JP5303857B2 - Nonaqueous electrolyte battery and battery system - Google Patents

Nonaqueous electrolyte battery and battery system Download PDF

Info

Publication number
JP5303857B2
JP5303857B2 JP2007118814A JP2007118814A JP5303857B2 JP 5303857 B2 JP5303857 B2 JP 5303857B2 JP 2007118814 A JP2007118814 A JP 2007118814A JP 2007118814 A JP2007118814 A JP 2007118814A JP 5303857 B2 JP5303857 B2 JP 5303857B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
nonaqueous electrolyte
current
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007118814A
Other languages
Japanese (ja)
Other versions
JP2008277106A (en
Inventor
純一 倉富
森  澄男
勝彦 岡本
隆明 井口
健次 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2007118814A priority Critical patent/JP5303857B2/en
Publication of JP2008277106A publication Critical patent/JP2008277106A/en
Priority to JP2013025280A priority patent/JP2013138014A/en
Application granted granted Critical
Publication of JP5303857B2 publication Critical patent/JP5303857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、過充電時の安全性に優れた非水電解質電池に関する。   The present invention relates to a nonaqueous electrolyte battery excellent in safety during overcharge.

近年、HEV(ハイブリッド車)用など、電池容量が大きく、高出力の電池システムの開発が盛んである。また、従来のニッケル水素電池に替えてリチウム電池等の非水電解質電池をかかる電池システムに採用することが検討されている。   In recent years, battery systems with large battery capacity and high output, such as for HEV (hybrid vehicles), have been actively developed. In addition, it has been studied to employ a nonaqueous electrolyte battery such as a lithium battery in such a battery system in place of the conventional nickel metal hydride battery.

例えば特許文献1、2にみられるように、非水電解質電池の過充電に対応する技術が多数開示されている。しかしながら、従来用いられてきた小型民生用の非水電解質電池の容量は、特許文献1〜3の記載からもわかるように、せいぜい1.5Ah程度であり、急速充電のレベルも高々4It未満である。しかしながら、HEV用、非常用、電力貯蔵用などの用途には、極めて大容量、高出力の非水電解質電池が用いられるため、従来想定していなかった使用条件に対応する必要がある。   For example, as seen in Patent Documents 1 and 2, a number of technologies corresponding to overcharging of nonaqueous electrolyte batteries are disclosed. However, as can be seen from the descriptions in Patent Documents 1 to 3, the capacity of a small non-aqueous electrolyte battery for consumer use that has been conventionally used is about 1.5 Ah at most, and the level of rapid charging is less than 4 It at most. . However, for applications such as HEV, emergency, and power storage, non-aqueous electrolyte batteries with extremely large capacity and high output are used, so it is necessary to cope with usage conditions that have not been assumed in the past.

例えば、制御システムの故障等により充電が終了すべき場合であるにもかかわらず充電電流が流れ続けた場合を想定すると、単電池に収納されている電極材料や電解質材料の絶対量が大きいため、蓄熱効果も相まって、電池が短時間のうちに電池電圧や電池温度の急激な上昇を伴う極度の過充電状態に陥り、電池システムの安全性が損なわれることとなる。   For example, assuming a case where charging current continues to flow even though charging should be terminated due to a failure of the control system, etc., because the absolute amount of electrode material and electrolyte material stored in the unit cell is large, Combined with the heat storage effect, the battery falls into an extreme overcharged state with a sudden rise in battery voltage or battery temperature in a short time, and the safety of the battery system is impaired.

例えば、HEV用途において、下りの坂道が続き、ハイブリッドシステムに回生(充電)され続けた場合や、乗用車に搭載した電池システムの制御回路の故障により電池が過充電状態となった場合、さらにその乗用車が衝突事故等による衝撃によって電池の内部短絡を引き起こした場合、非常用電源システムの制御回路の故障により過充電状態となった電池を作業員が交換しようとする場合、電力貯蔵システムの制御回路の故障により電池が過充電状態となり、さらに地震等の災害を被った場合等を想定すると、必ずしも安全性が十分に保たれているとはいえない。   For example, in HEV applications, if a downhill road continues and regeneration (charging) continues in the hybrid system, or if the battery is overcharged due to a failure in the control circuit of the battery system installed in the passenger car, the passenger car If the battery causes an internal short circuit due to an impact due to a collision accident, etc., when an operator tries to replace the battery that has been overcharged due to a failure in the control circuit of the emergency power system, the control circuit of the power storage system If it is assumed that the battery is overcharged due to a failure and suffers a disaster such as an earthquake, the safety cannot always be kept sufficiently.

従って、仮に制御システムが故障しても、電池が過充電状態とならないよう、早期に充電電流を遮断することのできる電池又は電池システムが求められていた。   Therefore, there has been a demand for a battery or a battery system that can interrupt the charging current at an early stage so that the battery is not overcharged even if the control system fails.

特許文献1には、正極活物質(LiCoO)に対して0.5〜20重量%の炭酸リチウムを添加した正極を備え、電池内圧の上昇に応じて作動する電流遮断手段を備えた直径14mm、高さ50mm円筒型の非水電解質二次電池が記載され、「電流1.5Aで過充電状態にすることによって電池の急速な温度上昇を伴う発熱や比較的急速な破損が生じるといった電池の損傷品の発生率を調査した」(段落0032参照)ことが記載され、「リチウム複合酸化物を主体とする正極に炭酸リチウムを添加すると、過充電で電池内圧がそれほど上昇する前での急激な温度上昇を伴う発熱や比較的急速な破損が起こらず、そして、比較的緩やかに電池内圧が上昇することにより電流遮断手段が確実に作動し、充電電流を遮断させる。理由については明らかではないが、正極での炭酸リチウムが電気化学的に分解されて炭酸ガスを発生することから、何らかの形で過充電中での異常反応を炭酸ガスが抑制し、また発生した炭酸ガスにより電流遮断手段を確実に作動させるために、急激な温度上昇を伴う発熱や比故的急速な破損を防止したものと思われる。」(段落0015参照)と記載されている。 Patent Document 1 includes a positive electrode in which 0.5 to 20% by weight of lithium carbonate is added to a positive electrode active material (LiCoO 2 ), and has a diameter of 14 mm including a current interrupting unit that operates in response to an increase in battery internal pressure. , A non-aqueous electrolyte secondary battery having a 50 mm height is described, and “a battery that generates heat or a relatively rapid breakage due to a rapid temperature rise of the battery by being overcharged at a current of 1.5 A” is described. “The rate of occurrence of damaged products was investigated” (see paragraph 0032). “When lithium carbonate was added to the positive electrode mainly composed of lithium composite oxide, the battery internal pressure increased rapidly due to overcharge. Due to the fact that heat generation with temperature rise and relatively rapid damage do not occur and the battery internal pressure rises relatively slowly, the current interrupting means operates reliably and interrupts the charging current. Although it is not clear, since the lithium carbonate at the positive electrode is electrochemically decomposed to generate carbon dioxide, the carbon dioxide suppresses the abnormal reaction during overcharging in some way, and the generated carbon dioxide generates a current. It seems that in order to operate the shut-off means reliably, heat generation accompanied by a rapid temperature rise and comparatively rapid breakage are prevented "(see paragraph 0015).

特許文献2には、正極活物質にLiMnを用い、負極に球状黒鉛を用い、電解質に添加剤として2.5重量%のビフェニルを配合した18650型の非水系再充電可能電池が記載され、「10ボルトで3アンペアの能力のある電源を使用して、45℃の周囲温度で過充電試験を実施した」(段落0038参照)ことが記載され、「少量の添加剤ビフェニル、3−クロロチオフェン、およびフランが、ある種の特定な電池系に対して、そのサイクル寿命特性に悪影響を与えずに、過充電保護を与えることが確認できる。」(段落0046参照)と記載されている。 Patent Document 2 describes a 18650-type non-aqueous rechargeable battery in which LiMn 2 O 4 is used as a positive electrode active material, spherical graphite is used as a negative electrode, and 2.5% by weight of biphenyl is added as an additive to an electrolyte. Was described as “overcharge testing was performed at an ambient temperature of 45 ° C. using a power supply capable of 3 amps at 10 volts” (see paragraph 0038). It can be seen that chlorothiophene and furan provide overcharge protection for certain battery systems without adversely affecting their cycle life characteristics "(see paragraph 0046). .

特許文献3には、「高いエネルギー密度を得ることができ。かつ充放電サイクル特性を向上させることができる二次電池を提供すること」を目的として、リチウムコバルト複合酸化物粉末95重量部に対して炭酸リチウム粉末5重量部を混合している正極と、人造黒鉛を用いた負極と、2,4−ジフルオロアニソール(DFA)を0.1〜15.8重量%含ませた電解液を用いた、直径14mm、高さ65mmの円筒型二次電池が記載され、400mAの電流で充放電サイクル試験を行ったことが記載されている(実施例2−12〜2−16参照)。   Patent Document 3 discloses that for the purpose of “providing a secondary battery capable of obtaining a high energy density and improving charge / discharge cycle characteristics”, 95 parts by weight of lithium cobalt composite oxide powder. A positive electrode mixed with 5 parts by weight of lithium carbonate powder, a negative electrode using artificial graphite, and an electrolytic solution containing 0.1 to 15.8% by weight of 2,4-difluoroanisole (DFA) were used. In addition, a cylindrical secondary battery having a diameter of 14 mm and a height of 65 mm is described, and it is described that a charge / discharge cycle test was performed at a current of 400 mA (see Examples 2-12 to 2-16).

しかし、いずれの文献にも、正極に炭酸リチウムを混合することと、電解液添加剤としてビフェニルを選択して添加することの組み合わせについては記載がない。
特開平4−328278号公報 特開平9−106835号公報 国際公開第01/022519号パンフレット
However, none of the documents describes a combination of mixing lithium carbonate with the positive electrode and selecting and adding biphenyl as an electrolytic solution additive.
JP-A-4-328278 JP-A-9-106835 International Publication No. 01/022519 Pamphlet

過充電に対する安全性に優れた非水電解質電池を提供することを目的とする。   It aims at providing the nonaqueous electrolyte battery excellent in the safety | security with respect to an overcharge.

本発明は、負極、過充電状態の正極電位においてガスを発生しうる化合物を含有する正極合剤を備えた正極及び過充電状態において電極表面に抵抗被膜を形成させ、該抵抗被膜に電流が流れて発熱させることでガス発生を促進させるビフェニルを含有する非水電解質が外装容器内に収納されてなる非水電解質電池である。
The present invention provides a negative electrode, a positive electrode including a positive electrode mixture containing a compound capable of generating a gas at a positive electrode potential in an overcharged state, and a resistance film formed on the electrode surface in an overcharged state. A nonaqueous electrolyte battery in which a nonaqueous electrolyte containing biphenyl that promotes gas generation by flowing and generating heat is housed in an outer container.

また、本発明の非水電解質電池は、前記外装容器内の内圧上昇に応じて作動する電流遮断手段を備えたことを特徴としている。   The nonaqueous electrolyte battery of the present invention is characterized in that it includes a current interrupting means that operates in response to an increase in internal pressure in the outer container.

また、本発明は、前記非水電解質電池を一個又は複数個備えてなる電池部と電圧監視及び制御手段を備えた電池システムである。   In addition, the present invention is a battery system including a battery unit including one or a plurality of the nonaqueous electrolyte batteries and a voltage monitoring and control unit.

過充電に対する安全性に優れた非水電解質電池を提供することができる。   A nonaqueous electrolyte battery excellent in safety against overcharging can be provided.

本発明は、正極合剤が過充電状態の正極電位においてガスを発生しうる化合物を含有することにより、急速な過充電に対応して分解ガスを発生し、電流遮断機構を作動させる効果を発現する。   In the present invention, the positive electrode mixture contains a compound capable of generating gas at the positive electrode potential in an overcharged state, thereby generating a decomposition gas in response to rapid overcharge and exerting an effect of operating a current interruption mechanism. To do.

ここで、過充電状態の正極電位においてガスを発生しうる化合物としては、炭酸無機化合物、蓚酸無機化合物、又は、硝酸無機化合物が好ましく、中でも炭酸無機化合物が好ましい。炭酸無機化合物としては、例えば炭酸リチウムが挙げられる。   Here, as a compound that can generate gas at the positive electrode potential in an overcharged state, an inorganic carbonate compound, an inorganic oxalate compound, or an inorganic nitrate compound is preferable, and an inorganic carbonate compound is particularly preferable. Examples of the inorganic carbonate compound include lithium carbonate.

例えばコバルト酸リチウム等の正極活物質粉末中には微量の炭酸リチウムが不可避的に存在するが、本発明において前記効果を発現させるためには、正極合剤中の炭酸リチウムの量は前記不可避量を超えて含有することが必要である。具体的には、正極合剤中に占める炭酸リチウムの量は1重量%以上が好ましく、2重量%以上がより好ましく、4重量%以上が最も好ましい。正極合剤が含有する炭酸リチウムの量は10重量%以下とすることにより、電池のエネルギー密度が低下する虞を低減できるため、好ましい。   For example, a small amount of lithium carbonate is unavoidably present in the positive electrode active material powder such as lithium cobaltate. In order to achieve the above effect in the present invention, the amount of lithium carbonate in the positive electrode mixture is the unavoidable amount. It is necessary to contain more than. Specifically, the amount of lithium carbonate in the positive electrode mixture is preferably 1% by weight or more, more preferably 2% by weight or more, and most preferably 4% by weight or more. The amount of lithium carbonate contained in the positive electrode mixture is preferably 10% by weight or less because the possibility that the energy density of the battery is lowered can be reduced.

また、本発明は、非水電解質がビフェニル類を含有することにより、急速な過充電が開始された場合にビフェニル類が重合して電極表面に抵抗被膜を形成することにより、過充電深度の進行を抑制すると共に、前記抵抗被膜が形成された電極を通じて充電電流が流れることで生じる発熱が正極合剤中の炭酸リチウムの分解とこれに伴うガス発生を促進し、相乗して電流遮断機構を早期に作動させる効果を発現する。このようにして、電池の過充電深度が低い段階にて充電を停止させることができる。非水電解質が含有するビフェニル類の量は2重量%以上とすると、前記効果が確実に発現するため好ましい。非水電解質が含有するビフェニル類の量は10重量%以下とすることにより、電池の内部抵抗が大きなものとなる虞を低減できるため好ましく、5重量%以下がより好ましい。   In addition, the present invention provides a non-aqueous electrolyte containing biphenyls, and when rapid overcharge is initiated, the biphenyls are polymerized to form a resistance film on the electrode surface, thereby increasing the overcharge depth. The heat generated by the charging current flowing through the electrode on which the resistance film is formed promotes the decomposition of the lithium carbonate in the positive electrode mixture and the gas generation accompanying this, and synergistically accelerates the current interruption mechanism. The effect to act on is expressed. In this way, charging can be stopped at a stage where the overcharge depth of the battery is low. The amount of biphenyl contained in the non-aqueous electrolyte is preferably 2% by weight or more, because the above-described effect is surely exhibited. The amount of biphenyls contained in the non-aqueous electrolyte is preferably 10% by weight or less because the risk of increasing the internal resistance of the battery can be reduced, and more preferably 5% by weight or less.

ここで、ビフェニル類としては、限定されるものではないが、ビフェニル又はビフェニルを構成する水素原子の一部がフッ素原子で置換された構造の化合物を例示できる。   Here, biphenyls are not limited, and examples thereof include biphenyl or a compound having a structure in which part of hydrogen atoms constituting biphenyl is substituted with a fluorine atom.

本発明に係る非水電解質電池が備える正極は、正極合剤が過充電状態の正極電位においてガスを発生しうる化合物を含有したものである限りにおいて、限定されるものではない。   The positive electrode included in the nonaqueous electrolyte battery according to the present invention is not limited as long as the positive electrode mixture contains a compound capable of generating gas at the positive electrode potential in an overcharged state.

正極活物質としては周知の材料を周知の処方で用いることができる。例えば、LiCoOや前記Coの一部がNi,Mnその他の遷移金属あるいはホウ素で置換されたα−NaFeO構造を有するリチウム含有遷移金属酸化物、LiMnに代表されるスピネル型結晶構造を有する化合物、LiFePO、LiFeSOあるいは前記Feの一部がCo,Mn等で置換されたポリアニオン型化合物等を用いることができる。正極にはさらに、CuO、CuO、AgO、CuS、CuSOなどのI族金属化合物、TiS、SiO、SnOなどのIV族金属化合物、V、V12、VOx、Nb、Bi、SbなどのV族金属化合物、CrO、Cr、MoO、MoS、WO、SeOなどのVI族金属化合物、MnO、MnなどのVII 族金属化合物、Fe、FeO、Fe、FePO、Ni、NiO、CoO、CoOなどのVIII族金属化合物等が添加されていてもよい。さらに、ジスルフィド、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリアセチレン、ポリアセン系材料などの導電性高分子化合物、擬グラファイト構造炭素質材料等を用いてもよい。 As the positive electrode active material, a known material can be used in a known formulation. For example, LiCoO 2 , a lithium-containing transition metal oxide having a α-NaFeO 2 structure in which a part of Co is substituted with Ni, Mn, or other transition metals or boron, and a spinel crystal structure represented by LiMn 2 O 4 compounds with, can be used LiFePO 4, LiFeSO 4 or a part of the Fe is Co, Mn polyanionic compound substituted with the like or the like. The positive electrode further includes a group I metal compound such as CuO, Cu 2 O, Ag 2 O, CuS, and CuSO 4 , a group IV metal compound such as TiS 2 , SiO 2 , and SnO, V 2 O 5 , V 6 O 12 , Group V metal compounds such as VOx, Nb 2 O 5 , Bi 2 O 3 , Sb 2 O 3 , Group VI metal compounds such as CrO 3 , Cr 2 O 3 , MoO 3 , MoS 2 , WO 3 , SeO 2 , MnO 2 , Group VII metal compounds such as Mn 2 O 3 , Group VIII metal compounds such as Fe 2 O 3 , FeO, Fe 3 O 4 , FePO 4 , Ni 2 O 3 , NiO, CoO 3 , and CoO are added. May be. Furthermore, conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparaphenylene, polyacetylene, and polyacene materials, pseudographite-structured carbonaceous materials, and the like may be used.

本発明に係る非水電解質電池が備える負極は、何ら限定されるものではなく、負極活物質としては、スピネル型結晶構造を有するチタン酸リチウム、リチウム金属、リチウム−アルミニウム、リチウム−鉛、リチウム−スズ、リチウム−アルミニウム−スズ、リチウム−ガリウム、およびウッド合金などのリチウム含有合金、さらに、以下のような炭素材料が挙げられる。例えば、天然黒鉛、人造黒鉛、無定形炭素、繊維状炭素、粉末状炭素、石油ピッチ系炭素、石炭コークス系炭素がある。これら炭素材料は、直径あるいは繊維径が0.01〜10ミクロン、繊維長が数μmから数mmまでの粒子あるいは繊維が好ましい。特に上記炭素材料が、X線回折等による分析結果;格子面間隔(d002)0.33から0.35nm、a軸方向の結晶子の大きさLa20nm以上、c軸方向の結晶子の大きさLc20nm以上、真密度2.00〜2.25g/cmのグラファイトは高容量を示すことから好ましい。しかしながら、もちろんこれらの範囲に限定されるものではない。 The negative electrode provided in the nonaqueous electrolyte battery according to the present invention is not limited in any way, and examples of the negative electrode active material include lithium titanate having a spinel crystal structure, lithium metal, lithium-aluminum, lithium-lead, lithium- Examples include lithium-containing alloys such as tin, lithium-aluminum-tin, lithium-gallium, and wood alloys, and the following carbon materials. For example, natural graphite, artificial graphite, amorphous carbon, fibrous carbon, powdered carbon, petroleum pitch-based carbon, and coal coke-based carbon. These carbon materials are preferably particles or fibers having a diameter or fiber diameter of 0.01 to 10 microns and a fiber length of several μm to several mm. In particular, the above carbon material is analyzed by X-ray diffraction or the like; lattice spacing (d002) 0.33 to 0.35 nm, crystallite size La20 nm or more in the a-axis direction, crystallite size Lc20 nm in the c-axis direction As described above, graphite having a true density of 2.00 to 2.25 g / cm 3 is preferable because it exhibits a high capacity. However, of course, it is not limited to these ranges.

さらに、炭素材料にはスズ酸化物や珪素酸化物といった金属酸化物の添加や、リンやホウ素を添加し改質を行うことも可能である。また、グラファイトとリチウム金属、リチウム含有合金などを併用することや、あらかじめ電気化学的に還元することによって、本発明に用いる炭素質材料にあらかじめリチウムを挿入することも可能である。   Further, it is possible to modify the carbon material by adding a metal oxide such as tin oxide or silicon oxide, or by adding phosphorus or boron. Moreover, it is also possible to insert lithium in advance into the carbonaceous material used in the present invention by using graphite and lithium metal, a lithium-containing alloy or the like in combination or by electrochemical reduction in advance.

正極や負極には、その電極合剤に必要に応じて導電剤や結着剤やフィラー等を添加することができる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば何でも良い。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、アルミニウム、銀、金など)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。これらの中で、導電性及び塗工性の観点よりアセチレンブラックが望ましい。その添加量は1〜50重量%が好ましく、特に2〜30重量%が好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   A conductive agent, a binder, a filler, and the like can be added to the positive electrode and the negative electrode as necessary in the electrode mixture. As the conductive agent, any electronic conductive material that does not adversely affect battery performance may be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and metal (copper, nickel, aluminum, silver, gold, etc.) Conductive materials such as powders, metal fibers, and conductive ceramic materials can be included as one type or a mixture thereof. Among these, acetylene black is desirable from the viewpoints of conductivity and coatability. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.

上記結着剤としては、通常、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、カルボキシメチルセルロース等といった熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能基を有する結着剤は、例えばメチル化するなどしてその官能基を失活させておくことが望ましい。その添加量としては、1〜50重量%が好ましく、特に2〜30重量%が好ましい。   As the binder, heat such as tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, carboxymethyl cellulose, etc. A plastic resin, a polymer having rubber elasticity, a polysaccharide, or the like can be used as one kind or a mixture of two or more kinds. In addition, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、アエロジル、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は0〜30重量%が好ましい。   As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The amount of filler added is preferably 0 to 30% by weight.

さらに、高容量化を目的として、硫黄、セレン、テルルなどのカルコゲン元素を添加することも可能である。添加されたカルコゲン元素は電極材料が有するジスルフィド基のS−S結合に付加し、更なる充放電容量を与える。カルコゲン元素の添加量は0〜30重量%が好ましい。   Furthermore, chalcogen elements such as sulfur, selenium, and tellurium can be added for the purpose of increasing the capacity. The added chalcogen element is added to the S—S bond of the disulfide group of the electrode material, and gives further charge / discharge capacity. The amount of chalcogen element added is preferably 0 to 30% by weight.

電気化学的活性物質の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極用集電体としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。これらの形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体、繊維群の形成体等が用いられる。厚みは特に限定はないが、1〜500μmのものが用いられる。これらの集電体の中で、正極には耐酸化性に優れているアルミニウム箔が、負極には還元場において安定であり、且つ電導性に優れ、安価な銅箔、ニッケル箔、鉄箔、およびそれらの一部を含む合金箔が好ましい。さらに、電気化学的活性物質層と集電体との密着性が優れている粗面表面粗さが0.2μmRa以上の箔であることが望ましい。このような粗面を得る目的で電解箔は優れている。   The current collector of the electrochemically active substance may be any electronic conductor that does not adversely affect the battery constructed. For example, as a positive electrode current collector, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., in addition to aluminum for the purpose of improving adhesiveness, conductivity, and oxidation resistance. A material obtained by treating the surface of copper or copper with carbon, nickel, titanium, silver or the like can be used. In addition to copper, nickel, iron, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., the negative electrode current collector is adhesive, conductive, and oxidation resistant. For the purpose of improving the property, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. The surface of these materials can be oxidized. As for these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded product, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used. Among these current collectors, an aluminum foil excellent in oxidation resistance is used for the positive electrode, and a copper foil, nickel foil, iron foil, which is inexpensive and stable in a reduction field and has excellent electrical conductivity, And the alloy foil containing those parts is preferable. Furthermore, it is desirable that the surface roughness of the rough surface with excellent adhesion between the electrochemically active material layer and the current collector is 0.2 μmRa or more. The electrolytic foil is excellent for the purpose of obtaining such a rough surface.

本発明の電極材料を用いた電池の外装材としては、鉄、ステンレススチール、アルミニウム等の金属缶を用いることが可能であるが、重量エネルギー密度の観点から、金属箔と樹脂フィルムの金属樹脂複合剤が好ましい。金属箔の例として、アルミニウム、鉄、ニッケル、銅、SUS、チタン、金、銀等、ピンホールのない箔であれば何れでもかまわないが、好ましく軽量且つ安価なアルミニウム箔が好ましい。また、樹脂フィルムとしては外面にはポリエチレンテレフタレートフィルム、ナイロンフィルム等の突き刺し強度が優れた樹脂フィルムを、内面にはポリエチレンフィルム、ナイロンフィルム等の熱可塑性であって融着可能なフィルムが好ましい。耐溶剤性の観点からこのような樹脂フィルムの開口部を熱可塑性樹脂で封止することが望ましい。   As a battery exterior material using the electrode material of the present invention, a metal can such as iron, stainless steel, and aluminum can be used. From the viewpoint of weight energy density, a metal-resin composite of a metal foil and a resin film. Agents are preferred. As an example of the metal foil, any foil such as aluminum, iron, nickel, copper, SUS, titanium, gold, silver and the like having no pinhole may be used, but a lightweight and inexpensive aluminum foil is preferable. The resin film is preferably a resin film having excellent piercing strength such as a polyethylene terephthalate film or nylon film on the outer surface, and a thermoplastic and fusible film such as a polyethylene film or nylon film on the inner surface. From the viewpoint of solvent resistance, it is desirable to seal the opening of such a resin film with a thermoplastic resin.

本発明の電極材料を用いた電池のセパレータはポリオレフィン系、ポリエステル系、ポリアクリロニトリル系、ポリフェニレンサルファイド系、ポリイミド系、及びフッ素樹脂系の微孔膜や不織布を用いることが可能である。それらの中で、濡れ性の悪い微孔膜には界面活性剤等の処理を施すことが必要となる。   As separators for batteries using the electrode material of the present invention, polyolefin-based, polyester-based, polyacrylonitrile-based, polyphenylene sulfide-based, polyimide-based, and fluororesin-based microporous membranes and nonwoven fabrics can be used. Among them, it is necessary to treat the microporous film with poor wettability with a surfactant or the like.

上記セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

本発明に係る非水電解質電池に用いる非水電解質は、ビフェニル類を含有する限りにおいて、限定されるものではない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;γ−ブチロラクトン、γ−バレロラクトンなどの環状エステル;ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの鎖状炭酸エステル;酢酸メチル、酪酸メチルなどの鎖状エステル;テトラヒドロフランまたはその誘導体、1,3−ジオキサン、1,2−ジメトキシエタン、メチルジグライムなどのエーテル類;アセトニトリル、ベンゾニトリルなどのニトリル類;ジオキサランまたはその誘導体;スルホラン、スルトンまたはその誘導体などの単独またはそれら2種以上の混合溶媒に、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiCFCO、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のLi、Na、またはKの1種を含む無機イオン塩、LiN(CFSO、LiN(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n−CNClO、(n−CNI、(CN−maleate、(CN−benzoate、(CN−phtalateなどの四級アンモニウム塩、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウムなどの有機イオン塩等を1種又は2種以上混合したもの等を用いることができる。 The nonaqueous electrolyte used for the nonaqueous electrolyte battery according to the present invention is not limited as long as it contains biphenyls. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; chain carbonates such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate Esters; chain esters such as methyl acetate and methyl butyrate; ethers such as tetrahydrofuran or derivatives thereof, 1,3-dioxane, 1,2-dimethoxyethane, and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxalane or derivatives thereof; sulfolane, alone or their mixture of two or more solvents such as sultone or a derivative thereof, LiClO 4, LiBF 4, LiAsF 6, LiPF , LiCF 3 SO 3, LiCF 3 CO 2, LiSCN, LiBr, LiI, Li 2 SO 4, Li 2 B 10 Cl 10, NaClO 4, NaI, NaSCN, NaBr, KClO 4, KSCN , etc. Li, Na or K, Inorganic ion salts containing one of LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) Quaternary ammonium salt such as 4 N-phthalate, lithium stearyl sulfonate, oct What mixed 1 type (s) or 2 or more types of organic ion salts, such as lithium tilsulfonate and lithium dodecylbenzenesulfonate, etc. can be used.

上記の電解液は、電極間に本発明のセパレータを挟み込み積層したり、巻き込んだりした後に上記電解液を注液することが可能である。注液法としては、常圧で注液することも可能であるが真空含浸方法や加圧含浸方法も可能である。   The electrolytic solution can be injected after the separator of the present invention is sandwiched between electrodes and stacked or wound. As an injection method, it is possible to inject at normal pressure, but a vacuum impregnation method and a pressure impregnation method are also possible.

本発明電池の非水電解質として、イオン液体やリチウム伝導性の固体電解質(−20〜60℃にあって固体あるいは固形状である)を用いることもできる。この固体電解質は上記塩を含む高分子で構成される。これらを含む高分子電解質としては、該リチウム塩を溶解させたポリエチレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリフォスファゼンや該誘導体、イオン解離基を含むポリマー、リン酸エステルポリマー誘導体、さらにポリビニルピリジン誘導体、ビスフェノールA誘導体、ポリアクリロニトリル、ポリビニリデンフルオライド、フッ素ゴム等に非水電解液を含有させた高分子マトリックス材料(ゲル電解質)及び無機固体電解質等のイオン伝導性化合物からなるものが用いられる。   As the non-aqueous electrolyte of the battery of the present invention, an ionic liquid or a lithium conductive solid electrolyte (at 20 to 60 ° C., which is solid or solid) can also be used. This solid electrolyte is composed of a polymer containing the salt. Examples of the polymer electrolyte containing these include a polyethylene oxide derivative in which the lithium salt is dissolved or a polymer containing at least the derivative, a polypropylene oxide derivative or a polymer containing at least the derivative, polyphosphazene or the derivative, and an ion dissociation group. Polymer matrix materials (gel electrolytes) and inorganic solid electrolytes containing non-aqueous electrolytes in polymers, phosphate ester polymer derivatives, polyvinyl pyridine derivatives, bisphenol A derivatives, polyacrylonitrile, polyvinylidene fluoride, fluororubber, etc. Those composed of an ion conductive compound are used.

(実施例1)
N−メチルピロリドンを溶媒とする正極ペーストを帯状のアルミニウム製集電体の両面に塗布し、乾燥後、プレスして、正極を作製した。ここで、前記正極ペーストは、前記溶媒以外に、正極活物質であるLiCo0.33Ni0.33Mn0.33、導電材であるアセチレンブラック、結着剤であるポリフッ化ビニリデン及び炭酸リチウムを含有しており、前記正極活物質、導電材及び結着剤の固形物換算質量比は91:5:4であり、これに炭酸リチウムを加えた全固形物中に占める炭酸リチウムの質量比が4%である。
Example 1
A positive electrode paste using N-methylpyrrolidone as a solvent was applied to both sides of a strip-shaped aluminum current collector, dried and pressed to prepare a positive electrode. Here, the positive electrode paste includes, in addition to the solvent, LiCo 0.33 Ni 0.33 Mn 0.33 O 2 as a positive electrode active material, acetylene black as a conductive material, polyvinylidene fluoride as a binder, and carbonic acid. It contains lithium, and the mass ratio of the positive electrode active material, the conductive material, and the binder in terms of solid matter is 91: 5: 4, and the mass of lithium carbonate in the total solid matter to which lithium carbonate is added The ratio is 4%.

負極活物質である炭素材料としてのハードカーボン及び結着剤であるポリフッ化ビニリデンが92:8の固形物換算質量比で含有しているN−メチルピロリドンを溶媒とする負極ペーストを、帯状の銅製集電体の両面に塗布し、乾燥後、プレスして、負極を作製した。   A negative electrode paste containing N-methylpyrrolidone containing hard carbon as a negative electrode active material as a carbon material and polyvinylidene fluoride as a binder in a solid-converted mass ratio of 92: 8 as a solvent is made of a strip-like copper. It apply | coated on both surfaces of the electrical power collector, and after drying, it pressed and produced the negative electrode.

エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を等体積比で混合した混合溶媒に電解質塩としてLiPFを1モル/リットルの濃度で混合し、さらに、これに対して、添加剤として、2重量%のビフェニルを添加して非水電解質を調整した。 LiPF 6 as an electrolyte salt was mixed at a concentration of 1 mol / liter in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) were mixed at an equal volume ratio. As an additive, 2% by weight of biphenyl was added to prepare a nonaqueous electrolyte.

セパレータとして帯状のポリエチレン製微多孔膜を介して前記帯状正極及び帯状負極を偏平に捲回することにより極群を作製し、外装容器である角形電槽に収容し、前記非水電解質を注液、含浸し、初期充放電サイクル工程を経て、設計容量6Ahの非水電解質電池を作製した。   As a separator, the strip positive electrode and the strip negative electrode are wound flatly through a strip-shaped polyethylene microporous membrane, and a pole group is prepared, accommodated in a rectangular battery case which is an exterior container, and the non-aqueous electrolyte is injected. The nonaqueous electrolyte battery having a design capacity of 6 Ah was manufactured through impregnation and an initial charge / discharge cycle process.

なお、前記角形電槽には、正極端子及び負極端子の他、内圧が300〜900kPaの範囲のときに電槽に設けられた電極端子と電槽内の発電要素との電気的接続を遮断しうる電流遮断手段が設けられ、さらに、内圧が900kPaを超えた場合に電槽内のガスを外部へ排気しうる圧力解放弁が設けられている。正極端子は、前記電流遮断手段を介して正極と電気的に接続され、負極端子は電流遮断手段を介することなく負極と電気的に接続されている。前記電流遮断手段は、正極と電気的に接続された部材とその上方に設置された金属薄膜とがスポット溶接されてなり、内圧上昇によって前記金属薄膜が上方に膨れ上がることにより、前記スポット溶接部が断絶され、これによって正極と正極端子との導通が遮断されるものである。   In addition to the positive electrode terminal and the negative electrode terminal, the rectangular battery case cuts off the electrical connection between the electrode terminal provided in the battery case and the power generation element in the battery case when the internal pressure is in the range of 300 to 900 kPa. A current release means is provided, and further, a pressure release valve is provided that can exhaust the gas in the battery case to the outside when the internal pressure exceeds 900 kPa. The positive terminal is electrically connected to the positive electrode via the current interrupting means, and the negative terminal is electrically connected to the negative electrode without passing through the current interrupting means. The current interrupting means is formed by spot welding a member electrically connected to the positive electrode and a metal thin film installed thereabove, and the metal thin film swells upward due to an increase in internal pressure. Is interrupted, and thereby the conduction between the positive electrode and the positive electrode terminal is interrupted.

(実施例2)
非水電解質におけるビフェニルの添加量を4重量%としたことを除いては、実施例1と同様にして、非水電解質電池を作製した。
(Example 2)
A nonaqueous electrolyte battery was fabricated in the same manner as in Example 1 except that the amount of biphenyl added to the nonaqueous electrolyte was 4% by weight.

(比較例1〜16)
正極における炭酸リチウムの量及び非水電解質における添加剤の種類と量を表1に示す通りの処方としたことを除いては、実施例1と同様にして、非水電解質電池を作製した。なお、表1において横線で示した欄は、炭酸リチウム又は添加剤を含有しないことを示す。表1において用いた記号の意味は次の通りである。
BP : ビフェニル
TOL : トルエン
DFA : 2,4−ジフルオロアニソール
(Comparative Examples 1-16)
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the amount of lithium carbonate in the positive electrode and the type and amount of additives in the nonaqueous electrolyte were set as shown in Table 1. In addition, the column shown with the horizontal line in Table 1 shows that lithium carbonate or an additive is not contained. The meanings of the symbols used in Table 1 are as follows.
BP: biphenyl TOL: toluene DFA: 2,4-difluoroanisole

(過充電試験1)
実施例1,2、比較例1〜16に係る非水電解質電池に対して過充電試験を行った。全ての電池は、供試前、0.2ItA、4.2V、10時間の定電流定電圧充電により充電末状態とした。温度20℃にて、それぞれの電池に対して、通電された積算電気量を知ることのできる直流電源を用いて、15V、6Aの直流を印可した。電池温度が150℃を超えるか、又は、電池温度が150℃を超えなかったものについては電流遮断手段が作動することをもって試験の終了とした。
(Overcharge test 1)
An overcharge test was performed on the nonaqueous electrolyte batteries according to Examples 1 and 2 and Comparative Examples 1 to 16. All the batteries were put into the end-of-charge state by constant current and constant voltage charging for 0.2 hours, 4.2 V, and 10 hours before the test. At a temperature of 20 ° C., a direct current of 15 V and 6 A was applied to each battery using a direct current power source capable of knowing the accumulated amount of electricity supplied. For batteries whose battery temperature exceeded 150 ° C. or whose battery temperature did not exceed 150 ° C., the test was terminated when the current interrupting means was activated.

(過充電試験2)
別途用意した実施例1,2、比較例1〜16に係る非水電解質電池に対して過充電試験を行った。全ての電池は、供試前、0.2ItA、4.2V、10時間の定電流定電圧充電により充電末状態とした。温度20℃にて、それぞれの電池に対して、通電された積算電気量を知ることのできる直流電源を用いて、15V、200Aの直流を印可した。電池温度が150℃を超えるか、又は、電池温度が150℃を超えなかったものについては電流遮断手段が作動することをもって試験の終了とした。
(Overcharge test 2)
An overcharge test was performed on the nonaqueous electrolyte batteries according to Examples 1 and 2 and Comparative Examples 1 to 16 that were separately prepared. All the batteries were put into the end-of-charge state by constant current and constant voltage charging for 0.2 hours, 4.2 V, and 10 hours before the test. At a temperature of 20 ° C., a direct current of 15 V and 200 A was applied to each battery using a direct current power source capable of knowing the accumulated amount of electricity supplied. For batteries whose battery temperature exceeded 150 ° C. or whose battery temperature did not exceed 150 ° C., the test was terminated when the current interrupting means was activated.

表1に、過充電試験1及び過充電試験2の評価結果をA、B及びCの記号で示した。記号A、B、Cの意味は次の通りである。
A : 電流遮断手段が作動し、圧力解放弁の作動には至らなかった
B : 電流遮断手段が作動したが、圧力解放弁も作動した
C : 電池温度が150℃を超えるに至った
In Table 1, the evaluation results of the overcharge test 1 and the overcharge test 2 are indicated by symbols A, B, and C. The meanings of symbols A, B, and C are as follows.
A: The current interrupting means was activated and the pressure release valve was not activated. B: The current interrupting means was activated, but the pressure release valve was activated. C: The battery temperature exceeded 150 ° C.

また、それぞれの過充電試験の結果、電池温度の上昇が150℃を超えなかった、評価結果がA又はBの電池については、通電された積算電気量の値に基づき、試験終了時におけるそれぞれの電池の充電深度をSOC%にて示した。なお、SOC100%は過充電試験供試前の状態と対応している。   In addition, as a result of each overcharge test, the battery temperature rise did not exceed 150 ° C., and the battery with an evaluation result of A or B is based on the value of the accumulated electric quantity energized. The charge depth of the battery is indicated by SOC%. Note that SOC 100% corresponds to the state before the overcharge test.

Figure 0005303857
Figure 0005303857

比較例11〜16の結果から、添加剤を含有しない非水電解質を用いた場合、正極合剤中の炭酸リチウムの含有量が1重量%以下であると、過充電試験の結果、電池温度が150℃を超えるに至った。正極合剤中の炭酸リチウムの含有量を2重量%以上とすることにより、過充電試験1の結果においては、電流遮断手段が作動し、圧力解放弁の作動には至らないものとすることができたものの、15V200Aを印加する過充電試験2の結果においては、電流遮断手段は作動させることができたものの、内圧が上昇しすぎ、圧力解放弁の作動に至った。   From the results of Comparative Examples 11 to 16, when a non-aqueous electrolyte that does not contain an additive is used, if the lithium carbonate content in the positive electrode mixture is 1% by weight or less, the result of the overcharge test is that the battery temperature is It reached 150 ° C. By setting the content of lithium carbonate in the positive electrode mixture to 2% by weight or more, in the result of the overcharge test 1, the current interruption means is activated and the pressure release valve is not activated. Although it was possible, in the result of the overcharge test 2 in which 15V200A was applied, the current interrupting means could be operated, but the internal pressure increased too much, leading to the operation of the pressure release valve.

添加剤としてビフェニル、トルエン又は2,4−ジフルオロアニソールを添加した非水電解質を用いる一方、炭酸リチウムを含有させなかった正極を用いた比較例5〜10の電池においては、添加剤の量を最大4重量%としても、過充電試験の結果、電池温度が150℃を超えるに至った。   In the batteries of Comparative Examples 5 to 10 using the positive electrode not containing lithium carbonate, while using a non-aqueous electrolyte to which biphenyl, toluene or 2,4-difluoroanisole was added as an additive, the amount of the additive was maximized. Even when the content was 4% by weight, the battery temperature reached 150 ° C. as a result of the overcharge test.

正極合剤が炭酸リチウムを含有すると共に、非水電解質が添加剤を含有している実施例1,2及び比較例1〜4の結果から、正極合剤が炭酸リチウムを含有し、非水電解質に用いる添加剤の種類がビフェニルである場合に限り、15V200Aを印加する過充電試験2を行っても、電池温度が150℃を超えることがなく、圧力解放弁が作動する状態未満に内圧上昇を抑えることができ、電流遮断手段を安全に作動させることができた。   From the results of Examples 1 and 2 and Comparative Examples 1 to 4 in which the positive electrode mixture contains lithium carbonate and the nonaqueous electrolyte contains an additive, the positive electrode mixture contains lithium carbonate, and the nonaqueous electrolyte As long as the type of additive used for biphenyl is biphenyl, the battery temperature does not exceed 150 ° C. even when the overcharge test 2 is applied with 15V200A, and the internal pressure rises below the state in which the pressure release valve operates. The current interrupting means could be operated safely.

ここで、過充電試験2終了時におけるSOC%を比べると、実施例1,2の電池ではSOC%の値が小さく、15V200Aの急速充電条件下において、充電深度の浅い段階で電流遮断機構が作動したことがわかる。また炭酸リチウムにトルエン又は2,4−ジフルオロアニソールを添加したものに関してはビフェニルほどの効果は得られないものの電流遮断時のSOC%は炭酸リチウム単体のものに比べ大きく低下しており、ハイレート時の過充電による早急な電流遮断は可能であり、安全性は向上することがわかる。   Here, comparing the SOC% at the end of the overcharge test 2, the SOC% values of the batteries of Examples 1 and 2 are small, and the current interrupting mechanism operates at a shallow depth of charge under the fast charge condition of 15V200A. You can see that Moreover, although the effect as biphenyl is not acquired about what added toluene or 2, 4- difluoroanisole to lithium carbonate, SOC% at the time of current interruption has fallen greatly compared with the thing of lithium carbonate simple substance, and at the time of high rate It can be seen that the current can be interrupted quickly by overcharging, and the safety is improved.

電流遮断手段を安全に作動させるために内圧を上昇させる作用は、主に正極合剤が含有している炭酸リチウムによるガス発生の効果であるが、電解液がビフェニルを含有することにより、ビフェニルが重合して電極表面に高抵抗の被膜が形成されることで、充電反応の進行を抑制すると共に、前記高抵抗被膜が形成されることにより、充電電流により電極が発熱し、一層炭酸リチウムの分解を相乗的に促進する結果となり、ガス発生を促進し、電流遮断手段が作動されやすくする。上記試験に用いた非水電解質に対する添加剤であるビフェニル、トルエン及び2,4−ジフルオロアニソールの中で、ビフェニルは重合熱が最も大きいことが知られており、また、ビフェニルは重合に伴ってそれ自体がガス発生する。このように、発熱量が大きいという一見安全性に逆行するかのような性質を有するビフェニルを選択して炭酸リチウムと組み合わせて用いることによって、過充電時においても電池温度が過度に上昇することを抑え、安全機構である電流遮断手段の作動を促進する結果となった。   The action of increasing the internal pressure in order to operate the current interrupting means safely is mainly the effect of gas generation by the lithium carbonate contained in the positive electrode mixture, but since the electrolyte contains biphenyl, Polymerization forms a high-resistance film on the electrode surface, which suppresses the progress of the charging reaction, and by forming the high-resistance film, the electrode generates heat due to the charging current, further decomposing lithium carbonate. As a result, the gas generation is promoted and the current interrupting means is easily operated. Among biphenyl, toluene and 2,4-difluoroanisole, which are additives for the non-aqueous electrolyte used in the above test, biphenyl is known to have the highest heat of polymerization, and biphenyl increases with polymerization. It generates gas itself. In this way, by selecting biphenyl having a property that seems to go against safety at a glance that the calorific value is large, and using it in combination with lithium carbonate, the battery temperature rises excessively even during overcharge. As a result, the operation of the current interrupting means, which is a safety mechanism, was promoted.

また、比較的緩やかな過充電条件である過充電試験1終了時におけるSOC%の値はいずれも200%を超えているのに対し、33ItAという極めて過酷な急速充電条件を採用した過充電試験2終了時におけるSOC%の値は、特に実施例電池において低いものとなっていることからわかるように、ビフェニルと炭酸リチウムを組み合わせて用いる本発明の構成により、過酷な充電条件の印加が、本発明の効果をより顕著に引き出したことは、極めて興味深い。   In addition, the SOC% value at the end of the overcharge test 1 which is a relatively gradual overcharge condition exceeds 200%, while the overcharge test 2 adopts an extremely severe rapid charge condition of 33 ItA. As can be seen from the fact that the SOC% value at the end of the battery is low particularly in the battery of the example, the application of severe charging conditions is possible according to the present invention using the combination of biphenyl and lithium carbonate. It is very interesting to draw out the effect of.

本発明の非水電解質電池を一個又は複数個備えてなる電池部と電圧監視及び制御手段を備えた電池システムを構成することができる。   A battery system including a battery unit including one or a plurality of nonaqueous electrolyte batteries of the present invention and voltage monitoring and control means can be configured.

図1は、本発明電池の外装容器5内部の接続状態及び本発明電池を用いた電池システムの構成を示す概念図である。図1には、電池部が非水電解質電池を一個備えた場合の電池システムを例示した。前記したように、正極端子1が、電池の状態を検知して電気的導通を遮断しうる電流遮断手段4を介して発電要素6を構成している正極と電気的に接続されていると共に、前記正極は、前記電流遮断手段4を介することなく補助端子3と電気的に接続されている。なお、本実施例においては、負極端子2は前記電流遮断手段4を介することなく発電要素6を構成している負極と電気的に接続されている。なお、本実施例電池はHEV用であるため、正極はアルミニウム製の外装容器5とも電気的に接続されている。   FIG. 1 is a conceptual diagram showing the connection state inside the outer container 5 of the battery of the present invention and the configuration of a battery system using the battery of the present invention. FIG. 1 illustrates a battery system in which the battery unit includes one nonaqueous electrolyte battery. As described above, the positive electrode terminal 1 is electrically connected to the positive electrode constituting the power generation element 6 through the current interrupting means 4 that can detect the state of the battery and interrupt electrical conduction, The positive electrode is electrically connected to the auxiliary terminal 3 without passing through the current interrupting means 4. In the present embodiment, the negative electrode terminal 2 is electrically connected to the negative electrode constituting the power generation element 6 without the current interrupting means 4 interposed therebetween. Since the battery of this example is for HEV, the positive electrode is also electrically connected to the aluminum outer container 5.

図1に例示した本発明の電池システムにおいては、正極端子1と負極端子2との間に設けられた電圧監視及び制御手段8が、端子間電圧の急変動又は電圧値を検出することにより電流遮断手段4が作動したと判断し、切換器7を制御して負極端子2と補助端子3との間に負荷抵抗9を接続することにより、発電要素を放電させる。   In the battery system of the present invention illustrated in FIG. 1, the voltage monitoring and control means 8 provided between the positive electrode terminal 1 and the negative electrode terminal 2 detects a sudden change in voltage between terminals or a voltage value to detect current. It is determined that the shut-off means 4 has been activated, and the switch 7 is controlled to connect the load resistor 9 between the negative terminal 2 and the auxiliary terminal 3, thereby discharging the power generation element.

前記電圧監視及び制御手段においては、CS(電圧検出システム)が電池部の電圧信号を検知して電池制御部(BMU=Battery Management Unit)に伝達する。電池制御部は、例えばセルバランサーを制御して電池の強制放電制御を行うようにしてもよい。   In the voltage monitoring and control means, CS (voltage detection system) detects the voltage signal of the battery unit and transmits it to the battery control unit (BMU = Battery Management Unit). For example, the battery control unit may control the cell balancer to perform forced discharge control of the battery.

極めて安全性に優れた電池を提供できる本発明の技術は、大型で高出力用途の電池が使用されるHEV用電池、非常用電源システム、電力貯蔵システム等の技術領域において特に有効に適用することができる。   The technology of the present invention that can provide an extremely safe battery should be applied particularly effectively in the technical fields of HEV batteries, emergency power supply systems, power storage systems, etc. where large-sized and high-power batteries are used. Can do.

本発明に係る電池システムの一例を示すブロック図である。It is a block diagram which shows an example of the battery system which concerns on this invention.

符号の説明Explanation of symbols

1 正極端子
2 負極端子
3 補助端子
4 電流遮断手段
5 正極
DESCRIPTION OF SYMBOLS 1 Positive terminal 2 Negative terminal 3 Auxiliary terminal 4 Current interruption means 5 Positive electrode

Claims (3)

負極、過充電状態の正極電位において炭酸リチウムを含有する正極合剤を備えた正極、及びビフェニル類を含有する非水電解質が外装容器内に収納されてなる非水電解質電池において、
炭酸リチウムの含有量を4重量%以上とし、
ビフェニル類の含有量を2重量%以上とし、
過充電状態において電極表面にビフェニル類の重合により生成した抵抗被膜を形成させ、
該抵抗被膜に電流が流れて発熱させることでガス発生を促進させることを特徴とする非水電解質電池。
In a nonaqueous electrolyte battery in which a negative electrode, a positive electrode with a positive electrode mixture containing lithium carbonate at an overcharged positive electrode potential, and a nonaqueous electrolyte containing biphenyls are housed in an outer container,
The lithium carbonate content is 4% by weight or more,
The biphenyl content is 2% by weight or more,
In the overcharged state, a resistance film generated by polymerization of biphenyls is formed on the electrode surface,
A nonaqueous electrolyte battery characterized in that gas generation is promoted by causing a current to flow through the resistance film to generate heat.
前記外装容器内の内圧上昇に応じて作動する電流遮断手段を備えた請求項1記載の非水電解質電池。 The nonaqueous electrolyte battery according to claim 1, further comprising current interrupting means that operates in response to an increase in internal pressure in the outer container. 請求項2記載の非水電解質電池を一個又は複数個備えてなる電池部と電圧監視及び制御手段を備えた電池システム。
A battery system comprising a battery unit comprising one or a plurality of nonaqueous electrolyte batteries according to claim 2 and voltage monitoring and control means.
JP2007118814A 2007-04-27 2007-04-27 Nonaqueous electrolyte battery and battery system Active JP5303857B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007118814A JP5303857B2 (en) 2007-04-27 2007-04-27 Nonaqueous electrolyte battery and battery system
JP2013025280A JP2013138014A (en) 2007-04-27 2013-02-13 Nonaqueous electrolyte battery and battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007118814A JP5303857B2 (en) 2007-04-27 2007-04-27 Nonaqueous electrolyte battery and battery system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013025280A Division JP2013138014A (en) 2007-04-27 2013-02-13 Nonaqueous electrolyte battery and battery system

Publications (2)

Publication Number Publication Date
JP2008277106A JP2008277106A (en) 2008-11-13
JP5303857B2 true JP5303857B2 (en) 2013-10-02

Family

ID=40054832

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007118814A Active JP5303857B2 (en) 2007-04-27 2007-04-27 Nonaqueous electrolyte battery and battery system
JP2013025280A Pending JP2013138014A (en) 2007-04-27 2013-02-13 Nonaqueous electrolyte battery and battery system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013025280A Pending JP2013138014A (en) 2007-04-27 2013-02-13 Nonaqueous electrolyte battery and battery system

Country Status (1)

Country Link
JP (2) JP5303857B2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113583A1 (en) * 2009-03-31 2010-10-07 日鉱金属株式会社 Positive electrode active material for lithium ion battery
KR101450978B1 (en) 2009-12-18 2014-10-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
EP2518802B1 (en) 2009-12-22 2020-11-25 JX Nippon Mining & Metals Corporation Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
JP2011150873A (en) * 2010-01-21 2011-08-04 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2011096522A1 (en) 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5313392B2 (en) 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
EP2544273A4 (en) 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5467144B2 (en) 2010-03-05 2014-04-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2012079523A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Nonaqueous electrolyte secondary battery and battery pack
US20130143121A1 (en) 2010-12-03 2013-06-06 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For Lithium-Ion Battery, A Positive Electrode For Lithium-Ion Battery, And Lithium-Ion Battery
JP5389772B2 (en) * 2010-12-07 2014-01-15 株式会社日立製作所 Lithium secondary battery
KR101667867B1 (en) 2011-01-21 2016-10-19 제이엑스금속주식회사 Method of manufacturing positive electrode active material for a lithium-ion battery and a positive electrode active material for a lithium-ion battery
EP2704237B1 (en) 2011-03-29 2016-06-01 JX Nippon Mining & Metals Corporation Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5879344B2 (en) * 2011-06-13 2016-03-08 株式会社日立製作所 Lithium secondary battery
JPWO2012172586A1 (en) * 2011-06-13 2015-02-23 株式会社日立製作所 Lithium secondary battery
US20140170448A1 (en) * 2011-06-13 2014-06-19 Norio Iwayasu Lithium-ion secondary battery
WO2013042164A1 (en) * 2011-09-21 2013-03-28 トヨタ自動車株式会社 Secondary battery
JP5822089B2 (en) 2011-10-06 2015-11-24 トヨタ自動車株式会社 Sealed lithium secondary battery
WO2013069074A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 Non-aqueous electrolyte secondary cell
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5916401B2 (en) * 2012-01-27 2016-05-11 三洋電機株式会社 Non-aqueous electrolyte secondary battery, manufacturing method thereof, and vehicle including the non-aqueous electrolyte secondary battery
WO2013125030A1 (en) * 2012-02-24 2013-08-29 トヨタ自動車株式会社 Hermetically-sealed secondary battery
JPWO2013125030A1 (en) * 2012-02-24 2015-07-30 トヨタ自動車株式会社 Sealed secondary battery
JP5962961B2 (en) * 2012-03-27 2016-08-03 トヨタ自動車株式会社 Positive electrode, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the positive electrode
JP2013239374A (en) * 2012-05-16 2013-11-28 Toyota Motor Corp Lithium ion secondary battery and method for manufacturing the same
JP2013239375A (en) * 2012-05-16 2013-11-28 Toyota Motor Corp Lithium ion secondary battery and method for manufacturing the same
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2014235943A (en) * 2013-06-04 2014-12-15 シャープ株式会社 Secondary battery
GB2517460A (en) * 2013-08-21 2015-02-25 Univ Newcastle Metal-air batteries
JP5765404B2 (en) * 2013-10-31 2015-08-19 株式会社豊田自動織機 Lithium ion secondary battery
JP6668250B2 (en) * 2014-03-10 2020-03-18 マックスウェル テクノロジーズ インコーポレイテッド Method and apparatus for fibrillating polymer compound under electric field
JP6636448B2 (en) * 2014-11-28 2020-01-29 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP6519575B2 (en) * 2016-12-07 2019-05-29 トヨタ自動車株式会社 Lithium ion secondary battery
KR102643520B1 (en) * 2017-10-20 2024-03-05 주식회사 엘지에너지솔루션 Positive electrode for lithium secondary battery and lithium secondary battery including the same
KR102264906B1 (en) * 2017-11-23 2021-06-14 주식회사 엘지에너지솔루션 Battery module with improved safety, battery pack comprising the battery module and vehicle comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010781B2 (en) * 1991-04-26 2000-02-21 ソニー株式会社 Non-aqueous electrolyte secondary battery
CA2156800C (en) * 1995-08-23 2003-04-29 Huanyu Mao Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP3575735B2 (en) * 1997-05-16 2004-10-13 Necトーキン栃木株式会社 Non-aqueous rechargeable lithium battery
JP3448544B2 (en) * 2000-04-19 2003-09-22 三洋ジ−エスソフトエナジー株式会社 Non-aqueous electrolyte battery
JP4934914B2 (en) * 2001-06-11 2012-05-23 三菱化学株式会社 Electrolyte and secondary battery
JP3555623B2 (en) * 2003-04-08 2004-08-18 ソニー株式会社 battery pack
JP2006352998A (en) * 2005-06-15 2006-12-28 Nec Tokin Corp Battery pack

Also Published As

Publication number Publication date
JP2008277106A (en) 2008-11-13
JP2013138014A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5303857B2 (en) Nonaqueous electrolyte battery and battery system
US10573879B2 (en) Electrolytes and methods for using the same
JP5016814B2 (en) Non-aqueous secondary battery
CN106063019B (en) Nonaqueous electrolyte secondary battery
US8431267B2 (en) Nonaqueous secondary battery
US10971752B2 (en) Composite cathode and lithium-ion battery comprising same, and method for producing said composite cathode
CN107851838B (en) Lithium ion secondary battery
JP2010140862A (en) Battery
KR101404704B1 (en) Secondary Battery Having Volume Expandable Material
WO2017020429A1 (en) Nonaqueous electrolyte for high-voltage lithium-ion battery and lithium-ion battery
JP2007095421A (en) Large lithium ion secondary battery and electric storage system
CN108370064B (en) Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
CN106910933B (en) Lithium ion secondary battery
CN100466364C (en) Safety lithium-ion battery
CN110476288B (en) Nonaqueous electrolyte storage element and method for manufacturing same
CN110249459B (en) Negative electrode for secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP6885252B2 (en) Lithium ion secondary battery
JP2013197052A (en) Lithium ion power storage device
KR20230054313A (en) Electrode assemblies, secondary batteries, battery modules, battery packs, and devices for power consumption
KR20220004305A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP4538866B2 (en) Non-aqueous electrolyte electrochemical device
CN111164799A (en) Electrode and electricity storage element
US20230019313A1 (en) Lithium alloy reservoir for use in electrochemical cells that cycle lithium ions
KR20100121874A (en) Negative electrode active material for lithium rechargeable battery, lithium rechargeable battery, battery pack and vehicle using the same
JP6773119B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5303857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150