lithium ion cell groups 24C are connected in series so as to have a predetermined voltage, the plurality of series connected in series. It is preferable to provide a cell balance circuit 34A for aligning the charge balance between the lithium ion cell groups 24C so as to be connected in parallel for each lithium ion cell group 24C. Here, the cell balance circuit 34 equalizes the charge level of each lithium ion cell 24B or maintains the balance.

本発明に用いられるリチウムイオン蓄電池24Aとしては、正極活物質として燐酸鉄リチウム(LiFePO)を用い、負極にはカーボン系やシリコン系の活物質を用い、単セルの平均作動電圧が3.3Vである3.3V系のリチウムイオンセルを用いた燐酸鉄リチウムイオン蓄電池(以下では、LFPO系リチウムイオン電池ともいう)や、正極活物質としてリチウムニッケルマンガンコバルト複合酸化物(NMC)、リチウムニッケルコバルトアルミニウム複合酸化物(NCA)、リチウムコバルト酸化物(LCO)、リチウムマンガン酸化物(LMO)等を用い、単セルの平均作動電圧が3.6Vである3.6V系のリチウムイオンセルを用いたリチウムイオン蓄電池等を挙げることができ、この他、本発明に要求される条件を満たすようなリチウムイオン蓄電池であれば、如何なるリチウムイオン蓄電池を用いても良い。ここで、αV系蓄電池とは、平均作動電圧がαVであることをいうものとする。 As the lithium ion storage battery 24A used in the present invention, lithium iron phosphate (LiFePO 4 ) is used as a positive electrode active material, a carbon-based or silicon-based active material is used as a negative electrode, and the average operating voltage of a single cell is 3.3V. A lithium iron phosphate battery using a 3.3 V lithium ion cell (hereinafter also referred to as an LFPO lithium ion battery), lithium nickel manganese cobalt composite oxide (NMC), lithium nickel cobalt as a positive electrode active material An aluminum composite oxide (NCA), lithium cobalt oxide (LCO), lithium manganese oxide (LMO), etc. were used, and a 3.6 V lithium ion cell having an average operating voltage of 3.6 V was used. Lithium ion storage battery etc. can be mentioned, and in addition, the conditions required for the present invention If the Suyo lithium-ion battery, it may be used any lithium-ion batteries. Here, the αV storage battery means that the average operating voltage is αV.

なお、上述のとおり、一般的なリチウムイオン蓄電池は、各蓄電池間の電圧や充電バランスを揃えるバランス回路とは別に、過充電や過放電に陥って、過充電や過放電による異常を引き起こし、その寿命を著しく損なうのを防ぐために、保護回路又は保護スイッチを必須の構成として備える。そして、保護回路又は保護スイッチは非常に高価で、リチウムイオン蓄電池単体と略同じコストがかかる。   In addition, as described above, a general lithium ion storage battery is overcharged or overdischarged separately from a balance circuit that balances the voltage and charge balance between the storage batteries, causing an abnormality due to overcharge and overdischarge. A protection circuit or a protection switch is provided as an essential component in order to prevent the life from being significantly impaired. The protection circuit or the protection switch is very expensive and costs almost the same as the lithium ion storage battery alone.

しかし、本発明の仮想電池32は、リチウムイオン蓄電池24Aが水電解装置26Aと並列接続されており、リチウムイオン蓄電池24Aが過充電危険電圧に達する前に、水電解装置26Aが電気化学反応開始電圧に達して水電解装置26A内において電気エネルギが消費されるため、リチウムイオン蓄電池24Aが過充電されることにより異常な状態に陥る危険が少ない。つまり、水電解装置26Aが従来のリチウムイオン蓄電池に備わっている保護回路又は保護スイッチの役割を果たすため、保護回路又は保護スイッチのコストを削減することができ、バッテリにかかるコストの大幅な削減が可能となる。なお、充電電圧が過度に高すぎる、あるいはその結果として、水電解装置26Aが激しく酸化還元反応を起こして高温になったなどという電圧、温度情報はバッテリマネジメントシステム19により測定され、記録や後日の是正(不良電池の交換などのメンテナンス)のためにデータ転送される。   However, in the virtual battery 32 of the present invention, the lithium ion storage battery 24A is connected in parallel with the water electrolysis device 26A, and before the lithium ion storage battery 24A reaches the overcharge danger voltage, the water electrolysis device 26A has an electrochemical reaction start voltage. Therefore, electric energy is consumed in the water electrolysis device 26A, and therefore, there is little risk that the lithium ion storage battery 24A is overcharged and thus enters an abnormal state. That is, since the water electrolysis device 26A serves as a protection circuit or a protection switch provided in the conventional lithium ion storage battery, the cost of the protection circuit or the protection switch can be reduced, and the cost for the battery can be greatly reduced. It becomes possible. It should be noted that the voltage and temperature information that the charging voltage is excessively high, or as a result, the water electrolysis device 26A violently undergoes an oxidation-reduction reaction and becomes high temperature is measured by the battery management system 19 and recorded or recorded at a later date. Data is transferred for correction (maintenance such as replacement of defective batteries).

以下に、本発明の水電解型ハイブリッド蓄電池に係る水電解装置及び水電解セルについて説明する。   Below, the water electrolysis apparatus and water electrolysis cell which concern on the water electrolysis type hybrid storage battery of this invention are demonstrated.

本発明のバッテリ10において、水電解装置26Aは、後に述べる1個の水電解セルからなるものであっても良いし、複数個の水電解セルを直列に接続して所定の水電解反応開始電圧となるように構成されたものであっても良いし、図3に示すように、複数個の水電解セル26Bを並列に接続した水電解セル群26Cを複数個(図示例では4個)直列に接続して所定の電圧となるように構成されたものであっても良い。   In the battery 10 of the present invention, the water electrolysis device 26A may be composed of one water electrolysis cell, which will be described later, or a predetermined water electrolysis reaction start voltage by connecting a plurality of water electrolysis cells in series. As shown in FIG. 3, a plurality (four in the illustrated example) of water electrolysis cell groups 26C in which a plurality of water electrolysis cells 26B are connected in parallel are connected in series. It may be configured so as to be connected to a voltage of a predetermined voltage.

図4は、本発明に係る水電解セルの一実施形態の概略構成を示す模式図である。図5は、図4の一部の概略構成をより詳細に示す模式図である。   FIG. 4 is a schematic diagram showing a schematic configuration of one embodiment of the water electrolysis cell according to the present invention. FIG. 5 is a schematic diagram showing the schematic configuration of a part of FIG. 4 in more detail.

図5に示すように、水電解セル200は、2つの電極層210、電解質層230及びリード240を有する。各電極層210は、導電物質211と集電体212とを有する。電解質層230は、セパレータ231と水溶液である電解質232とを有する。セパレータ231は、各電極層210を隔離して電気的に絶縁する役割と、電解質232を保持する役割を持つ。セパレータ231内は電解質232で満たされており、図5に示すように電解質222の一部はセパレータ221の表面から露出し、導電物質211に浸透している。導電物質211内には電解質232が浸透しており、導電物質211の表面は電解質232と接している。リード240はいずれかの電極層110における集電体112と電気的に接続されており、また図4及び図5には示されていない外部回路と電気的に接続されている。   As shown in FIG. 5, the water electrolysis cell 200 has two electrode layers 210, an electrolyte layer 230, and leads 240. Each electrode layer 210 includes a conductive material 211 and a current collector 212. The electrolyte layer 230 includes a separator 231 and an electrolyte 232 that is an aqueous solution. The separator 231 has a role of isolating and electrically insulating each electrode layer 210 and a role of holding the electrolyte 232. The separator 231 is filled with the electrolyte 232, and a part of the electrolyte 222 is exposed from the surface of the separator 221 and penetrates into the conductive material 211 as shown in FIG. 5. The electrolyte 232 penetrates into the conductive material 211, and the surface of the conductive material 211 is in contact with the electrolyte 232. The lead 240 is electrically connected to the current collector 112 in any one of the electrode layers 110, and is electrically connected to an external circuit not shown in FIGS.

水電解セル200の電解質232において、2つの電極間の電圧が一定値(電気化学反応開始電圧)を超えると、水溶液である電解質232中の水の電気分解反応が起こり、その結果、水電解セル200内において電力が消費される。   In the electrolyte 232 of the water electrolysis cell 200, when the voltage between the two electrodes exceeds a certain value (electrochemical reaction start voltage), an electrolysis reaction of water in the electrolyte 232 that is an aqueous solution occurs, and as a result, the water electrolysis cell Power is consumed within 200.

上述の通り、電極層210は導電物質211と集電体212とを有する。電解質232中の水の電気分解反応は各電極層210における導電物質211の表面上で起こるものであり、導電物質211は10m/g以上の比表面積を有することが好ましく、100m/g以上の比表面積を有することがより好ましい。導電物質の比表面積が大きいほど水の電気分解反応は迅速に起こり、従って水電解装置26Aの単位重量当たり電力消費量は非常に大きくなる。 As described above, the electrode layer 210 includes the conductive material 211 and the current collector 212. The electrolysis reaction of water in the electrolyte 232 occurs on the surface of the conductive material 211 in each electrode layer 210, and the conductive material 211 preferably has a specific surface area of 10 m 2 / g or more, and 100 m 2 / g or more. It is more preferable to have a specific surface area of The larger the specific surface area of the conductive material, the faster the water electrolysis reaction occurs, and thus the power consumption per unit weight of the water electrolyzer 26A becomes very large.

導電物質211の材料例としては活性炭がある。活性炭は電気二重層キャパシタの電極に用いられており、電気二重層キャパシタがリチウムイオン蓄電池等の蓄電池と比較して大きな出力密度を有する理由の1つとなっている。導電物質211として活性炭を用いる場合は、集電体212への密着性を良好にするために、例えばポリビニリデンフルオライド(PVDF)やポリテトラフルオロエチレン(PTFE)等のバインダーと混合して用いることが好ましい。   An example of the conductive material 211 is activated carbon. Activated carbon is used for electrodes of electric double layer capacitors, which is one of the reasons why electric double layer capacitors have a higher output density than storage batteries such as lithium ion storage batteries. When activated carbon is used as the conductive material 211, it is used by mixing with a binder such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) in order to improve the adhesion to the current collector 212. Is preferred.

集電体212は導電物質211と電子を授受する役割を持ち、印可される電圧範囲内で安定に存在する必要がある。その好適な材料例にはチタン、金、銀、プラチナ、カーボンペーパー、カーボンフェルト等がある。集電体212へ導電物質211を設置する方法としては、特に制限は無いが、導電物質211を集電体212に塗布する方法や、あらかじめ導電物質のシートを成形した後に集電体212に接着する方法等がある。また集電体212の形状はシート状、メッシュ状、不織布状、織布状がある。場合によっては、導電物質211を持たず、電極層210が集電体212のみから構成されていてもよい。   The current collector 212 has a role of exchanging electrons with the conductive material 211 and needs to exist stably within an applied voltage range. Examples of suitable materials include titanium, gold, silver, platinum, carbon paper, carbon felt and the like. There is no particular limitation on the method for installing the conductive material 211 on the current collector 212. However, the conductive material 211 may be applied to the current collector 212 or may be bonded to the current collector 212 after a sheet of the conductive material is formed in advance. There are ways to do this. The shape of the current collector 212 includes a sheet shape, a mesh shape, a nonwoven fabric shape, and a woven fabric shape. In some cases, the conductive layer 211 may not be provided, and the electrode layer 210 may be composed only of the current collector 212.

セパレータ231は、電気絶縁性と、電解質232の良好な保持性を有するものであれば何でも良いが、以下のような特性を持つものが好ましい。
1 内部抵抗低減のため極力薄いこと
2 密度が小さいこと
3 電解質(電解液)とのぬれ性がよいこと
4 電解質(電解液)に対する安定性があること
5 酸化還元反応の原因となる不純物を含まないこと
6 熱的安定性に優れていること
7 巣やピンホールがないこと
セパレータ231の好適な例としては、不織紙、多孔性樹脂シート、ポリオレフィン微多孔質フィルム、ポリオレフィンメッシュ、極薄ガラスペーパー等があり、またリチウムイオン蓄電池に用いられている市販のセパレータでもよい。
The separator 231 may be anything as long as it has electrical insulation and good retention of the electrolyte 232, but preferably has the following characteristics.
1 To be as thin as possible to reduce internal resistance 2 To have a low density 3 To have good wettability with the electrolyte (electrolyte) 4 To be stable to the electrolyte (electrolyte) 5 To contain impurities that cause redox reactions No 6 Good thermal stability 7 No nests or pinholes Suitable examples of separator 231 include nonwoven paper, porous resin sheet, polyolefin microporous film, polyolefin mesh, ultra-thin glass There are papers and the like, and commercially available separators used for lithium ion storage batteries may be used.

電解質232は水溶液であれば何でもよく、好適な例としては、硫酸水溶液、硝酸水溶液、水酸化カリウム水溶液、水酸化ナトリウム水溶液等の他、一般的な水溶液系電池に用いられる電解液等がある。   The electrolyte 232 may be anything as long as it is an aqueous solution, and preferred examples include an aqueous solution of sulfuric acid, an aqueous solution of nitric acid, an aqueous solution of potassium hydroxide, an aqueous solution of sodium hydroxide, and an electrolytic solution used in a general aqueous battery.

なお、水電解セル、又は水電解セルから構成される水電解装置は、酸素及び水素から水が生成される反応を促進する触媒を有することが好ましい。触媒により、水の電気分解により生成された水素及び酸素から再び水が形成され、水電解セル又は水電解装置に水を供給する必要が無くなるためである。触媒の好適な例としては、パラジウム等がある。   In addition, it is preferable that the water electrolysis apparatus comprised from a water electrolysis cell or a water electrolysis cell has a catalyst which accelerates | stimulates the reaction in which water is produced | generated from oxygen and hydrogen. This is because water is again formed from hydrogen and oxygen generated by electrolysis of water by the catalyst, and there is no need to supply water to the water electrolysis cell or the water electrolysis apparatus. Preferable examples of the catalyst include palladium.

本発明の水電解セルは、図4に示すように、シート形状を有する2つの電極層210及び電解質層230が正極層210、電解質層230、負極層320、電解質層330の順に積層され、4層が巻廻されて円筒状の構造であり、2つの電極層210の円筒状の中央部分にある箇所にそれぞれリード340が接続している、円筒型のものであってもよいが、これに限定されず、例えばシート形状を有する2つの電極層210及び電解質層 230を互いに多数積層し、角形のケースに収めるような構造であってもよい。   In the water electrolysis cell of the present invention, as shown in FIG. 4, two electrode layers 210 and an electrolyte layer 230 having a sheet shape are laminated in the order of a positive electrode layer 210, an electrolyte layer 230, a negative electrode layer 320, and an electrolyte layer 330. The layer may be a cylindrical structure in which the layers are wound, and the lead 340 is connected to a location in the cylindrical central portion of the two electrode layers 210. For example, a structure in which a large number of two electrode layers 210 and electrolyte layers 230 each having a sheet shape are stacked and accommodated in a rectangular case may be used.

本発明の水電解型ハイブリッド蓄電池においては、水電解セル26B又は水電解装置装置26Aがニッケルカドミウム蓄電池又はニッケル水素蓄電池と同様の構成であってもよい。これらは鉛蓄電池と比較してエネルギ密度が大きく、従って鉛蓄電池を用いる従来のハイブリッド蓄電池と比較して大きなエネルギ密度を有する水電解型ハイブリッド蓄電池とすることができる。   In the water electrolysis type hybrid storage battery of the present invention, the water electrolysis cell 26B or the water electrolysis device 26A may have the same configuration as the nickel cadmium storage battery or the nickel hydrogen storage battery. These have a higher energy density compared to lead-acid batteries, and therefore can be water-electrolytic hybrid batteries having a higher energy density than conventional hybrid batteries using lead-acid batteries.

また、図1〜3には明示されていないが、水電解装置26Aは、2種類以上の水電解セル26Bを有するものであってもよい。例えば、水電解装置26Aが、電解質の主成分として水酸化カリウムを有する水電解セル、又はこの水電解セルを複数個直列に接続したもの、又はこの水電解セルを並列に接続した群を複数個直列に接続したものと、電解質の主成分として希塩酸を有する別の水電解セル、又はこの別の水電解セルを複数個直列に接続したもの、又はこの別の水電解セルを並列に接続した群を複数個直列に接続したものとを並列に接続して構成されるものであってもよい。   Although not explicitly shown in FIGS. 1 to 3, the water electrolysis device 26 </ b> A may include two or more types of water electrolysis cells 26 </ b> B. For example, the water electrolysis apparatus 26A includes a plurality of water electrolysis cells having potassium hydroxide as the main component of the electrolyte, a plurality of water electrolysis cells connected in series, or a group of water electrolysis cells connected in parallel. One connected in series and another water electrolysis cell having dilute hydrochloric acid as the main component of the electrolyte, or a plurality of other water electrolysis cells connected in series, or a group of these other water electrolysis cells connected in parallel May be configured by connecting in parallel a plurality of these connected in series.

(実施例1)
以下、水電解型ハイブリッド蓄電池の実施例を説明する。
Example 1
Hereinafter, examples of the water electrolysis type hybrid storage battery will be described.

(水電解セルの作製)酸化マンガンを担持した活性炭を導電物質とし、PTFEバインダーと混合し、集電体であるチタンメッシュ(Dexmet社製、5Ti7−077)に練りこむことで正極を作製した。負極には前記のチタンメッシュを用いた。これらの電極を幅2.5cm、長さ25cmに切り取り、リードとして5mm幅のチタンリボンを片端に溶接にて取り付けた。正極、負極の間にセパレータとしてポリプロピレン製メッシュを挿入し、これらを巻き取り、直径3cm、深さ5cmのポリプロピレン容器に入れ、さらに1%の硫酸溶液を電解質とし、水電解セルを作成した。   (Preparation of water electrolysis cell) Activated carbon carrying manganese oxide was used as a conductive material, mixed with a PTFE binder, and kneaded into a titanium mesh as a current collector (5Ti7-077 manufactured by Dexmet) to prepare a positive electrode. The titanium mesh was used for the negative electrode. These electrodes were cut to a width of 2.5 cm and a length of 25 cm, and a 5 mm wide titanium ribbon was attached to one end by welding as a lead. A polypropylene mesh was inserted as a separator between the positive electrode and the negative electrode, and these were wound up and placed in a polypropylene container having a diameter of 3 cm and a depth of 5 cm, and a 1% sulfuric acid solution was used as an electrolyte to prepare a water electrolysis cell.

(水電解反応開始電圧の推定)前記水電解セルを充放電試験装置に設置し、スキャンレート50mV/sにて電圧を推移させ、電流値の変化を測定した。結果を図6に示す。図6に示す通り、端子電圧が2.05Vを超えると電流が急激に上昇し、端子電圧が2.8Vに達したところで電流量は3750mA(60mA/cm2)に達した。この結果より、該水電解セルは2.05Vの電気化学反応開始電圧を有することが示された。   (Estimation of water electrolysis reaction start voltage) The water electrolysis cell was installed in a charge / discharge test apparatus, the voltage was changed at a scan rate of 50 mV / s, and the change in the current value was measured. The results are shown in FIG. As shown in FIG. 6, when the terminal voltage exceeded 2.05V, the current increased rapidly, and when the terminal voltage reached 2.8V, the current amount reached 3750 mA (60 mA / cm 2). From this result, it was shown that the water electrolysis cell had an electrochemical reaction initiation voltage of 2.05V.

(リチウムイオン蓄電池の作製)正極としてリチウムニッケルアルミニウムコバルト酸化物を、負極としてグラファイトを、セパレータとしてポリプロピレン多孔質フィルムを用い、3.6V系リチウムイオンパウチセルを作製した。このリチウムイオンパウチセルを充放電試験装置に設置し、充放電試験を行ったところ、リチウムイオンパウチセルの過充電危険電圧は4.6V、完全充電電圧は4.05V、容量は40mAhであった。   (Preparation of lithium ion storage battery) A lithium nickel aluminum cobalt oxide was used as a positive electrode, graphite was used as a negative electrode, and a polypropylene porous film was used as a separator to prepare a 3.6 V lithium ion pouch cell. When this lithium ion pouch cell was installed in a charge / discharge test apparatus and a charge / discharge test was performed, the overcharge danger voltage of the lithium ion pouch cell was 4.6V, the complete charge voltage was 4.05V, and the capacity was 40 mAh. .

(水電解型ハイブリッド蓄電池の作製)前記リチウムイオンパウチセルと、前記水電解セルを2直列に接続したものとを並列に接続し、水電解型ハイブリッド蓄電池を得た。なお、この水電解型ハイブリッド蓄電池では、水電解装置として2直列の前記水電解セルを用いていることから、その電気化学反応開始電圧は4.1Vである。   (Preparation of water electrolysis type hybrid storage battery) The lithium ion pouch cell and two water electrolysis cells connected in series were connected in parallel to obtain a water electrolysis type hybrid storage battery. In this water electrolysis type hybrid storage battery, since the two water electrolysis cells in series are used as the water electrolysis device, the electrochemical reaction starting voltage is 4.1V.

(過充電試験)作製した水電解型ハイブリッド蓄電池を充放電試験装置に設置し、水電解型ハイブリッド蓄電池内のリチウムイオンパウチセルが開回路電圧3Vまで放電された状態から80mA(リチウムイオンパウチセル換算で充電レート2C)で充電を行った。この充電中、400mA(リチウムイオンパウチセル換算で10C)、30秒間のパルス充電を2回行った。比較例1として、リチウムイオンパウチセルのみでも同様の試験を行った。なお本実験では安全を確保するため、蓄電池の電圧がリチウムイオンパウチセルの過充電危険電圧である4.6V以上になった場合には試験が強制的に終了するか、あるいは次の充電スケジュールに移行するように設定されている。過充電試験の結果を図7に示す。実施例1の水電解型ハイブリッド蓄電池では、完全充電電圧4.05Vに30分以内で達した。その後80mA(充電レート2C)で充電を続けたが、充電時間が1時間を超えた後でも電圧が電気化学反応開始電圧4.1Vを超えなかった。理論上、この時点で電流供給総和はリチウムイオンパウチセル容量の200%に相当する。また400mAのパルス充電電流を30秒間流した際には電圧が4.5V付近まで上昇したが、リチウムイオンパウチセルの過充電危険電圧である4.6Vを超えることはなかった。これに対し、水電解装置を有さない比較例1では、開回路電圧3Vまで放電された状態から80mA(充電レート2C)で充電を行ったところ、充電開始から5分程度で電圧が完全充電電圧4.05Vに到達した。さらに同レートで充電を続けると、電圧はさらに上昇を続けた。この間に400mAのパルス充電電流を流した際には、パルス充電電流印可後、瞬時に電圧が過充電危険電圧である4.6Vに到達し、パルス充電電流の印可が停止した。この結果は、水電解セルで構成される水電解装置が、リチウムイオンパウチセルの過充電を抑制することに寄与したことを示している。即ち、実施例1において、80mAの充電電流が1時間流れた後でも電圧値が4.1Vを超えることが無かったのは、実施例1の電圧が4.1Vに到達した際に水電解装置を構成する水電解セルにおいて水の電気分解が起こり、電力消費が行われたためであると考えられる。また、400mAパルス電流を30秒印可した際も、水電解セルによる電力消費が起こったために、分極によって電圧が水電解反応開始電圧である4.1V以上に上昇するものの、実施例1の電圧上昇がリチウムイオンパウチセルの過充電危険電圧である4.6Vよりも低い値までに抑えられたものと考えられる。   (Overcharge test) The prepared water electrolysis hybrid storage battery is installed in a charge / discharge test apparatus, and the lithium ion pouch cell in the water electrolysis hybrid storage battery is discharged to an open circuit voltage of 3 V from 80 mA (in terms of lithium ion pouch cell) The battery was charged at a charge rate of 2C). During this charging, 400 mA (10 C in terms of lithium ion pouch cell) and 30 seconds of pulse charging were performed twice. As Comparative Example 1, the same test was performed using only a lithium ion pouch cell. In order to ensure safety in this experiment, the test is forcibly terminated when the voltage of the storage battery exceeds 4.6 V, which is the overcharge danger voltage of the lithium ion pouch cell, or the next charging schedule is entered. It is set to migrate. The result of the overcharge test is shown in FIG. In the water electrolysis type hybrid storage battery of Example 1, the fully charged voltage reached 4.05 V within 30 minutes. Thereafter, charging was continued at 80 mA (charging rate 2C), but even after the charging time exceeded 1 hour, the voltage did not exceed the electrochemical reaction starting voltage 4.1V. Theoretically, the total current supply at this point corresponds to 200% of the lithium ion pouch cell capacity. In addition, when a 400 mA pulse charging current was applied for 30 seconds, the voltage rose to around 4.5 V, but did not exceed 4.6 V, which is an overcharge danger voltage of the lithium ion pouch cell. On the other hand, in Comparative Example 1 having no water electrolysis apparatus, charging was performed at 80 mA (charging rate 2 C) from the state where the open circuit voltage was discharged to 3 V, and the voltage was fully charged in about 5 minutes from the start of charging. The voltage reached 4.05V. As charging continued at the same rate, the voltage continued to rise. When a 400 mA pulse charging current was applied during this period, the voltage reached 4.6 V, which was an overcharge danger voltage, immediately after the pulse charging current was applied, and the application of the pulse charging current stopped. This result has shown that the water electrolysis apparatus comprised with a water electrolysis cell contributed to suppressing the overcharge of a lithium ion pouch cell. That is, in Example 1, the voltage value did not exceed 4.1 V even after the charging current of 80 mA flowed for 1 hour because the water electrolysis apparatus when the voltage of Example 1 reached 4.1 V It is considered that water electrolysis occurred in the water electrolysis cell constituting the structure and power consumption was performed. Further, even when 400 mA pulse current was applied for 30 seconds, power consumption by the water electrolysis cell occurred, so that although the voltage rose to 4.1 V or more, which is the water electrolysis reaction start voltage, due to polarization, the voltage rise of Example 1 Is considered to be suppressed to a value lower than 4.6 V, which is the overcharge danger voltage of the lithium ion pouch cell.

(実施例2)
以下、12V系の水電解型ハイブリッド蓄電池に関する実施例を詳述する。
(Example 2)
Examples relating to a 12V water-electrolytic hybrid storage battery will be described in detail below.

(水電解装置の作製)導電物質として比表面積1000m/gを有する活性炭を90%と、バインダーとしてポリビニリデンフルオライド10%をそれぞれ重量比率で含む導電物質ペーストを、アルミ集電体箔の片面に厚さ50μmで塗布することで電極を作製した。上記電極を2つ作製し、各々の電極について活性炭を塗布しない側にアルミニウムタブリード端子を加締により接合した。その後、各電極の導電物質ペーストを塗布した側を対抗させ、両電極間にセパレータを介して巻回し、乾燥させた後、電解液として1%硫酸溶液を含浸させた。その後、全体をアルミニウムケースに封入し、水電解セルを得た。この水電解セルの重量を測定したところ、150gであった。この水電解セル2つを直列に接続し、水電解装置とした。この水電解装置を充放電試験装置に接続し、スキャンレート50mV/sにて電圧を推移させ、電流値の変化を測定したところ、端子電圧4.1Vにおいて急激に電流値が上昇した。従って、この水電解セル2つの直列接続から構成される水電解装置は4.1Vの水電解反応開始電圧を有する。 (Preparation of water electrolysis apparatus) One side of an aluminum current collector foil is made of a conductive material paste containing 90% activated carbon having a specific surface area of 1000 m 2 / g as a conductive material and 10% polyvinylidene fluoride as a binder in a weight ratio. The electrode was produced by applying to a thickness of 50 μm. Two of the above electrodes were prepared, and an aluminum tab lead terminal was joined to each electrode on the side where the activated carbon was not applied by caulking. Thereafter, the side of each electrode to which the conductive material paste was applied was opposed, wound between both electrodes via a separator, dried, and then impregnated with 1% sulfuric acid solution as an electrolyte. Thereafter, the whole was enclosed in an aluminum case to obtain a water electrolysis cell. When the weight of this water electrolysis cell was measured, it was 150 g. Two water electrolysis cells were connected in series to obtain a water electrolysis apparatus. When this water electrolysis apparatus was connected to a charge / discharge test apparatus, the voltage was changed at a scan rate of 50 mV / s and the change in the current value was measured, the current value increased rapidly at a terminal voltage of 4.1V. Therefore, the water electrolysis apparatus composed of two water electrolysis cells connected in series has a water electrolysis reaction starting voltage of 4.1V.

(水電解型ハイブリッド蓄電池の作製 )A123社製の26650型リチウムイオンセル(モデル名ANR26650M1B、定格電圧3.3V、容量2.4Ah、重量76g)を25個並列接続したリチウムイオン蓄電池24Aと、前記水電解セルからなる水電解装置26Aとを並列接続し、仮想電池を得た。この仮想電池を4個直列接続することにより、図8(A)に示す12V系の水電解型ハイブリッド蓄電池を得た。   (Production of Water Electrolytic Hybrid Storage Battery) A lithium-ion storage battery 24A in which 25 pieces of 26650-type lithium ion cells (model name ANR26650M1B, rated voltage 3.3V, capacity 2.4Ah, weight 76g) manufactured by A123, A virtual battery was obtained by connecting in parallel a water electrolysis device 26A composed of a water electrolysis cell. Four virtual batteries were connected in series to obtain a 12V water electrolysis hybrid storage battery shown in FIG.

図8(A)に示す本発明の12V系水電解型ハイブリッド蓄電池における、リチウムイオン蓄電池部および水電解装置部の充電特性を以下に示す。
リチウムイオン蓄電池部の過充電危険電圧 17.6V
水電解装置部の水電解反応開始電圧 16.4V
リチウムイオン蓄電池の充電終止電圧(=完全充電電圧) 14.5V
The charging characteristics of the lithium ion storage battery section and the water electrolysis apparatus section in the 12V water electrolysis hybrid storage battery of the present invention shown in FIG.
Overcharge danger voltage of lithium ion battery part 17.6V
Water electrolysis reaction start voltage of water electrolysis unit 16.4V
End-of-charge voltage of lithium-ion battery (= full charge voltage) 14.5V

本発明の12V系水電解型ハイブリッド蓄電池10の充電電圧が上昇した場合、リチウムイオン蓄電池部24の過充電危険電圧(1)よりも、水電解装置部26の電気化学反応開始電圧(2)が低いため、リチウムイオン蓄電池部が過充電危険電圧(1)に達する前に、水電解装置部で水電解反応が発生し、電気エネルギが消費されるため、水電解型ハイブリッド蓄電池10、従ってリチウムイオン蓄電池部24に掛かる充電電圧の上昇が抑えられる。   When the charging voltage of the 12V water electrolysis type hybrid storage battery 10 of the present invention increases, the electrochemical reaction start voltage (2) of the water electrolysis device section 26 is higher than the overcharge danger voltage (1) of the lithium ion storage battery section 24. Since the water electrolysis reaction occurs in the water electrolysis device part before the lithium ion storage battery part reaches the overcharge danger voltage (1) and electric energy is consumed because it is low, the water electrolysis type hybrid storage battery 10, and thus the lithium ion An increase in charging voltage applied to the storage battery unit 24 is suppressed.

(比較実験1)図8(A)の比較例として、図8(B)に示す12V系の従来型ハイブリッド蓄電池を、前記A123社製26650型リチウムイオンセルを4S−2P接続したものと、AC DELCO社製鉛蓄電池36A(モデル名S55B24L、定格電圧12V、容量36Ah、重量1280g)とを並列接続することで得た。また、別の比較例として、図8(C)に示す12V系の従来型リチウムイオン蓄電池を、前記A123社製26650型リチウムイオンセルを4S−25P接続したものに保護回路を付加することで得た。   (Comparative Experiment 1) As a comparative example of FIG. 8 (A), a 12V type conventional hybrid storage battery shown in FIG. 8 (B) is connected to a 26650 type lithium ion cell manufactured by A123, 4S-2P, and AC It was obtained by connecting in parallel a lead storage battery 36A (model name S55B24L, rated voltage 12V, capacity 36Ah, weight 1280g) manufactured by DELCO. Further, as another comparative example, a 12V type conventional lithium ion storage battery shown in FIG. 8C is obtained by adding a protection circuit to the A123 company 26650 type lithium ion cell connected to 4S-25P. It was.

なお、図8(A)〜(C)では、各蓄電池の充電容量のバランスを所定の範囲に保つバランス回路を図示していないが、これらの電池は、各直列セル及び直列蓄電池、直列仮想電池間の充電容量のバランスを調整するバランス回路を有するのはもちろんである。   8A to 8C do not show a balance circuit that keeps the balance of the charge capacity of each storage battery within a predetermined range, but these batteries include each series cell, series storage battery, and series virtual battery. Of course, it has a balance circuit that adjusts the balance of the charging capacity.

図8(A)〜(C)に示す構成の蓄電池を充放電試験装置に接続し、充放電試験を行った結果、表1に示す結果が得られた。
The result shown in Table 1 was obtained as a result of connecting the storage battery of the structure shown to FIG. 8 (A)-(C) to the charging / discharging test apparatus, and performing the charging / discharging test.

表1に示すように、これらの構成例A〜Cの蓄電池において、本発明の構成例Aの水電解型ハイブリッド蓄電池は、従来例の構成例B及びCの蓄電池に比べて、エネルギ密度、過充電電力密度のいずれもが優れており、総合的に最も優れているといえる。   As shown in Table 1, in the storage batteries of these configuration examples A to C, the water electrolysis type hybrid storage battery of the configuration example A of the present invention has an energy density, excess energy compared to the storage batteries of the configuration examples B and C of the conventional example. All of the charging power density is excellent, and it can be said that it is the most excellent overall.

上述の表1に示す構成例Aの本発明の効果は、エネルギ密度の観点では、水電解セルで構成される水電解装置を利用したことでリチウムイオン蓄電池の保護回路が不要になった点が寄与したと考えられる。また過充電電力密度の観点では、水電解装置が鉛蓄電池よりも遥かに大きな単位重量当たり過充電許容電流を有する点が寄与したと考えられる。   The effect of the present invention of the configuration example A shown in Table 1 described above is that, from the viewpoint of energy density, the use of a water electrolysis device composed of water electrolysis cells eliminates the need for a protection circuit for a lithium ion storage battery. It is thought that it contributed. From the viewpoint of overcharge power density, it is considered that the water electrolysis apparatus has an overcharge permissible current per unit weight much larger than that of the lead storage battery.

10 水電解型ハイブリッド蓄電池(バッテリ)
19 バッテリマネジメントシステム
24 リチウムイオン蓄電池部
24A リチウムイオン蓄電池
24B リチウムイオンセル
24C リチウムイオンセル群
26 水電解装置部
26A 水電解装置
26B 水電解セル
26C 水電解セル群
30 仮想電池バランス回路部
30A 仮想電池バランス回路
32 仮想電池
34 セルバランス回路部
34A セルバランス回路
36 鉛蓄電池
200 水電解セル
210 電極層
211 導電物質
212 集電体
230 電解質層
231 セパレータ
232 電解質
234 溶媒
240 リード
10 Water-electrolytic hybrid storage battery (battery)
19 Battery management system 24 Lithium ion storage battery part 24A Lithium ion storage battery 24B Lithium ion cell 24C Lithium ion cell group 26 Water electrolysis apparatus part 26A Water electrolysis apparatus 26B Water electrolysis cell 26C Water electrolysis cell group 30 Virtual battery balance circuit part 30A Virtual battery balance Circuit 32 Virtual battery 34 Cell balance circuit part 34A Cell balance circuit 36 Lead storage battery 200 Water electrolysis cell 210 Electrode layer 211 Conductive material 212 Current collector
230 Electrolyte layer 231 Separator 232 Electrolyte
234 Solvent 240 lead

Claims (9)

密閉型蓄電池と、水電解装置とを並列に接続してなる仮想電池からなる、又は前記仮想電池を複数直列接続してなる、水電解型ハイブリッド蓄電池であって、
前記密閉型蓄電池は、充電終止電圧を超えて充電されると過充電に至り、前記密閉型蓄電池の過充電危険電圧を超えて充電されると危険な状態に至るものであり、
前記水電解装置は、単数もしくは直列に接続された複数の水電解セル、又は並列に接続された複数の水電解セルよりなる第1水電解セル群、又は直列に接続された複数の前記第1水電解セル群からなり、
前記水電解セルは、2つの電極と、水溶液である電解質とを有し、
前記水電解装置は、前記水電解装置の電圧が水電解反応開始電圧を超えると少なくとも1つの前記水電解セルにおいて水の電気分解反応が起こり、それの結果電力消費をなすものであって、
前記水電解装置の水電解反応開始電圧が、前記密閉型蓄電池の過充電危険電圧よりも低くなるように構成され、
前記仮想電池に対して、前記密閉型蓄電池が過充電に至る過充電エネルギが与えられた場合に、前記水電解装置において電力消費がなされることで前記過充電エネルギを吸収し、前記密閉型蓄電池がその過充電危険電圧に至るのを防止するようにしたことを特徴とする、水電解型ハイブリッド蓄電池。
A water-electrolytic hybrid storage battery consisting of a virtual battery formed by connecting a sealed storage battery and a water electrolysis device in parallel, or a plurality of the virtual batteries connected in series,
The sealed storage battery is overcharged when charged beyond the end-of-charge voltage, and reaches a dangerous state when charged over the overcharge danger voltage of the sealed battery.
The water electrolysis apparatus includes a single or a plurality of water electrolysis cells connected in series, a first water electrolysis cell group composed of a plurality of water electrolysis cells connected in parallel, or a plurality of the first electrolysis cells connected in series. Consists of water electrolysis cells,
The water electrolysis cell has two electrodes and an electrolyte that is an aqueous solution,
In the water electrolysis device, when the voltage of the water electrolysis device exceeds a water electrolysis reaction start voltage, an electrolysis reaction of water occurs in at least one of the water electrolysis cells, resulting in power consumption.
The water electrolysis reaction start voltage of the water electrolysis device is configured to be lower than the overcharge danger voltage of the sealed battery,
The overcharge energy is absorbed by power consumption in the water electrolysis device when the overcharge energy to the overcharge of the closed battery is given to the virtual battery, and the closed battery is A water electrolysis type hybrid storage battery characterized in that the battery is prevented from reaching the overcharge dangerous voltage.
前記水電解装置の水電解反応開始電圧が、前記密閉型蓄電池の充電終止電圧よりも高くなるように構成されている、請求項1に記載の水電解型ハイブリッド蓄電池。   The water electrolysis hybrid storage battery according to claim 1, wherein a water electrolysis reaction start voltage of the water electrolysis apparatus is configured to be higher than a charge end voltage of the sealed storage battery. 前記水電解装置が、酸素及び水素から水が生成される反応を促進する触媒を有する、請求項1又は2に記載の水電解型ハイブリッド蓄電池。   The water electrolysis type hybrid storage battery according to claim 1 or 2, wherein the water electrolysis device has a catalyst that promotes a reaction of generating water from oxygen and hydrogen. 前記水電解セルの電極が、材料粒子としての比表面積が10m/g以上の導電性物質である高表面積導電物質を含む、請求項1〜3のいずれかに記載の水電解型ハイブリッド蓄電池。 The water electrolysis type hybrid storage battery according to any one of claims 1 to 3, wherein the electrode of the water electrolysis cell includes a high surface area conductive material which is a conductive material having a specific surface area of 10 m 2 / g or more as material particles. 前記高表面積導電物質が活性炭である、請求項1〜4のいずれかに記載の水電解型ハイブリッド蓄電池。   The water electrolysis type hybrid storage battery according to any one of claims 1 to 4, wherein the high surface area conductive material is activated carbon. 前記水電解装置がニッケル水素蓄電池である、請求項1〜5のいずれかに記載の水電解型ハイブリッド蓄電池。   The water electrolysis type hybrid storage battery according to any one of claims 1 to 5, wherein the water electrolysis device is a nickel metal hydride storage battery. 前記水電解装置がニッケルカドミウム蓄電池である、請求項1〜6のいずれかに記載の水電解型ハイブリッド蓄電池。   The water electrolysis type hybrid storage battery according to any one of claims 1 to 6, wherein the water electrolysis device is a nickel cadmium storage battery. 温度制御装置を有する、請求項1〜7のいずれかに記載の水電解型ハイブリッド蓄電池。   The water electrolysis type hybrid storage battery according to any one of claims 1 to 7, comprising a temperature control device. 前記密閉型蓄電池が、カセットモジュールとして着脱交換可能にモジュール化されてなる、請求項1〜8のいずれかに記載の水電解型ハイブリッド蓄電池。   The water electrolysis type hybrid storage battery according to any one of claims 1 to 8, wherein the sealed storage battery is modularized so as to be detachable and replaceable as a cassette module.
JP2011267886A 2011-12-07 2011-12-07 Water electrolysis hybrid storage battery Pending JP2013120680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267886A JP2013120680A (en) 2011-12-07 2011-12-07 Water electrolysis hybrid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267886A JP2013120680A (en) 2011-12-07 2011-12-07 Water electrolysis hybrid storage battery

Publications (1)

Publication Number Publication Date
JP2013120680A true JP2013120680A (en) 2013-06-17

Family

ID=48773236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267886A Pending JP2013120680A (en) 2011-12-07 2011-12-07 Water electrolysis hybrid storage battery

Country Status (1)

Country Link
JP (1) JP2013120680A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117199A1 (en) * 2017-12-14 2019-06-20 国立研究開発法人理化学研究所 Manganese oxide for water decomposition catalysts, manganese oxide-carbon mixture, manganese oxide composite electrode material, and respective methods for producing these materials
US10797341B2 (en) 2018-03-16 2020-10-06 Kabushiki Kaisha Toshiba Battery module, battery pack, vehicle, and stationary power supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164068A (en) * 2001-11-22 2003-06-06 Hitachi Ltd Power supply and distributed power supply system, and electric vehicle mounted with it
JP2003219575A (en) * 2002-01-23 2003-07-31 Shin Kobe Electric Mach Co Ltd Power system
JP2010088211A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Backup power supply of blade server

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164068A (en) * 2001-11-22 2003-06-06 Hitachi Ltd Power supply and distributed power supply system, and electric vehicle mounted with it
JP2003219575A (en) * 2002-01-23 2003-07-31 Shin Kobe Electric Mach Co Ltd Power system
JP2010088211A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Backup power supply of blade server

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117199A1 (en) * 2017-12-14 2019-06-20 国立研究開発法人理化学研究所 Manganese oxide for water decomposition catalysts, manganese oxide-carbon mixture, manganese oxide composite electrode material, and respective methods for producing these materials
JPWO2019117199A1 (en) * 2017-12-14 2020-12-17 国立研究開発法人理化学研究所 Manganese oxide for water splitting catalyst, manganese oxide-carbon mixture, manganese oxide composite electrode material and method for producing them
US10797341B2 (en) 2018-03-16 2020-10-06 Kabushiki Kaisha Toshiba Battery module, battery pack, vehicle, and stationary power supply

Similar Documents

Publication Publication Date Title
JP5303857B2 (en) Nonaqueous electrolyte battery and battery system
JP4771180B2 (en) Battery pack and battery pack control system
EP2269262B1 (en) Leadless starting accumulator battery, processing method and its use, particularly for combustion engines and motor vehicles
WO2007072833A1 (en) Lithium ion secondary battery
JP2018117518A (en) Controlling battery states of charge in systems having separate power sources
JP2008204810A (en) Charging method and charging device of nonaqueous electrolyte secondary battery
JP2007200795A (en) Lithium ion secondary battery
JP2010525551A (en) Electrochemical cell and energy storage device with non-graphitizable carbon electrode
JP2004273139A (en) Lithium secondary battery
JP2013162686A (en) Power supply system
JP5705046B2 (en) Power system
CN105896641A (en) Automobile starting power source and automobile
JP2013120680A (en) Water electrolysis hybrid storage battery
JP2013037863A (en) Battery pack
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system
JP6157967B2 (en) Lithium secondary battery device and method for manufacturing lithium secondary battery device
EP2544293B1 (en) Electric power storage system
JP4618025B2 (en) Battery pack and charge control method thereof
JP2016144367A (en) Control device for battery pack
Naik Recent advancements and key challenges with energy storage technologies for electric vehicles
JP3163197B2 (en) Collective battery
CN107611527A (en) A kind of fuel cell and lithium ion battery composite power supply unit
WO2023281362A1 (en) Power storage system, power supply, driving device, power control device, and method for equalizing power storage statuses
JP2022550483A (en) Method and system for silicon-based lithium-ion cells with controlled silicon utilization
CN116830418A (en) Method for charging and discharging nonaqueous electrolyte secondary battery, and system for charging nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209